
Supplementary Material:
Large-scale Log-determinant Computation
through Stochastic Chebyshev Expansions
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We use ε0 instead of ε from Theorem 2, then following

Pr [ |log (|detC|)− Γ| ≤ ε |log (|detC|)| ] ≥ 1− ζ

holds if m and n satifies below condition.

B. Proof of Corollary 4
Similar to proof of Corollary 3, set ε0 = ε

2 log σ2
min. Since

eigenvalues of CTC are greater than 1,∣∣log det
(
CTC

)∣∣ ≥ d log σ2
min

and ε0 ≤ ε |log(| detC|)|
d . From Theorem 2, we substitute ε0

into ε and

Pr [ |log detC − Γ| ≤ ε |log detC| ] ≥ 1− ζ

holds if m and n satifies below condition.

C. Proof of Corollary 5
For ε0 = ε(∆avg − 1)/2, ζ ∈ (0, 1), Theorem 2 provides
the following inequality:

Pr (| log detL(i∗)− Γ| ≤ ε0(|V | − 1)) ≥ 1− ζ.

Observe that since vertex i∗ is connected all other vertices,
the number of spanning tree, i.e., detL(i∗), is greater than
2(|V |−1)(∆avg−1)/2. Hence, we have

Pr (| log detL(i∗)− Γ| ≤ ε0(|V | − 1))

≤ Pr (| log detL(i∗)− Γ| ≤ ε log detL(i∗)) .

This completes the proof of Corollary 5.


