Supplementary Material: Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions

A. Proof of Corollary 3

For given $\varepsilon<\frac{2}{\log \left(\sigma_{\max }^{2}\right)}$, set $\varepsilon_{0}=\frac{\varepsilon}{2} \log \left(\frac{1}{\sigma_{\max }^{2}}\right)$. Since all eigenvalues of $C^{T} C$ are positive and less than 1 , it follows that

$$
\left|\log \operatorname{det}\left(C^{T} C\right)\right|=\left|\sum_{i=1}^{d} \log \lambda_{i}\right| \geq d \log \left(\frac{1}{\sigma_{\max }^{2}}\right)
$$

where λ_{i} are i-th eigenvalues of $C^{T} C$. Thus,
$\varepsilon_{0}=\frac{\varepsilon}{2} \log \left(\frac{1}{\sigma_{\text {max }}^{2}}\right) \leq \frac{\varepsilon}{2} \frac{\left|\log \operatorname{det} C^{T} C\right|}{d}=\varepsilon \frac{|\log (|\operatorname{det} C|)|}{d}$
We use ε_{0} instead of ε from Theorem 2, then following
$\operatorname{Pr}[|\log (|\operatorname{det} C|)-\Gamma| \leq \varepsilon|\log (|\operatorname{det} C|)|] \geq 1-\zeta$
holds if m and n satifies below condition.

B. Proof of Corollary 4

Similar to proof of Corollary 3 , set $\varepsilon_{0}=\frac{\varepsilon}{2} \log \sigma_{\text {min }}^{2}$. Since eigenvalues of $C^{T} C$ are greater than 1,

$$
\left|\log \operatorname{det}\left(C^{T} C\right)\right| \geq d \log \sigma_{\min }^{2}
$$

and $\varepsilon_{0} \leq \varepsilon \frac{\| \log (|\operatorname{det} C|) \mid}{d}$. From Theorem 2, we substitute ε_{0} into ε and

$$
\operatorname{Pr}[|\log \operatorname{det} C-\Gamma| \leq \varepsilon|\log \operatorname{det} C|] \geq 1-\zeta
$$

holds if m and n satifies below condition.

C. Proof of Corollary 5

For $\varepsilon_{0}=\varepsilon\left(\Delta_{\text {avg }}-1\right) / 2, \zeta \in(0,1)$, Theorem 2 provides the following inequality:

$$
\operatorname{Pr}\left(\left|\log \operatorname{det} L\left(i^{*}\right)-\Gamma\right| \leq \varepsilon_{0}(|V|-1)\right) \geq 1-\zeta .
$$

Observe that since vertex i^{*} is connected all other vertices, the number of spanning tree, i.e., det $L\left(i^{*}\right)$, is greater than $2^{(|V|-1)\left(\Delta_{\text {avg }}-1\right) / 2}$. Hence, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|\log \operatorname{det} L\left(i^{*}\right)-\Gamma\right| \leq \varepsilon_{0}(|V|-1)\right) \\
& \quad \leq \operatorname{Pr}\left(\left|\log \operatorname{det} L\left(i^{*}\right)-\Gamma\right| \leq \varepsilon \log \operatorname{det} L\left(i^{*}\right)\right) .
\end{aligned}
$$

This completes the proof of Corollary 5 .

