Supplementary Material: Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions

A. Proof of Corollary 3

For given $\varepsilon < \frac{2}{\log(\sigma_{\max}^2)}$, set $\varepsilon_0 = \frac{\varepsilon}{2} \log\left(\frac{1}{\sigma_{\max}^2}\right)$. Since all eigenvalues of $C^T C$ are positive and less than 1, it follows that

$$\left|\log \det \left(C^T C\right)\right| = \left|\sum_{i=1}^d \log \lambda_i\right| \ge d \log \left(\frac{1}{\sigma_{\max}^2}\right)$$

where λ_i are *i*-th eigenvalues of $C^T C$. Thus,

$$\varepsilon_0 = \frac{\varepsilon}{2} \log\left(\frac{1}{\sigma_{\max}^2}\right) \le \frac{\varepsilon}{2} \frac{\left|\log \det C^T C\right|}{d} = \varepsilon \frac{\left|\log\left(\left|\det C\right|\right)\right|}{d}$$

We use ε_0 instead of ε from Theorem 2, then following

 $\Pr\left[\left|\log\left(\left|\det C\right|\right) - \Gamma\right| \le \varepsilon \left|\log\left(\left|\det C\right|\right)\right|\right] \ge 1 - \zeta$

holds if m and n satisfies below condition.

B. Proof of Corollary 4

Similar to proof of Corollary 3, set $\varepsilon_0 = \frac{\varepsilon}{2} \log \sigma_{\min}^2$. Since eigenvalues of $C^T C$ are greater than 1,

$$\left|\log \det \left(C^T C\right)\right| \ge d \log \sigma_{\min}^2$$

and $\varepsilon_0 \le \varepsilon \frac{|\log(|\det C|)|}{d}$. From Theorem 2, we substitute ε_0 into ε and

 $\Pr\left[\left|\log \det C - \Gamma\right| \le \varepsilon \left|\log \det C\right|\right] \ge 1 - \zeta$

holds if m and n satisfies below condition.

C. Proof of Corollary 5

For $\varepsilon_0 = \varepsilon(\Delta_{avg} - 1)/2, \zeta \in (0, 1)$, Theorem 2 provides the following inequality:

$$\Pr\left(|\log \det L(i^*) - \Gamma| \le \varepsilon_0(|V| - 1)\right) \ge 1 - \zeta$$

Observe that since vertex i^* is connected all other vertices, the number of spanning tree, i.e., det $L(i^*)$, is greater than $2^{(|V|-1)(\Delta_{avg}-1)/2}$. Hence, we have

$$\Pr\left(|\log \det L(i^*) - \Gamma| \le \varepsilon_0(|V| - 1)\right)$$

$$\le \Pr\left(|\log \det L(i^*) - \Gamma| \le \varepsilon \log \det L(i^*)\right).$$

This completes the proof of Corollary 5.