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1 Description of Expectation Propagation
PESC computes a Gaussian approximation to the NFCPD (main text, Eq. (11)) using Expectation Propagation
(EP) (Minka, 2001). EP is a method for approximating a product of factors (often a single prior factor and multiple
likelihood factors) with a tractable distribution, for example a Gaussian. EP generates a Gaussian approximation
by approximating each individual factor with a Gaussian. The product all these Gaussians results in a single
Gaussian distribution that approximates the product of all the exact factors. This is in contrast to the Laplace
approximation which fits a single Gaussian distribution to the whole posterior. EP can be intuitively understood
as fitting the individual Gaussian approximations by minimizing the Kullback-Leibler (KL) divergences between
each exact factor and its corresponding Gaussian approximation. This would correspond to matching first and
second moments between exact and approximate factors. However, EP does this moment matching in the context
of all the other approximate factors, since we are ultimately interested in having a good approximation in regions
where the overall posterior probability is high. Concretely, assume we wish to approximate the distribution

q(x) =

N∏
n=1

qn(x)

with the approximate distribution

q̃(x) =

N∏
n=1

q̃n(x) , (1)

where each q̃n(x) is Gaussian with specific parameters. Consider now that we wish to tune the parameters of a
particular approximate factor q̃n(x). Then, we define the cavity distribution q̃\n(x) as

q̃\n(x) =

N∏
n′ 6=n

q̃n′(x) =
q̃(x)

q̃n(x)
. (2)

Instead of matching the moments of qn(x) and q̃n(x), EP matches the moments (minimizes the KL divergence)
of qn(x)q̃\n(x) and q̃n(x)q̃\n(x) = q̃(x). This causes the approximation quality to be higher in places where the
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entire distribution q̃(x) is high, at the expense of approximation quality in less relevant regions where q̃(x) is close
to zero. To compute the moments of qn(x)q̃\n(x) we use Eqs. (5.12) and (5.13) in Minka (2001), which give the
first and second moments of a distribution p(x)N (x |m,V) in terms of the derivatives of its log partition function.

Thus, given some initial value for the parameters of all the q̃n(x), the steps performed by EP are

1. Choose an n.

2. Compute the cavity distribution q̃\n(x) given by Eq. (2) using the formula for dividing Gaussians.

3. Compute the first and second moments of qn(x)q̃\n(x) using Eqs. (5.12) and (5.13) in Minka (2001). This
yields an updated Gaussian approximation q̃(x) to q(x) with mean and variance given by these moments.

4. Update q̃n(x) as the ratio between q̃(x) and q̃\n(x), using the formula for dividing Gaussians.

5. Repeat steps 1 to 4 until convergence.

The EP updates for all the qn(x) maybe be done in parallel by performing steps 1 to 4 for n = 1, . . . , N using the
same q̃(x) for each n. After his, the new q̃(x) is computed, according to Eq. (1), as the product of all the newly
updated qn(x). For these latter computations, one uses the formula for multiplying Gaussians.

2 The Gaussian approximation to the NFCPD
In this section we fill in the details of computing a Gaussian approximation to q(f , c1, . . . , cK), given by Eq. (12)
of the main text. Recall that f = (f(x?), f(x1), . . . , f(xn)) and ck = (c(x?), c(x1), . . . , c(xn)), where k =
1, . . . ,K, and the first element in these vectors is accessed with the index number 0 and the last one with the index
number n. The expression for q(f , c1, . . . , cK) can be written as

q(f , c1, . . . , cK) =
1

Zq
N
(
f |mf

pred,V
f
pred

) [ K∏
k=1

N
(
ck |mck

pred,V
ck

pred

)]
×[

K∏
k=1

Θ[ck,0]

]
N∏
n=1

[{
K∏
k=1

Θ[ck,n]

}
Θ[fn − f0] +

{
1−

K∏
k=1

Θ[ck,n]

}]
, (3)

where mf
pred and Vf

pred are the mean and covariance matrix of the posterior distribution of f given the data in Df

and mck

pred and Vck

pred are the mean and covariance matrix of the posterior distribution of ck given the data in Dk. In
particular, from Rasmussen & Williams (2006) Eqs. 2.22-2.24, we have that

mf
pred = Kf

?(Kf + ν2
f I)−1yf ,

Vf
pred = Kf

?,? −Kf
?(Kf + ν2

f I)−1[Kf
? ]> ,

where Kf
? is an (N + 1) × N matrix with the prior cross-covariances between elements of f and f1, . . . , fn and

Kf
?,? is an (N + 1) × (N + 1) matrix with the prior covariances between elements of f and νf is the standard

deviation of the additive Gaussian noise in the evaluations of f . Similarly, we have that

mck

pred = Kk
?(Kk + ν2

kI)−1yk ,

Vck

pred = Kk
?,? −Kk

?(Kk + ν2
kI)−1[Kk

?]> ,

where Kk
? is an (N + 1) × N matrix with the prior cross-covariances between elements of ck and ck,1, . . . , ck,n

and Kk
?,? is an (N + 1) × (N + 1) matrix containing the prior covariances between the elements of ck and νk is

the standard deviation of the additive Gaussian noise in the evaluations of ck. We will refer to the non-Gaussian
factors in Eq. (3) as

hn(fn, f0, c1,n, . . . , ck,n) =

{
K∏
k=1

Θ [ck,n]

}
Θ [fn − f0] +

{
1−

K∏
k=1

Θ [ck,n]

}
(4)
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(this is called Ψ(xn,x?, f , c1, . . . , cK) in the main text) and

gk(ck,0) = Θ[ck,0] , (5)

such that Eq. (3) can be written as

q(f , c1, . . . , cK) ∝ N (f |mf
pred,V

f
pred)

[
K∏
k=1

N (ck |mck

pred,V
ck

pred)

]
[
N∏
n=1

hn(fn, f0, c1,n, . . . , ck,n)

][
K∏
k=1

gk(ck,0)

]
. (6)

We then approximate the exact non-Gaussian factors hn(fn, f0, c1,n, . . . , ck,n) and gk(ck,0) with corresponding
Gaussian approximate factors h̃n(fn, f0, c1,n, . . . , ck,n) and g̃k(ck,0), respectively. By the assumed independence
of the objective and constraints, these approximate factors take the form

h̃n(fn, f0, c1,n, . . . , ck,n) ∝ exp

{
−1

2
[fn f0]Ahn [fn f0]> + [fn f0]bhn

}
K∏
k=1

exp

{
−1

2
ahnc

2
k,n + bhnck,n

}
(7)

and

g̃k(ck,0) ∝ exp

{
−1

2
agkc

2
k,0 + bgkck,0

}
, (8)

where Ahn ,bhn , ahn , bhn , agk and bgk are the natural parameters of the respective Gaussian distributions.
The right-hand side of Eq. (6) is then approximated by

q̃(f , c1, . . . , cK) ∝ N
(
f |mf

pred,V
f
pred

)[ K∏
k=1

N
(
ck |mck

pred,V
ck

pred

)]
[
N∏
n=1

h̃n(fn, f0, c1,n, . . . , ck,n)

][
K∏
k=1

g̃k(ck,0)

]
. (9)

Because the h̃n(fn, f0, c1,n, . . . , ck,n) and g̃k(ck,0) are Gaussian, they can be combined with the Gaussian terms
in the first line of Eq. (9) and written as

q̃(f , c1, . . . , cK) ∝ N (f |mf ,Vf )

[
K∏
k=1

N (ck |mck ,Vck)

]
, (10)

where, by applying the formula for products of Gaussians, we obtain

Vf =
[(
Vf

pred

)−1
+ Ṽf

]−1

, mf = Vf
[(
Vf

pred

)−1
mf

pred + m̃f
]
,

Vck =

[(
Vck

pred

)−1

+ Ṽck

]−1

, mck = Vck

[(
Vck

pred

)−1

mck

pred + m̃ck

]
, (11)

with the following definitions for Ṽ, m̃f , Ṽck , and m̃ck :

• Ṽf is an (N + 1)× (N + 1) precision matrix with entries given by

– ṽfn,n = [Ahn
]1,1 for n = 1, . . . , N ,

– ṽf0,n = ṽfn,0 = [Ahn
]1,2 for n = 1, . . . , N ,
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– ṽf0,0 =
∑N
n=1 [Ahn

]2,2,

– and all other entries are zero.

• m̃f is an (N + 1)-dimensional vector with entries given by

– m̃f
n = [bhn ]1 for n = 1, . . . , N ,

– m̃f
0 =

∑N
n=1 [bhn ]2.

• Ṽck is a (N + 1)× (N + 1) diagonal precision matrix with entries given by

– ṽck
n,n = ahn for n = 1, . . . , N ,

– ṽck
0,0 = agk .

• m̃ck is an (N + 1)-dimensional vector such that

– m̃ck
n = bhn

for n = 1, . . . , N ,

– m̃ck
0 = bgk .

In the next section we explain how to actually obtain the values of Ahn
,bhn

, ahn
, bhn

, agk and bgk by running EP.

3 The EP approximation to hn and gk

In this section we explain how to iteratively refine the approximate Gaussian factors h̃n and g̃k with EP.

3.1 EP update operations for h̃n

EP adjusts each h̃n by minimizing the KL divergence between

hn(fn, f0, c1,n, . . . , ck,n)q̃\n(f , c1, . . . , cK) (12)

and

h̃n(fn, f0, c1,n, . . . , ck,n)q̃\n(f , c1, . . . , cK) , (13)

where we define the cavity distribution q̃\n(f , c1, . . . , cK) as

q̃\n(f , c1, . . . , cK) =
q̃(f , c1, . . . , cK)

h̃n(fn, f0, c1,n, . . . , ck,n)
.

Because q̃(f , c1, . . . , cK) and h̃n(fn, f0, c1,n, . . . , ck,n) are both Gaussian, q̃\n(f , c1, . . . , cK) is also Gaussian.
If we marginalize out all variables except those which h̃n depends on, namely fn, f0, c1,n, . . . , ck,n, then we have
that q̃\n(fn, f0, c1,n, . . . , ck,n) takes the form

q̃\n(fn, f0, c1,n, . . . , ck,n) ∝ N
(

[fnf0] |mfn,f0
n,old ,V

fn,f0
n,old

)[ K∏
k=1

N
(
ck,n |m

ck,n

n,old, v
ck,n

n,old

)]
, (14)

where, by applying the formula for dividing Gaussians, we obtain

Vfn,f0
n,old =

{[
Vf
fn,f0

]−1 −Ahn

}−1

, (15)

mfn,f0
n,old = Vfn,f0

n,old

{[
Vf
fn,f0

]−1
mf
fn,f0 − bhn

}
, (16)

v
ck,n

n,old =
{[
vck
n,n

]−1 − ahn
ck,n

}−1

, (17)

m
ck,n

n,old =
{
mck
n

[
vck
n,n

]−1 − bhn

}−1

, (18)
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where Vf
fn,f0

is the 2 × 2 covariance matrix obtained by taking the entries corresponding to fn and f0 from Vf ,
and mf

fn,f0
is the corresponding 2-dimensional mean vector. Similarly, vck

n,n is the variance for ck,n in q̃ and mck
n

is the corresponding mean.
To minimize the KL divergence between Eqs. (12) and (13), we match the first and second moments of these

two distributions. The moments of Eq. (12) can be obtained from the derivatives of its normalization constant.
This normalization constant is given by

Z =

∫
hn(fn, f0, c1,n, . . . , ck,n)q̃\n(fn, f0, c1,n, . . . , ck,n) dfn, df0, dc1,n, . . . , dck,n

=

({
K∏
k=1

Φ
[
αkn
]}

Φ(αn) +

{
1−

K∏
k=1

Φ
[
αkn
]})

, (19)

where αkn = m
ck,n

n,old/
√
v
ck,n

n,old and αn = [1, −1]mfn,f0
n,old /

√
[1, −1]Vfn,f0

n,old [1, −1]>. We follow Eqs. (5.12) and

(5.13) Minka (2001) to update ahn
and bhn

; however, we use the second partial derivatives with respect to mck,n

n,old

rather than first partial derivative with respect to vck,n

n,old for numerical robustness. These derivatives are given by

∂ logZ

∂m
ck,n

n,old
=

(Z − 1)φ(αkn)

ZΦ(αkn)
√
v
ck,n

n,old

, (20)

∂2 logZ

∂[m
ck,n

n,old]2
= − (Z − 1)φ(αkn)

ZΦ(αkn)
·

[
αkn +

(Z−1)φ(αk
n)

ZΦ(αk
n)

]
v
cnl
l,old

, (21)

where φ and Φ are the standard Gaussian pdf and cdf, respectively. The update equations for the parameters ahn

and bhn
of the approximate factor h̃ are then

anew
hn

= −

( ∂2 logZ

∂[m
ck,n

n,old]2

)−1

+ v
ck,n

n,old

−1

,

bnew
hn

=

mck,n

n,old −

[
∂2 logZ

∂[m
ck,n

n,old]2

]−1
∂ logZ

∂m
ck,n

n,old

 anew
hn

(22)

We now perform the analogous operations to update Ahn
and bhn

. We need to compute

∂ logZ

∂mfn,f0
n,old

=

{∏K
k=1 Φ[αkn]

}
φ(αn)

Z
√
s

[1, −1] ,

∂ logZ

∂Vfn,f0
n,old

= −1

2
[1, −1]>[1, −1]

{∏K
k=1 Φ[αkn]

}
φ(αn)αn

Zs
,

where

s = [−1 1]Vfn,f0
n,old [−1 1]> . (23)

We then compute the optimal mean and variance (those that minimize the KL-divergence) of the product in Eq. (13)
by using Eqs. (5.12) and (5.13) from Minka (2001):

[Vf
fn,f0 ]new = Vfn,f0

n,old −Vfn,f0
n,old

 ∂ logZ

∂mfn,f0
n,old

(
∂ logZ

∂mfn,f0
n,old

)>
− 2

∂ logZ

∂Vfn,f0
n,old

Vfn,f0
n,old ,

[mf
fn,f0 ]new = mfn,f0

n,old + Vfn,f0
n,old

∂ logZ

∂mfn,f0
n,old

. (24)
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Next we need to divide the Gaussian with parameters given by Eq. (24) by the Gaussian cavity distribution
q̃\n(fn, f0, c1,n, . . . , ck,n). Therefore the new parameters Ahn

and bhn
of the approximate factor h̃ are obtained

using the formula for the ratio of two Gaussians:

[Ahn
]
new

=
[
Vf
fn,f0

]−1

new
−
[
Vfn,f0
n,old

]−1

.

[bhn ]
new

=
[
mf
fn,f0

]
new

[
Vf
fn,f0

]−1

new
−mfn,f0

n,old

[
Vfn,f0
n,old

]−1

. (25)

3.2 EP approximation to gk

We now show how to refine the {g̃k}. We adjust each g̃k by minimizing the KL divergence between

gk(ck,0)q̃\k(f , c1, . . . , cK) (26)

and

g̃k(ck,0)q̃\k(f , c1, . . . , cK) , (27)

where

q̃\k(f , c1, . . . , cK) =
q̃(f , c1, . . . , cK)

g̃k(ck,0)
.

Because q̃(f , c1, . . . , cK) and g̃k(ck,0) are both Gaussian, q̃\k(f , c1, . . . , cK) is also Gaussian. Furthermore, if we
marginalize out all variables except those which g̃k depends on, namely ck,0, then q̃\k(f , c1, . . . , cK) takes the

form q̃\k(ck,0) = N
(
ck,0 |m

ck,n

k,old, v
ck,n

k,old

)
, where, by applying the formula for the ratio of Gaussians, mck,n

k,old and

v
ck,n

k,old are given by

v
ck,n

k,old =
{

[vck
n,n]−1 − agk

}−1
,

m
ck,n

k,old =
{
mck

n [vc
k

n,n]−1 − bgk
}−1

. (28)

Similarly as in Section 3.1, to minimize the KL divergence between Eqs. (26) and (27), we match the first and
second moments of these two distributions. The moments of Eq. (26) can be obtained from the derivatives of its

normalization constant. This normalization constant is given by Z = Φ(α) where α = m
ck,n

k,old/
√
v
ck,n

k,old. Then, the
derivatives are

∂ logZ

∂m
ck,n

k,old
=

φ[α]

Φ[α]
√
v
ck,n

k,old

∂2 logZ

∂[m
ck,n

k,old]2
= − φ[α]

v
ck,n

k,oldΦ[α]
·
{
α+

φ[α]

Φ[α]

}
(29)

The update rules for agk and bgk are then

[agk ]
new

= −

[ ∂ logZ

∂m
ck,n

k,old

]−1

+ v
ck,n

k,old

−1

[bgk ]
new

=

mck,n

k,old −

(
∂2 logZ

∂[m
ck,n

k,old]2

)−1
∂ logZ

∂m
ck,n

k,old

 [agk ]
new

. (30)

Once EP has converged we can approximate the NFCPD using Eq. (14) in the main text:

p (z | D,x,x?) ≈
∫
p(z0 | f)p(z1 | c1) · · · p(zK | cK) q̃(f , c1, . . . , cK)({

K∏
k=1

Θ[ck(x)]

}
Θ[f(x)− f0] +

{
1−

K∏
k=1

Θ[ck(x)]

})
df dc1 · · · dcK , (31)
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where z = (f(x), c1(x), . . . , cK(x)), the first element in z is accessed using the index 0 and we have used the
assumed independence of the objective and constraints to split p(z | f , c1, . . . , cK) into the product of the factors
p(f(x) | f) and p(c1(x) | c1), . . . , p(cK(x) | cK).

4 Performing the integration in Eq. (31)
Because the constraint factor on the right-hand side of Eq. (31) only depends on f0 out of all the integration
variables, we can rewrite Eq. (31) as

p
(
z | Df ,D1, . . . ,DK ,x,x(m)

?

)
≈ 1

Z

∫ ({ K∏
k=1

Θ[zk]

}
Θ[z0 − f0] +

{
1−

K∏
k=1

Θ[zk]

})
(∫

p(z0 | f) p(z1 | c1) · · · p(zK | cK) q̃(f , c1, . . . , cK) df1 · · · dfN dc1 · · · dcK
)
df0 , (32)

where Z is a normalization constant.
We now compute the inner integral in Eq. (32) analytically. This is possible because the marginal posterior

predictive distributions on z are Gaussian and we also have a Gaussian approximation q̃(f , c1, . . . , cK). We first
rewrite the inner integral in Eq. (32) by using the definition of q̃ in Eq. (10):∫

p(z0 | f) p(z1 | c1) · · · p(zK | cK)N (f |mf ,Vf )

K∏
k=1

N (ck |mck ,Vck)df1 · · · dfN dc1 · · · dcK (33)

For each ck, the product of the conditional Gaussian distribution p(ck(x) | ck) with the Gaussian N (ck |mk,Vk)
is an (N + 2)-dimensional multivariate Gaussian distribution. All variables in ck are then integrated out leaving
only a univariate Gaussian on ck(x) with mean and variance m′k and v′k respectively. For the variables f(x) and
f , the product of p(f(x) | f) andN (f |m0,V0) yields an (N + 2)-dimensional multivariate Gaussian distribution.
The variables f1, . . . , fN are integrated out leaving only a bivariate Gaussian on the two-dimensional vector f ′ =
(f(x), f0) with mean vector m′f and covariance matrix V′f . Thus, the result of the inner integral in Eq. (32) is∫

p(z0 | f) p(z1 | c1) · · · p(zK | cK)N (f |m0,V0)

K∏
k=1

N (ck |mk,Vk)df1 · · · dfN dc1 · · · dcK

= N (f ′ |m′f ,V′f )
K∏
k=1

N (ck(x) |m′k, v′k) , (34)

where, using Eqs. (3.22) and (3.24) of Rasmussen & Williams (2006) for the means and variances respectively, we
have the definitions

[m′f ]1 = kffinal(x)>
[
Kf
?,?

]−1
mf ,

[m′f ]2 =
[
mf
]
0
,

[V′f ]1,1 = kf (x,x)− kffinal(x)>
{[

Kf
?,?

]−1
+
[
Kf
?,?

]−1
Vf
[
Kf
?,?

]−1
}
kffinal(x) ,

[V′f ]2,2 =
[
Vf
]
0,0

,

[V′f ]1,2 = kf (x,x
(m)
? )− kffinal(x)>

{
[Kf

?,?]
−1 + [Kf

?,?]
−1Vf [Kf

?,?]
−1
}
kffinal(x

(m)
? ) ,

m′k = kkfinal(x)>
[
Kk
?,?

]−1
mck ,

v′k = kk(x,x)− kkfinal(x)>
{[

Kk
?,?

]−1
+
[
Kk
?,?

]−1
Vck

[
Kk
?,?

]−1
}
kkfinal(x) ,

and

• mf and Vf are the posterior mean and posterior covariance matrix of f given by q̃.
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• kffinal(x) is the (N + 1)-dimensional vector with the prior cross-covariances between f(x) and the elements
of f given by f(x?), f(x1), . . . , f(xN ).

• Kf
?,? is an (N + 1)× (N + 1) matrix with the prior covariances between elements of f .

• kffinal(x?) is the (N+1)-dimensional vector with the prior cross-covariances between f(x?) and the elements
of f .

• kkfinal(x
k) is an (N + 1) vector with the cross-covariances between ck(x) and the elements of ck given by

ck(x?), ck(x1), . . . , ck(xn).

• Kk
?,? is an (N + 1)× (N + 1) covariance matrix with the prior covariances between the elements of ck.

We have now computed the inner integral in Eq. (31), leaving us with our next approximation of the NFCPD:

p(f(x), c1(x), . . . , cK(x) | Df ,D1, . . . ,DK ,x,x?) ≈

1

Z

∫ ({ K∏
k=1

Θ[ck(x)]

}
Θ [f(x)− f0] +

{
1−

K∏
k=1

Θ [ck(x)]

})
{

K∏
nk=1

N (ck(x) |m′k, v′k)

}
N (f ′ |m′f ,V′f ) df0 . (35)

Eq. (35) is the same as Eq. (15) in the main text. Note that the computations performed to obtain m′k, v′k, m′f , and
V′f do not depend on x. In the following section we make a final Gaussian approximation to Eq. (35), which must
be performed for every x.

5 Final Gaussian approximation to the NFCPD, for each x

Because the right-hand side of Eq. (35) is not tractable, we approximate it with a product of Gaussians that have
the same marginal means and variances. In particular, we approximate it as

p (z | D,x,x?) ≈ N
(
f(x) |µNFCPD

f (x), vNFCPD
f (x)

) K∏
k=1

N
(
ck(x) |µNFCPD

k (x), vNFCPD
k (x)

)
,

where µfNFCPD(x), vfNFCPD(x) and µkNFCPD(x) and vkNFCPD(x) are the marginal means and marginal variances of
f(x) and ck(x) according to the right-hand-side of Eq. (35). Using Eqs. (5.12) and (5.13) in Minka (2001) we can
compute these means and variances in terms of the derivatives of the normalization constant Z in Eq. (35), which
is given by

Z =

{
K∏
k=1

Φ[αk]

}
Φ[α] +

{
1−

K∏
k=1

Φ[αk]

}
(36)

where

s = [V′f ]1,1 + [V′f ]2,2 − 2 [V′f ]1,2

α =
[1, −1]m′f√

s

αk =
m′k√
v′k
.
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Doing so yields

vNFCPD
f (x) = [V′f ]1,1 −

β

s
(β + α)

(
[V′f ]1,1 − [V′f ]1,2

)2

µNFCPD
f (x) = [m′f ]1 +

(
[V′f ]1,1 − [V′f ]1,2

) β√
s

vNFCPD
k (x) =

{
[v′k]−1 + ã

}−1

µNFCPD
k (x) = vkN,const(x)

{
[m′k]−1[v′k]−1 + b̃

}
, (37)

where

β =

{∏K
k=1 Φ[αk]

}
φ(α)

Z

ã = −

{
∂2 logZ

∂ [m′k]
2 + v′k

}−1

b̃ = ã

{
m′k +

√
v′k

αk + βk

}

βk =
φ(αn)

ZΦ(αn)
(Z − 1) ,

∂2 logZ

∂ [m′k]
2 = −βk {αk + βk}

v′k
.

5.1 Initialization and convergence of EP
Initially EP sets the parameters of all the approximate factors to be zero. We use at the convergence criterion that
the absolute change in all parameters should be below 10−4.

5.2 EP with damping
To improve convergence we use damping (Minka & Lafferty, 2002). If h̃new

n is the minimizer of the KL-divergence,
damping entails using instead h̃damped

n as the new factor, as defined below:

h̃damped
n = [h̃new

n ]ε + h̃1−ε
n , (38)

where h̃n is the factor at the previous iteration. We do the same for g̃k. The parameter ε controls the amount of
damping, with ε = 1 corresponding to no damping. We initialize ε to 1 and multiply it by a factor of 0.99 at each
iteration. Furthermore, the factors h̃n and g̃k are updated in parallel (i.e. without updating q̃ in between) in order
to speed up convergence (Gerven et al., 2009). During the execution of EP, some covariance matrices may become
non positive definite due to an excessively large step size (i.e. large ε). If this issue is encountered during an EP
iteration, the damping parameter is reduced by half and the iteration is repeated. The EP algorithm is terminated
when the absolute change in all the parameters in q̃ is less than 10−4.
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