
Supplementary Material: Cheap Bandits

1. Proof of Proposition 1

For a given policy π,α∗, T , and a graph G define expected cumulative reward as

Regret(T, π,α∗, G) = E

[
T∑
t=1

s̃∗α∗ − s̃tα∗
∣∣∣α∗]

where s̃t = π′(t)Q, and Q is the orthonormal basis matrix corresponding to Laplacian of G. Let Gd denote the
family of graphs with effective dimension d. Define T -period risk of the policy π

Risk(T, π) = max
G∈Gd

max
α∗∈RN

‖α∗‖Λ<c

[Regret (T, π,α∗, G)]

We first establish that there exists a graph with effective dimension d and a class of smooth reward functions
defined over it with parameters α∗’s in a d-dimensional vector space.

Lemma 1. Given T , there exists a graph Ĝ ∈ Gd such that

max
α∗∈Rd

‖α∗‖Λ<c

[
Regret

(
T, π,α∗, Ĝ

)]
≤ Risk(T, π)

Proof: We prove the lemma by the explicit construction of a graph. Consider a graph G consisting of d disjoint
connected subgraphs denoted as Gj : j = 1, 2 . . . , d. Let the nodes in each subgraph have the same reward.

The eigenvalues of the graph are {0, λ̂1, · · · , λ̂N−d}, where eigenvalue 0 is repeated d times. Note that the set
of eigenvalues of the graph is the union of the set of eigenvalues of the individual subgraphs. Without loss of

generality, assume that λ̂1 > T/d log(T/λ+1). This is always possible, for example if subgraphs are cliques, which
is what we assume. Then the effective dimension of the graph G is d. Since the graph separates into d disjoint
subgraphs, we can split the reward function fα = Qα into d parts, one corresponding to each subgraph. We
write f j = Qjαj for j = 1, 2, . . . , d, where f j is the reward function associated with Gj , Qj is the orthonormal
matrix corresponding to Laplacian of Gj , and αi is a sub-vector of α corresponding to node rewards on Gj .

Write αj = Q′jf j . Since f j is a constant vector, and except for one, all the columns in Qj are orthogonal to f j ,
it is clear that αj has only one non-zero component. We conclude that for the reward functions that is constant
on each subgraphs α has only d non-zero components and is in a d-dimensional space. The proof of the lemma
is completed by setting Ĝ = G. Note that a graph with effective dimension d cannot have more than d disjoint
connected subgraphs. Next, we restrict our attention to graph Ĝ and rewards that are piecewise constant on
each clique. That means that the nodes in each clique have the same reward. Recall that action set SD consists
of actions that can probe a node or a group of neighboring nodes. Therefore, any group action will only allow us
to observe average reward from a group of nodes within a clique but not across the cliques. Then, all node and
group actions used to observe reward from within a clique are indistinguishable. Hence, the SD collapses to set
of d distinct actions one associated with each clique, and the problem reduces to that of selecting a clique with
the highest reward. We henceforth treat each clique as an arm where all the nodes within the same clique share
the same reward value.

We now provide a lower bound on the expected regret defined as follows

R̃isk(T, π, Ĝ) = E
[
Regret

(
T, π,α∗, Ĝ

)]
, (1)

where expectation is over the reward function on the arms.
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To lower bound the regret we follow the argument of Auer et al. (2002) and their Theorem 5.1, where an
adversarial setting is considered and the expectation in (1) is over the reward functions generated randomly
according to Bernoulli distributions. We generalize this construction to our case with Gaussian noise. The
reward generation process is as follows:

Without loss of generality choose cluster 1 to be the good cluster. At each time step t, sample reward of cluster
1 from the Gaussian distribution with mean 1

2 + ξ and unit variance. For all other clusters, sample reward from
the Gaussian distribution with mean 1

2 and unit variance.

The rest of the proof of the arguments follows exactly as in the proof of Theorem 5.1 (Auer et al., 2002) except
at their Equation 29. To obtain an equivalent version for Gaussian rewards, we use the relationship between
the L1 distance of Gaussian distributions and their KL divergence. We then apply the formula for the KL
divergence between the Gaussian random variables to obtain equivalent version of their Equation 30. Now note
that, log(1− ξ2) ∼ −ξ2 (within a constant). Then the proof follows silmilarly by setting ξ =

√
d/T and noting

that the L2 norm of the mean rewards is bounded by c for an appropriate choice of λ.

2. Proof of Proposition 2

In the following, we first give some definitions and related results.

Definition 1 (k-way expansion constant by Lee et al., 2012). Consider a graph G and X ⊂ V. Let

φG(X ) := φ(X ) =
|∂X|
V (X )

,

where V (X ) denotes the sum of the degree of nodes in X and |∂X| denotes the number of edges between the nodes
in X and V\X . For all k > 0, k-way expansion constant is defined as

ρG(k) = min
{

maxφ(Vi) : ∩ki=1Vi = ∅, |Vi| 6= 0
}
.

Let µ1 ≤ µ2, . . . ,≤ µN denote the eigenvalues of the normalized Laplacian of G.

Theorem 1 (Gharan & Trevisan (2014), Lee et al. (2012)). Let ε > 0 and ρ(k+ 1) > (1 + ε)ρ(k) holds for some
k > 0. Then the following holds:

µk/2 ≤ ρ(k) ≤ O(k2)
√
µk (2)

There exist k partitions {Vi : i = 1, 2, . . . , k} of V such that ∀ i = 1, 2, . . . , k

φ(Vi) ≤ kρ(k) and (3)

φ(G[Vi]) ≥ ερ(k + 1)/14k (4)

where φ(G[X ]) denotes the Cheeger’s constant (conduntance) of the subgraph induced by X .

Definition 2 (Isoperimetric number).

θ(G) =

{
min

∂X
|X |

: |X | ≤ X/2
}
.

Let λ1 ≤ λ2, . . . ,≤ λN denote the eigenvalues of the unnormalized Laplacian of G. We remind the reader of the
following standard result.

λ2/2 ≤ θ(G) ≤
√

2κλ2. (5)

Proof: The relation λk+1/λk ≥ O(k2) implies that µk+1/µk ≥ O(k2). Using the upper and lower bounds on
the eigenvalues in (2), the relation ρk+1 ≥ (1 + ε)ρk holds for some ε > 1/2. Then, applying Theorem 1 we
get k-partitions satisfying (3)-(4). Let Li denote the Laplacian induced by the subgraph G[Vj ] = (Vj , Ej) for
j = 1, 2, · · · k. By the quadratic property of the graph Laplacian we have
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f ′Lf =
∑

(u,v)∈E

(fu − fv)2

=

k∑
j=1

∑
(u,v)∈Ej

(fu − fv)2

=

k∑
j=1

f ′
jLjfj

where f j denotes the reward vector on the induced subgraph Gj := G[Vj ]. In the following we just focus on the
optimal node. The same arguments holds for any other node. Without loss of generality assume that the node
with optimal reward lies in subgraph Gl for some 1 ≤ l ≤ d. From the last relation above we have f ′lllf l ≤ c.
The reward functions on the subgraph Gl can be represented as f l = Qlαl for some αl, where Ql satisfies
Li = Q′lΛLQl and Λl denotes the diagonal matrix with eigenvalues of Λl. We have

|FG(s∗)− FG((sw∗ )| = |FGl
(s∗)− FGl

(sw∗ )|
≤ ‖s∗ − sw∗ ‖‖Qlαl‖

≤
(

1− 1

w

)
‖QlΛ

−1/2
l ‖‖Λ1/2

l αl‖

≤ c√
λ2(Gl)

by Chauchy-Schwarz

≤
√

2κc

θ(Gl)
from (5)

≤
√

2κc

φ(Gl)
using θ(Gl) ≥ φ(Gl)

≤ 14k
√

2κc

ερ(k + 1)
from Theorem 1, Equation 4

≤ 56k
√

2κc

µk+1
from Theorem 1, Equation 2

≤ 56kκ
√

2κc

λk+1
using µk+1 ≥ λk+1/κ.

This completes the proof.

3. Analysis of CheapUCB

For a given confidence parameter δ define

β = 2R

√
d log

(
1 +

T

λ

)
+ 2 log

1

δ
+ c,

and consider the ellipsoid around the estimate α̂t

Ct = {α : ‖α̂t −α‖Vt
≤ β}.

We first state the following results by Abbasi-Yadkori et al. (2011), Dani et al. (2008), and Valko et al. (2014)
that we use later in our analysis.

Lemma 2 (self-normalized bound). Let ξt =
∑t
i=1 s̃iεi and λ > 0. Then, for any δ > 0, with probability at least

1− δ and for all t > 0,
‖ξt‖V −1

t
≤ β.
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Lemma 3. Let V0 = λI. We have:

log
det(Vt)

det(λI)
≤

t∑
i=1

‖s̃i‖V −1
i−1

‖s̃i‖V −1
i−1
≤ 2 log

det(Vt+1)

det(λI)
.

Lemma 4. Let ‖α∗‖2 ≤ c. Then, with probability at least 1 − δ, for all t ≥ 0 and for any x ∈ Rn we have
α∗ ∈ Ct and

|x · (α̂t −α∗)| ≤ ‖x‖V−1
t
β.

Lemma 5. Let d be the effective dimension and T be the time horizon of the algorithm. Then,

log
det(VT+1)

det(Λ)
≤ 2d log

(
1 +

T

λ

)
.

3.1. Proof of Theorem 2

We first prove the case where degree of each node is at least log T . Consider step t ∈ [2j−1, 2j − 1] in stage
j = 1, 2, · · · J − 1. Recall that in this step a probe of width J − j + 1 is selected. Write wj := J − j + 1, and
denote the probe of width J − j + 1 associated with the optimal probe s∗ as simply s

wj
∗ and the corresponding

GFT as s̃
wj
∗ . The probe selected at time t is denoted as st. Note that both st and s

wj
∗ lie in the set SJ−j+1. For

notational convenience let us denote

h(j) :=

{
c′
√
T (J − j + 1)/λd+1 when (10) holds

c′d/λd+1 when (9) holds.

The instantaneous regret in step t is

rt = s̃∗ ·α∗ − s̃t ·α∗

≤ s̃
wj
∗ ·α∗ + h(j)− s̃t ·α∗

= s̃
wj
∗ · (α∗ − α̂t) + s̃j∗ · α̂t + β‖s̃wj

∗ ‖V−1
t
− β‖s̃wj

∗ ‖V−1
t
− s̃t ·α∗ + h(j)

≤ s̃
wj
∗ · (α∗ − α̂t) + s̃t · α̂t + β‖s̃t‖V−1

t
− β‖s̃wj

∗ ‖V−1
t
− s̃t ·α∗ + h(j)

= s̃
wj
∗ · (α∗ − α̂t) + s̃t · (α̂t −α∗) + β‖s̃t‖V −1

t
− β‖s̃wj

∗ ‖V−1
t

+ h(j)

≤ β‖s̃wj
∗ ‖V−1

t
+ β‖s̃t‖V−1

t
+ β‖s̃t‖V−1

t
− β‖s̃wj

∗ ‖V−1
t

+ h(j)

= 2β‖s̃t‖V−1
t

+ h(j).

We used (9)/(10) in the first inequality. The second inequality follows from the algorithm design and the third
inequality follows from Lemma 4. Now, the cumulative regret of the algorithm is given by

RT ≤
J∑
j=1

2j−1∑
t=2j−1

min
{

2, 2β‖s̃t‖V −1
t

+ h(j)
}

≤
J∑
j=1

2j−1∑
t=2j−1

min
{

2, 2βt‖s̃t‖V −1
t

}
+

J−1∑
j=1

2j−1∑
t=2j−1

h(j)

≤
T∑
t=1

min
{

2, 2βt‖s̃t‖V −1
t

}
+

J−1∑
j=1

h(j)2j−1.

Note that the summation in the second term includes only the first J − 1 stages. In the last stage J , we use
probes of width 1 and hence we do not need to use (9) or (10) in bounding the instantaneous regret. Next, we
bound each term in the regret separately.
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To bound the first term we use the same steps as in the proof of Theorem 1 of Valko et al. (2014). We repeat
the steps below for convenience.

T∑
t=1

min{2, 2β‖s̃t‖V −1
t
} ≤ (2 + 2β)

T∑
t=1

min
{

1, ‖s̃t‖V−1
t

}

≤ (2 + 2β)

√√√√T

T∑
t=1

min
{

1, βt‖s̃t‖V−1
t

}2

≤ 2(1 + β)
√

2T log(|V T+1|/|Λ|) (6)

≤ 4(1 + β)
√
Td log(1 + T/λ) (7)

≤

(
8R

√
2 log

1

δ
+ d log

(
1 +

T

λ

)
+ 4c+ 4

)√
Td log

(
1 +

T

λ

)
.

We used Lemma 3 and 5 in inequalities (6) and (7) respectively. The final bound follows from plugging in the
value of β.

3.2. For the case when (10) holds:

For this case we use h(j) = c′
√
T (J − j + 1)/λd+1. First observe that 2j−1h(j) is increasing in 1 ≤ j ≤ J − 1.

We have

J−1∑
j=1

2j−1c′
√
T (J − j + 1)

λd+1
≤ (J − 1)

2J−1
√
Tc′

λd+1

≤ (J − 1)
2log2 T−1c′

√
T

λd+1

≤ (J − 1)
c′
√
T (T/2)

(T/d log(T/λ+ 1))

≤ dc′
√
T/4 log2(T/2) log(T/λ+ 1).

In the second line we applied the definition of effective dimension.

3.3. For the case when λd+1/λd ≥ O(d2)

For the case λd+1/λd ≥ O(d2) we use h(j) = c′d/λd+1.

J−1∑
j=1

2j−1c′d

λd+1
≤ 2J−1c′d

λd+1

≤ c′d2 log2(T/2) log(T/λ+ 1).

Now consider the case where minimum degree of the nodes is 1 < a ≤ log T . In this case, we modify the algorithm
to use only signals of width a in the first log T − a + 1 stages and subsequently the signal width is reduced by
one in each of the following stages. The previous analysis holds for this case and we get the same bounds on the
cumulative regret and cost. When a = 1, CheapUCB is same as the SpectralUCB, hence total cost and regret is
same as that of SpectralUCB.

To bound the total cost, note that in stage j we use signals of width J − j + 1. Also, the cost of a signal given
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in (2) can be upper bounded as C(swi ) ≤ 1
w . Then, we can upperbound total cost of signals used till step T as

J∑
j=1

2j−1

J − j + 1

≤ 1

2

J−1∑
j=1

2j−1 +
T

2

≤ 1

2

(
T

2
− 1

)
+
T

2

=
3T

4
− 1

2
.
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