Supplementary Material of "Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood"

May 16, 2015

1 Proofs

Proof of Proposition 4. If \mathbf{Z} is not degenerated, then Laplace's method yields Eq. (10). By collecting from Eq. (10) the terms that depend on Z, we obtain

$$
\begin{equation*}
p(\mathbf{Z} \mid \mathbf{X}, K) \propto p(\mathbf{Z}, \mathbf{X} \mid \hat{\boldsymbol{\Pi}}, K)\left|\mathbf{F}_{\hat{\boldsymbol{\Pi}}}\right|^{-1 / 2}\left(1+O\left(N^{-1}\right)\right) \tag{101}
\end{equation*}
$$

If $p(\mathbf{Z} \mid \mathbf{X}, K)$ is degenerated, we consider the transformation (11). Here, the transformed prior $\tilde{p}\left(\boldsymbol{\Pi}_{K^{\prime}} \mid K^{\prime}\right)$ would differ from the original prior $p\left(\boldsymbol{\Pi}_{K^{\prime}} \mid K^{\prime}\right)$. However, since the mapping $\boldsymbol{\Pi} \rightarrow \tilde{\boldsymbol{\Pi}}_{K^{\prime}}$ is onto $\mathbf{A 1}$ and the prior is strictly positive in the whole space of $\boldsymbol{\Pi} \mathbf{A 4}, \tilde{p}\left(\boldsymbol{\Pi} \mid K^{\prime}\right)$ is also strictly positive, including $\hat{\boldsymbol{\Pi}}_{K^{\prime}}=$ $\operatorname{argmax}_{\boldsymbol{\Pi}_{K^{\prime}}} \ln p\left(\mathbf{X}, \tilde{\mathbf{Z}}_{K^{\prime}} \mid \boldsymbol{\Pi}_{K^{\prime}}, K^{\prime}\right)$. Consequently, we can again use Laplace's method for $\ln p\left(\mathbf{X}, \tilde{\mathbf{Z}}_{K^{\prime}} \mid \hat{\mathbf{\Pi}}_{K^{\prime}}, K^{\prime}\right)$, and by collecting the terms that depend on \mathbf{Z}, we obtain

$$
\begin{align*}
p(\mathbf{X} \mid \mathbf{Z}, K) & \propto p\left(\mathbf{X}, \tilde{\mathbf{Z}}_{K^{\prime}} \mid \hat{\mathbf{\Pi}}_{K^{\prime}}, K^{\prime}\right)\left|\mathbf{F}_{\hat{\mathbf{\Pi}}_{K^{\prime}}}\right|^{-1 / 2}\left(1+O\left(N^{-1}\right)\right) \tag{102}\\
& \propto p_{K^{\prime}}\left(\tilde{\mathbf{Z}}_{K^{\prime}}, K^{\prime}\right)\left(1+O\left(N^{-1}\right)\right) \tag{103}
\end{align*}
$$

This concludes the proof.
Proof of Theorem 2. First, we prove the case that $p(\mathbf{Z} \mid \mathbf{X}, K)$ is not degenerated. In that case, Laplace's approximation yields Eq. (10) in probability, and substituting Eq. (10) into (7) gives (8).

If $\kappa(p(\mathbf{Z} \mid \mathbf{X}, K))=K^{\prime}<K$, Proposition 4 gives us that $p(\mathbf{Z} \mid \mathbf{X}, K)=$ $p_{K^{\prime}}(\mathbf{Z})\left(1+O\left(N^{-1}\right)\right)$. Since

$$
\mathbb{E}_{p(\mathbf{Z} \mid \mathbf{X}, K)}[\ln p(\mathbf{X}, \mathbf{Z} \mid K)]=\mathbb{E}_{p_{K^{\prime}}}[\ln p(\mathbf{X}, \mathbf{Z} \mid K)]+O(1)
$$

and

$$
\begin{aligned}
H(p(\mathbf{Z} \mid \mathbf{X}, K)) & =\left(1+O\left(N^{-1}\right)\right) H\left(p_{K^{\prime}}\right)+\left(1+O\left(N^{-1}\right)\right) \ln \left(1+O\left(N^{-1}\right)\right) \\
& =H\left(p_{K^{\prime}}\right)+O(1)
\end{aligned}
$$

$\ln p(\mathbf{X} \mid K)$ is rewritten by

$$
\begin{align*}
& \mathbb{E}_{p_{K^{\prime}}}[\ln p(\mathbf{X}, \mathbf{Z} \mid K)]+H\left(p_{K^{\prime}}\right)+O(1) \tag{104}\\
= & \mathbb{E}_{p_{K^{\prime}}}\left[\mathcal{L}\left(\hat{\mathbf{Z}}_{K^{\prime}}, \tilde{\mathbf{\Pi}}_{K^{\prime}}, K^{\prime}\right)\right]+H\left(p_{K^{\prime}}\right)+O(1) \tag{105}
\end{align*}
$$

Here, since the projection $\mathbf{T}_{K^{\prime}}: \mathbf{Z} \rightarrow \tilde{\mathbf{Z}}_{K^{\prime}}$ is continuous and onto (A1), we can describe $p_{K^{\prime}}(\mathbf{Z})$ as the density of $\mathbf{Z}_{K^{\prime}}$ by using a change of variables, which we denote by $\tilde{p}_{K^{\prime}}\left(\mathbf{Z}_{K^{\prime}}\right)$. Now, we can rewrite the first term as the integral over $\mathbf{Z}_{K^{\prime}}$, i.e.,

$$
\begin{align*}
\mathbb{E}_{p_{K^{\prime}}}\left[\mathcal{L}\left(\tilde{\mathbf{Z}}_{K^{\prime}}, \hat{\mathbf{\Pi}}_{K^{\prime}}, K^{\prime}\right)\right] & =\int \mathcal{L}\left(\mathbf{T}_{K^{\prime}}(\mathbf{Z}), \hat{\boldsymbol{\Pi}}_{K^{\prime}}, K^{\prime}\right) p_{K^{\prime}}\left(\mathbf{T}_{K^{\prime}}(\mathbf{Z})\right) \mathbf{Z} \tag{106}\\
& =\int \mathcal{L}\left(\mathbf{Z}_{K^{\prime}}, \hat{\boldsymbol{\Pi}}_{K^{\prime}}, K^{\prime}\right) \tilde{p}_{K^{\prime}}\left(\mathbf{Z}_{K^{\prime}}\right) \mathbf{Z}_{K^{\prime}} \tag{107}
\end{align*}
$$

Similarly, $\operatorname{gFIC}\left(K^{\prime}\right)$ is rewritten using Proposition 4 as

$$
\begin{equation*}
\operatorname{gFIC}\left(K^{\prime}\right)=\mathbb{E}_{p_{K^{\prime}}}\left[\mathcal{L}\left(\mathbf{Z}_{K^{\prime}}, \hat{\boldsymbol{\Pi}}_{K^{\prime}}, K^{\prime}\right)\right]+H\left(p_{K^{\prime}}\right)+O(1) \tag{108}
\end{equation*}
$$

Again, the first term is written as

$$
\begin{align*}
\mathbb{E}_{p_{K^{\prime}}}\left[\mathcal{L}\left(\mathbf{Z}_{K^{\prime}}, \hat{\boldsymbol{\Pi}}_{K^{\prime}}, K^{\prime}\right)\right] & =\int \mathcal{L}\left(\mathbf{Z}_{K^{\prime}}, \hat{\boldsymbol{\Pi}}_{K^{\prime}}, K^{\prime}\right) p_{K^{\prime}}\left(\mathbf{T}_{K^{\prime}}(\mathbf{Z})\right) \mathbf{Z}_{K^{\prime}} \tag{109}\\
& =\int \mathcal{L}\left(\mathbf{Z}_{K^{\prime}}, \hat{\boldsymbol{\Pi}}_{K^{\prime}}, K^{\prime}\right) \tilde{p}_{K^{\prime}}\left(\mathbf{Z}_{K^{\prime}}\right) \mathbf{Z}_{K^{\prime}} \tag{110}
\end{align*}
$$

Since Eq. (107) and (110) are the same, this concludes Eq. (8).

Proof of Proposition 6. Proposition 4 shows that, if \mathbf{Z} is non-degenerated,

$$
\begin{align*}
p(\mathbf{Z} \mid \mathbf{X}, K) & \propto p(\mathbf{X}, \mathbf{Z} \mid \hat{\mathbf{\Pi}})\left|\mathbf{F}_{\hat{\boldsymbol{\Pi}}}\right|^{-1 / 2} \tag{111}\\
& \propto \prod_{n} p\left(\mathbf{x}_{n}, \mathbf{z}_{n} \mid \hat{\mathbf{\Pi}}\right)\left|\mathbf{F}_{\hat{\boldsymbol{\Pi}}}\right|^{-1 / 2 N} \tag{112}
\end{align*}
$$

Since $\ln \left|\mathbf{F}_{\boldsymbol{\Pi}}\right|=O(1),\left|\mathbf{F}_{\mathbf{\Xi}}\right|^{-1 / 2 N}$ quickly diminishes to 1 for $N \rightarrow \infty$.
Proof of Proposition 7. For technical reasons, we redefine the estimators as follows:

$$
\begin{align*}
& \hat{\boldsymbol{\Pi}} \equiv \underset{\boldsymbol{\Pi}}{\operatorname{argmax}} g_{N}(\boldsymbol{\Pi})=\underset{\boldsymbol{\Pi}}{\operatorname{argmax}} \frac{1}{N} \ln p(\mathbf{X}, \mathbf{Z} \mid \mathbf{\Pi}), \tag{113}\\
& \overline{\boldsymbol{\Pi}} \equiv \underset{\boldsymbol{\Pi}}{\operatorname{argmax}} G_{N}(\boldsymbol{\Pi})=\underset{\boldsymbol{\Pi}}{\operatorname{argmax}} \mathbb{E}_{q}\left[\frac{1}{N} \ln p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Pi})\right] . \tag{114}
\end{align*}
$$

According to $\mathbf{A 5}, g_{N}(\boldsymbol{\Pi})$ is continuous and concave, and it uniformly converges to $G_{N}(\boldsymbol{\Pi})$, i.e.,

$$
\begin{equation*}
\sup _{\boldsymbol{\Pi} \in \mathcal{P}}\left|g_{N}(\boldsymbol{\Pi})-G_{N}(\boldsymbol{\Pi})\right| \xrightarrow{\mathrm{p}} 0 \tag{115}
\end{equation*}
$$

This suffices to show the consistency (for example, see Theorem 5.7 in van der Vaart (1998).)

2 The gFAB Algorithm of BPCA

Let \mathcal{Q} be restricted as Gaussian with mean field. Then, the form of q is determined as $q(\mathbf{Z})=\prod_{n} N\left(\mathbf{z}_{n} \mid \boldsymbol{\mu}_{n}, \boldsymbol{\Omega}\right)$. By substituting the BPCA's likelihood into Eq. (17), we obtain

$$
\begin{aligned}
& \max _{q \in \mathcal{Q}} \mathbb{E}_{q}\left[-\frac{\lambda}{2}\left\|\mathbf{X}-\mathbf{Z} \mathbf{W}^{\top}\right\|_{\text {Fro }}^{2}-\frac{1}{2}\|\mathbf{Z}\|_{\text {Fro }}^{2}-\frac{1}{2} \ln |\mathbf{F}|\right]+\frac{N D}{2} \ln \lambda+H(q)+\text { const. } \\
= & \max _{q \in \mathcal{Q}} \mathbb{E}_{q}\left[-\frac{\lambda}{2}\left\|\mathbf{X}-\mathbf{Z} \mathbf{W}^{\top}\right\|_{\text {Fro }}^{2}-\frac{1}{2}\|\mathbf{Z}\|_{\text {Fro }}^{2}-\frac{D}{2}\left(\ln \left|\frac{1}{N} \mathbf{Z}^{\top} \mathbf{Z}\right|+K \ln \lambda\right)\right]+\frac{N D}{2} \ln \lambda+\frac{N}{2} \ln |\boldsymbol{\Omega}|+\text { const. } \\
\geq & \max _{q \in \mathcal{Q}} \mathbb{E}_{q}\left[-\frac{\lambda}{2}\left\|\mathbf{X}-\mathbf{Z} \mathbf{W}^{\top}\right\|_{\text {Fro }}^{2}-\frac{1}{2}\|\mathbf{Z}\|_{\text {Fro }}^{2}\right]-\frac{D}{2} \ln \left|\frac{1}{N} \mathbf{S}\right|+\frac{(N-K) D}{2} \ln \lambda+\frac{N}{2} \ln |\boldsymbol{\Omega}|+\text { const. } \\
= & \max _{q \in \mathcal{Q}}-\frac{\lambda}{2}\left(\operatorname{tr}\left(\mathbf{W}^{\top} \mathbf{W} \mathbf{S}-\mathbf{X} \mathbf{W} \mathbb{E}[\mathbf{Z}]^{\top}\right)\right)-\frac{1}{2} \operatorname{tr}(\mathbf{S})-\frac{D}{2} \ln |\mathbf{S}|+\frac{(N-K) D}{2} \ln \lambda+\frac{N}{2} \ln |\boldsymbol{\Omega}|+\text { const. }
\end{aligned}
$$

where $\mathbf{S} \equiv \mathbb{E}\left[\mathbf{Z}^{\top} \mathbf{Z}\right]=N \boldsymbol{\Omega}+\sum_{n} \boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\top}$. Note that the equality in the second-to-last line holds at $N \rightarrow \infty$.

Update q By setting the derivatives to zero, we obtain the following update rules:

$$
\begin{align*}
& \boldsymbol{\mu}_{n}^{\text {new }}=\lambda \mathbf{x}_{n} \mathbf{W} \boldsymbol{\Omega} \tag{116}\\
& \boldsymbol{\Omega}^{\text {new }}=\left(\mathbf{I}+\lambda \mathbf{W}^{\top} \mathbf{W}+D(\mathbf{S}+\mathbf{I})^{-1}\right)^{-1} \tag{117}
\end{align*}
$$

Note that we use \mathbf{S} as an auxiliary variable.
Update $\boldsymbol{\Pi}$ Update rules of \mathbf{W} and λ are almost the same as those of the EM algorithm, which are:

$$
\begin{align*}
\mathbf{W}^{\text {new }} & =\mathbf{X}^{\top}\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{N}\right] \mathbf{S}^{-1} \tag{118}\\
\lambda^{\text {new }} & =\frac{(N-K) D}{\mathbb{E}\left[\left\|\mathbf{X}-\mathbf{Z} \mathbf{W}^{\top}\right\|_{\mathrm{Fro}}^{2}\right]} \tag{119}
\end{align*}
$$

References

van der Vaart, A. W. Asymptotic statistics. Cambridge University Press, 1998.

