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Abstract

We study independent component analysis with
noisy observations. We present, for the first time
in the literature, consistent, polynomial-time al-
gorithms to recover non-Gaussian source signals
and the mixing matrix with a reconstruction error
that vanishes at a 1/

√
T rate using T observa-

tions and scales only polynomially with the nat-
ural parameters of the problem. Our algorithms
and analysis also extend to deterministic source
signals whose empirical distributions are approx-
imately independent.

1. Introduction
Independent Component Analysis (ICA) has received
much attention in the past decades. In the standard ICA
model one can observe a d-dimensional vector X that is a
linear mixture of d independent variables (S1, . . . , Sd) with
Gaussian noise:

X = AS + ε, (1)

where ε ∼ N (0,Σ) is a d-dimensional Gaussian noise with
zero mean and covariance matrix Σ, and A is a nonsingular
d× d mixing matrix. The goal of the observer is to recover
(separate) the source signals and the mixing matrix given
several independent and identically distributed (i.i.d.) ob-
servations from the above model. The ICA literature is vast
in both practical algorithms and theoretical analyses; we
refer to the book of Comon and Jutten (2010) for a com-
prehensive survey. In this paper we investigate one of he
most important problems in ICA: finding consistent, com-
putationally efficient algorithms with finite-sample perfor-
mance guarantees. In particular, we aim to develop al-
gorithms whose computational and sample complexity are
polynomial in the natural parameters of the problem.
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A popular approach to the ICA problem is to find a linear
transformation W for X by optimizing a, so-called, con-
trast function that measures dependence or non-gaussianity
of the resulting coordinates of WX . The optimal W then
can serve as an estimate of A−1, thereby recovering the
mixing matrixA. One of the most popular ICA algorithms,
FastICA (Hyvarinen, 1999), follows this approach for a
specific contrast function. FastICA has been analyzed the-
oretically from many aspects (Tichavsky et al., 2006; Oja
and Yuan, 2006; Ollila, 2010; Dermoune and Wei, 2013;
Wei, 2014). In particular, recently Miettinen et al. (2014)
showed that in the noise-free case (i.e., whenX = AS), the
error of FastICA (when using a particular forth-moments-
based contrast function) vanishes at a rate of 1/

√
T where

T is the sample size. In addition, several other methods
have been shown to achieve similar error rates in the noise-
free setting (e.g., Eriksson and Koivunen, 2003; Samarov
et al., 2004; Chen and Bickel, 2005; Chen et al., 2006).
However, to our knowledge, no similar finite sample results
are available in the noisy case.

On the other hand, several promising algorithms are avail-
able in the noisy case that make significant advances to-
wards provably efficient and effective ICA algorithms, al-
beit fall short of providing a complete solution. Using a
quasi-whitening procedure, Arora et al. (2012) reduces the
problem to finding all the local optima of a specific func-
tion defined using the forth order cumulant, and propose a
polynomial-time algorithm to find them with appealing the-
oretical guarantees. However, the results depend on an un-
specified parameter (β in the original paper) whose proper
tuning is essential; note that even an exhaustive search over
β is problematic, since its valid range is not well under-
stood.

The exploitation of the special algebraic structure of the
forth moments induced by the independence leads to sev-
eral other works related to ICA (Hsu and Kakade, 2013;
Anandkumar et al., 2012a;b). A similar idea is also dis-
cussed earlier as a intuitive argument to construct a contrast
function (Cardoso, 1999). The first rigorous proofs for this
idea are developed using matrix perturbation tools in a gen-
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eral tensor perspective (Anandkumar et al., 2012a;b; Goyal
et al., 2014). A common problem faced by these methods
is a minimal gap of the eigenvalues, which may result in
an exponential dependence on the number of source sig-
nals d. More precisely, these methods all require an eigen-
decomposition of some flattened tensor where the minimal
gap between the eigenvalues plays an essential role. Al-
though the exact size of this gap is not yet understood,
a naive analysis introduces an exponential dependence on
the dimension d. Such dependence is also observed in the
literature (Cardoso, 1999; Goyal et al., 2014). One way
to circumvent such dependence is to directly decompose a
high-order tensor using the power method, which requires
no flattening procedure (Anandkumar et al., 2014). How-
ever, when applied to the ICA problem, this introduces
a bias term and so the error does not approach 0 as the
sample size approaches infinity. Another issue is the well-
known fact that the power method is unstable in practice for
high-order tensors. Goyal et al. (2014) proposed another
method by exploring the characteristic function rather than
the forth moments. However, their algorithm requires pick-
ing a parameter (σ in the original paper) that is smaller than
some unknown quantity, making their algorithm impossi-
ble to tune. Recently, Vempala and Xiao (2014) proposed
an ICA algorithm based on an elegant, recursive version of
the method of Goyal et al. (2014) that avoids dealing with
the aforementioned minimal gap; however, they still need
an oracle to set the unspecified parameter of Goyal et al.
(2014).

In this paper we propose a provably polynomial-time algo-
rithm for the noisy ICA model. Our algorithm is a refined
version of the ICA method proposed by (Hsu and Kakade,
2013) (HKICA). However, we propose two simpler ways,
one inspired by Frieze et al. (1996), Arora et al. (2012),
and another based on Vempala and Xiao (2014), to deal
with the spacing problem of the eigenvalues under simi-
lar conditions to those of Goyal et al. (2014). Unlike the
method proposed by Goyal et al. (2014), our first method
can force the eigenvalues to be well-separated with a gap
that is independent of the mixing matrix A, while our sec-
ond method, based on the recursive decomposition idea of
Vempala and Xiao (2014), avoids dealing with the mini-
mum gap (on the price of introducing other complications).
We prove that our methods achieve an O(1/

√
T ) error in

estimating A and the source signals, with high probability,
such that both the convergence rate and the computational
complexity scale polynomially with the natural parameters
of the problem. Our method needs no parameter tuning,
which makes it even more appealing.

Another contribution of the present paper is that our anal-
ysis is conducted in a deterministic manner. In practice,
ICA is also known to work well for unmixing the mix-
ture of various deterministic signals. One of the classical
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Figure 1. Example of ICA for deterministic sources: The first two
rows show the source signals s1(t) = 0.5 − bt − 2bt/2cc, s2 =
cos(t), the next two rows present the observations with mixing

matrix A =

(
1 −2
2.6 −5.1

)
. The reconstructed (and rescaled)

signals are shown for FastICA, HKICA, and DICA after sampling
As(t) at 10000 uniformly spaced points in the interval [0, 15].

demonstrations of ICA is showing that two periodic sig-
nals can be well recovered from their mixtures (Hyvärinen
and Oja, 2000). Such an example is shown in Figure 1.
It can be seen that our algorithm, DICA, in this particu-
lar example, can solve the problem better than other algo-
rithms, FastICA (Hyvarinen, 1999) and HKICA (Hsu and
Kakade, 2013). Such phenomenon suggests that the usual
probabilistic notion is unsatisfactory if one wishes to have
deeper understanding of ICA. Our deterministic analysis
helps investigate this curious phenomenon without losing
any generality to the traditional stochastic setting. For-
mally, instead of observing T i.i.d. samples from (1), the
source signals are defined by the function s : N→ Rd be a
d-dimensional deterministic “signal”, and the observations
are x(t) = As(t) + εt, where (εt)

∞
t=1 is an i.i.d. sequence

of d-dimensional N (0,Σ) random variables.

The rest of this paper is organized as follows: The ICA
problem is introduced in detail in Section 2 and our main
results are highlighted in Section 3. The polynomial-time
algorithms underlying these results are developed through
the next two sections: Section 4.1 is devoted to the analysis
of the HKICA algorithm, also showing its disadvantages,
while our new algorithms are presented in Section 5. Ex-
perimental results are reported in Section 6. Proofs are pre-
sented in the full version of the paper (Huang et al., 2015).

1.1. Notation

We denote the set of real and natural numbers by R and N,
respectively. A vector v ∈ Kd for a field K is assumed
to be a column vector. Let ‖v‖2 denote its L2-norm, and
for any matrix Z let ‖Z‖2 = maxv:‖v‖2=1 ‖Zv‖2 denote
the corresponding induced norm. Denote the maximal and
minimal singular value of Z by σmax(Z) and σmin(Z),
respectively. Also, let Zi and Zi: denote the ith column
and, resp., row of Z, and let Z(2,min) = mini ‖Zi‖2,
Z(2,max) = maxi ‖Zi‖2 and Zmax = maxi,j |Zi,j |.
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Clearly, σmax(Z) = ‖Z‖2 ≥ Z(2,max) ≥ Zmax, and
σmin(Z) ≤ Z(2,min). For a tensor (including vectors and
matrices) T , its Frobenious norm (or L2 norm) ‖T‖F is
defined as the square root of the sum of the square of all
the entries. For a vector v = (v1, . . . , vd) ∈ Kd, |v| is
defined coordinatewise, that is |v| = (|v1|, . . . , |vd|). The
transpose of a vector/matrix Z is denoted by Z>, while
the inverse of the transpose is denoted by Z−>. The
outer product of two vectors v, u ∈ Kd is denoted by
u ⊗ v = uv>. v⊗k denotes the k-fold outer product of v
with itself, that is, v⊗v⊗v . . .⊗v, which is a k-dimensional
tensor. Given a 4-dimensional tensor T , we denote the
matrix Z by T (η, η, ·, ·) that is generated by marginaliz-
ing the first two coordinates of T on the direction η, that
is, Zi,j =

∑d
k1,k2=1 ηk1ηk2Tk1,k2,i,j . (Similar definitions

for marginalizing different coordinates of the tensor.) For
a real vector v and some real number C, v ≤ C means
that all the entries of v are at most C. The bold symbol
1 denotes a vector with all entries being 1 (the dimension
of this vector will always be clear from the context). Fi-
nally, Poly (·, · · · , ·) denotes a polynomial function of its
argument.

2. The ICA Problem
In this paper we consider the following non-stochastic ver-
sion of the ICA problem. Assume that we can observe
the d dimensional mixed signal x(t) ∈ Rd, t ∈ [T ] :=
{1, 2, . . . , T} generated by

x(t) = As(t) + ε(t), (2)
where A is a d × d nonsingular mixing matrix, s : [T ] →
[−C,C]d is a bounded, d-dimensional source function for
some constant C ≥ 1. , and ε : [T ] → Rd is the noise
function. We will denote the ith component of s by si.
Furthermore, we will use the notation σmin = σmin(A)
and σmax = σmax(A)

For any t, k ≥ 1 and signal u : [t]→ Rk, we introduce the
empirical distribution ν(u)

t defined by ν(u)
t (B) = 1

t |{τ ∈
[t] : u(t) ∈ B}| for all Borel sets B ⊂ Rk. Next we will
impose assumptions on the empirical measure that guaran-
tee that on the average we do not deviate too much from the
stochastic model. The next assumption implies that the em-
pirical distributions of the source signals are approximately
zero mean, and that the noise is approximately zero-mean
Gaussian.

Assumption 2.1. Assume there exists a constant L and a
function g : N→ R such that g(t)→ 0 as t→∞ and

(i) ‖E
Si∼ν

(si)
t

[Si]‖F , ‖EY∼ν(ε)
t

[Y ]‖F ≤ g(t);

(ii) ‖E
Y∼ν(ε)

t
[Y ⊗2]‖F , ‖EY∼ν(ε)

t
[Y ⊗3]‖F ≤ L;

(iii)
∥∥∥(EY∼ν(ε)

t
[Y ⊗4]− (E

Y∼ν(ε)
t

[Y ⊗2])⊗2
)

(η, η, ·, ·)

− 2(E
Y∼ν(ε)

t
[Y ⊗2])⊗2(η, ·, η, ·)

∥∥∥
F
≤ g(t)‖η‖22.

Here L and the function g may depend on {A,Σ, C, d}.
Remark 2.2. The first assumption forces the average of s
and ε decay to 0 at a rate of g(t). The next one requires
that both the second and third moments of the noise be
bounded. The last assumption basically says that the in-
duced measure of the noise function ε has 0 kurtosis in the
limit.

We will also need to guarantee that the source signals and
the noise be approximately independent:

Assumption 2.3. Assume the source signal function and
the noise function are ‘independent’ up to the 4th moment
in the sense that for any i1, i2, j1, j2 ≥ 0 such that i1 + i2 +
j1 + j2 ≤ 4,

‖E
S∼ν(s)

t
[(AS)⊗i1⊗ E

Y∼ν(ε)
t

[Y ⊗j1 ]⊗ (AS)⊗i2 ]

− E
(S,Y )∼ν(s,ε)

t
[(AS)⊗i1⊗ Y ⊗j1⊗ (AS)⊗i2 ]‖F ≤ g(t),

‖E
Y∼ν(ε)

t
[Y ⊗j1 ⊗ E

S∼ν(s)
t

[(AS)⊗i1 ]⊗ Y ⊗j2 ]

− E
(S,Y )∼ν(s,ε)

t
[Y ⊗j1 ⊗ (AS)⊗i1 ⊗ Y ⊗j2 ]‖F ≤ g(t),

for the same function g in Assumption 2.1, where (s, ε) is
the function obtained by concatenating s and ε together.

The sufficiency of such weaker assumptions is also dis-
cussed in the paper of Frieze et al. (1996). The next propo-
sition shows that these assumptions are all satisfied, with
high probability, for the traditional stochastic setting of the
ICA model with Gaussian noise independent to the source
signals.

Proposition 2.4. In the traditional stochastic setting of
ICA, that is, when (s(t))t∈[T is an i.i.d. sequence, indepen-
dent of the i.i.d. Gaussian noise sequence (ε(t))t∈[T ],there
exists L = Poly

(
Amax, ‖Σ‖2, C, d, 1

δ

)
and g(t) = L/

√
t,

such that Assumptions 2.1 and 2.3 hold with probability at
least 1− δ.

On the other hand, our setting can also cover some other
examples excluded by the traditional setting, such as the
example of Figure 1 in Section 1.

Example 2.5. Assume that the unknown sources si (1 ≤
i ≤ d) are deterministic and periodic. Our observation
x = As + ε is a linear mixture of s contaminated by
i.i.d. Gaussian noise for each time step, where A is a non-
singular matrix and ε ∼ N (0,Σ) is Gaussian. Even though
ε is i.i.d. for every time step, the observations cannot satisfy
the traditional i.i.d. assumption, since the source s is deter-
ministic. However, it can be proved that if the ratio of the
periods of each pair of (si, sj) is irrational, this example
satisfies all the assumptions above for T large enough.
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Our setting also extends the traditional one to a practically
important case, Markov sources.
Example 2.6. Assume that si is a stationary and ergodic
Markov source, and the sources are independent of each
other for 1 ≤ i ≤ d. Our observations are similar to the
setting in Example 2.5. Because of the Markov property,
the observations do not satisfy the i.i.d. assumptions. On
the other hand, it can be verified that this example satisfies
the above assumptions.

3. Main Results
The ICA approach requires that the components si of the
source signal s be statistically independent. In our setup,
we require that the empirical distribution ν(s)

T be close to a
product distribution.

Fix some product distribution µ = µ1 ⊗ . . . ⊗ µd over
Rd such that ESi∼µi [Si] = 0 and κi := |ESi∼µi [S4

i ] −
3
(
ESi∼µi [S2

i ]
)2 | 6= 0. Let K denote the diagonal matrix

diag(κ1, · · · , κd), and define κmax = maxi κi and κmin =
mini κi.

To measure the distance of ν(s)
T from µ, define the follow-

ing family of “distances” to measure the closeness of two
distributions: Given two distributions ν1 and ν2 over Rd,
let Dk(ν1, ν2) = supf∈F |

∫
f(s)dν1(s) −

∫
f(s)dν2(s)|,

where F = {f : Rd → R : f(s) =
∏k
j=1 sij , 1 ≤

i1, . . . , ik ≤ d} is the set of all monomials up to degree
k. Finally let

ξ =
(

6C2D2(µ, ν
(s)
T ) +D4(µ, ν

(s)
T )
)
. (3)

In general, we will need a condition that ξ is small enough,
so that the components of s are “independent” enough. To
this end, one should choose µ to minimize ξ; however, such
a minimizer does not always exists. Generally, µ could
be selected as the product of the limit distributions, if ap-
plicable, of the individual sources. On the other hand, in
the traditional stochastic setting where the observations are
i.i.d. samples, the empirical distribution will converge to
the population distribution, which, based on the indepen-
dence assumption, is a product probability measure. There-
fore, in this case, ξ will be small for large enough sample
sizes.
Example 3.1. Let µ1 be a Bernoulli distribution
µ1({0.5}) = 1/2 and µ1({−0.5}) = 1/2, and µ2 to be
a distribution with density function p(x) = 1

π
√

1−x2
for

−1 ≤ x ≤ 1. For the demonstration example in Figure
1, pick µ = µ1 ⊗ µ2. It is easy to see that µ1 (µ2) is the
limit distribution of source 1 (respectively, source 2). Let
T = 2 ∗ u + b as the division with remainder, where u is
integer and 0 ≤ b < 2. Moreover, assume b ≤ 1 (sim-
ilar analysis will go through for the case of b > 1). The
induced distribution νs1T of source 1 is νs1T ({0.5}) = u+b

T

and νs1T ({−0.5}) = u
T . Thus the total variation distance of

µ1 and νs1T is at most 1/(2T ). Similarly, it can be verified
that the total variation distance of νT and µ also decays as
1/T . Thus,D4 isO(1/T ), since the monomials f(s) in the
definition of D4 are bounded from above by 1. Lastly, note
that D2 is upper bounded by D4 by definition, so ξ decays
at a 1/T rate.

Now we are ready to state our main result, which shows
the existence of polynomial-time algorithms for ICA that
reconstructs the mixing matrix A with error that vanishes
at an O(1/

√
T ) rate for T samples and is also polynomial

in the natural parameters of the problem:
Theorem 3.2. Consider the ICA problem (2). There ex-
ists an algorithm that estimates the mixing matrix A from
T samples of x such that (i) the computational complex-
ity of the algorithm is O(d3T ); and (ii) if Assumptions 2.1
and 2.3 are satisfied,

T ≥ Poly

(
d,

1

κmin
,

1

δ
, L,C, σmax,

1

σmin

)
,

and there exists a product distribution µ such that

D4(µ, νT ) ≤ Poly

(
1

C
, σmin,

1

σmax
,

1

d
, δ, κmin

)
,

then, with probability at least 1 − δ, there exists a per-
mutation π and constants {c1, . . . , cd}, such that for all
1 ≤ k ≤ d,
‖ckÂπ(k) −Ak‖2 ≤ C

(
D4(µ, νT ) + g2(T ) + g(T )

)
,

where C = Poly (σmax, 1/σmin, 1/κmin, 1/δ, d, C, L), and
Â is the output of the algorithm.

In particular, in the traditional stochastic setting, if S has
distribution µ and

T ≥ Poly

(
d,

1

κmin
,

1

δ
, C, σmax,

1

σmin
, ‖Σ‖2

)
,

then, with probability at least 1 − δ, there exists a per-
mutation π and constants {c1, . . . , cd}, such that for all
1 ≤ k ≤ d,

‖ckÂπ(k) −Ak‖2 ≤
Poly

(
C, σmax,

1
σmin

, 1
κmin

, 1
δ , d
)

√
2T

.

Remark 3.3. Note that the result is polynomial in 1/δ
which is weaker than being polynomial in log(1/δ).

In the next sections, we will present two algorithms, DICA
(Algorithm 2 and HKICA.R (Algorithm 3) in Section 5 that
satisfy the theorem.

4. Estimating Moments: the HKICA
Algorithm

In this section we introduce the ICA method of Hsu and
Kakade (2013) which is based on the well-known excess-
kurtosis-like quantity defined as follows:
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For any p ≥ 1, η ∈ Rd, and distribution ν over Rd, let

m(ν)
p (η) = EX∼ν [(η>X)p], (4)

fν(η) = 1
12

(
m

(ν)
4 (η)− 3m

(ν)
2 (η)2

)
. (5)

Hsu and Kakade (2013) showed that ∇2f
ν
(x)
T

(η), the sec-
ond derivative of the function f

ν
(x)
T

, is extremely useful

for the ICA problem: They showed that if µ(X) is the
distribution of the observations X in the stochastic set-
ting where S comes from the product distribution µ, then
fµ(X)(η) = fAµ(η) for all η (where Aµ denotes the distri-
bution of AS) and, consequently, the eigenvectors1 of the
matrix M = ∇2fµ(X)(φ)(∇2fµ(X)(ψ))−1 are the rescaled

columns of A if φ>Ai
ψ>Ai

are distinct for all i. Thus, to obtain
an algorithm, one needs to estimate∇2fµ(X) in such a way
that the noise ε could still be neglected.

An estimate ∇2f̂ of ∇2fµ(X) is not hard, since for any ν,
∇2fν(η) can be computed as

∇2fν(η) = Gν(η) := G
(ν)
1 (η)−G(ν)

2 (η)−2G
(ν)
3 (η), (6)

where

G
(ν)
1 (η) = EX∼ν [

(
η>X

)2
XX>];

G
(ν)
2 (η) = EX∼ν [

(
η>X

)2
]EX∼ν [XX>];

G
(ν)
3 (η) = EX∼ν [

(
η>X

)
X]EX∼ν [

(
η>X

)
X>],

and these quantities can be estimated using the observed
samples. In what follows, we will use the estimate
∇2f̂ := ∇2f

ν
(x)
T

and, in general, we will add a “hat”
to quantities which are derived from the empirical distri-
bution ν

(x)
T . It is important to note that, under our as-

sumptions, the noise ε has limited effect in the estima-
tion procedure, as shown in the full version of the pa-
per (Huang et al., 2015). In particular, the difference in
the estimation of the Hessian matrix caused by the noise
is Poly (Lη, L, d, σmax, C) (g(T ) + 1) g(T ). Denote this
quantity by P (Lη). Note that this error caused by the noise
decays at a rate of

√
T . Putting everything together, we

obtain the algorithm HKICA, named after Hsu and Kakade
(2013), which is shown in Algorithm 1,

Algorithm 1 The HKICA algorithm.
input x(t) for 1 ≤ t ≤ T .
output An estimation of the mixing matrix A.

1: Sample φ and ψ independently from a standard Gaus-
sian distribution of dimension d;

2: Evaluate∇2f̂(φ) and ∇2f̂(ψ),
3: Compute M̂ = (∇2f̂(φ))(∇2f̂(ψ))−1;
4: Compute all the eigenvectors of M̂ , {µ1, . . . , µd};
5: Return Â = (µ1, . . . , µd).

1Throughout the paper eigenvectors always mean right eigen-
vectors, unless specified otherwise.

4.1. Analysis of HKICA

Hsu and Kakade (2013) claimed that HKICA is easy to an-
alyze using matrix perturbation techniques. In this section
we provide a rigorous analysis of the algorithm, which re-
veals some unexpected complications.
Definition 4.1. Let Eψ denote the following event: For

some fixed C1 =
√
πA(2,min)√

2d
` for 0 ≤ ` ≤ 1, and

Lu ≥
√

2d, mini |ψ>Ai| ≥ C1 and ‖ψ‖2 ≤ Lu hold
simultaneously.

The performance of the HKICA algorithm will essentially
depend on the parameter , as shown in the following theo-
rem, where

γA = min
i,j:i6=j

∣∣∣∣∣
(
φ>Ai
ψ>Ai

)2

−
(
φ>Aj
ψ>Aj

)2
∣∣∣∣∣ . (7)

Theorem 4.2. Suppose Assumptions 2.1 and 2.3 hold. Fur-
thermore, assume that

T ≥ Poly

(
d, Lu, C, σmax, κmax, L,

1

`
,

1

κmin
,

1

σmin
,

1

γA

)
,

and that there exist a product measure µ such that

ξ ≤ Poly

(
γA,

1

d
,

1

Lu
,

1

σmax
,

1

κmax
, κmin, σmin, `

)
.

Then, on the event Eψ , there exists a permutation π and
constants {c1, . . . , cd}, such that for any k,

max
1≤k≤d

‖c1Âπ(k) −Ak‖2 ≤
1

γA
(ξ + P (Lu))Q (8)

where Â is the output of the HKICA algorithm, and

Q = Poly

(
d, Lu, σmax, κmax,

1

κmin
,

1

σmin
,

1

`

)
.

Remark 4.3. (i) Note that the bound in (8) goes to zero
at an O(1/

√
T ) rate whenever D4(µ, ν

(s)
T ) = O(1/

√
T )

and g(T ) = O(1/
√
T ), as, e.g., in the stochastic setting.

(ii) The parameter 1/γA is essential in the above theo-
rem, in the sense that not only the reconstruction error
bound is linear in 1/γA, but the condition also requires a
small 1/γA so that the above error bound is valid. Also,
since γA is the minimum spacing of the eigenvalues of
M = ∇2fAµ(φ)(∇2fAµ(ψ))−1, the eigenvalue perturba-
tions imposed by the noise cannot be too large compared to
γA without potentially ruining the eigenvectors ofM ; thus,
the dependence on γA seems to necessary.

Despite the important role that γA plays in the efficiency
of the HKICA algorithm, it is not clear how it depends on
different properties of A. To the best of our knowledge,
even a polynomial (in the dimension d) lower bound of γA
is not yet available in the literature. Similar problems have
been discussed by Hüsler (1987) and Goyal et al. (2014),
but there solutions are not applicable to our case.
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5. A Refined HKICA Algorithm
The problems with γA motivate us to refine the HKICA
algorithm. The idea is inspired by Arora et al. (2012) and
Frieze et al. (1996) using a quasi-whitening procedure:

One can show that ∇2fµ(ψ) = AKDψA
> where

Dψ = diag
(
(ψ>A1)2, · · · , (ψ>Ad)2

)
, and so

B = AK1/2D
1/2
ψ R> for some orthonormal ma-

trix R. Defining Ti = ∇2fµ(B−>φi), one can
calculate that Ti = AK1/2D

−1/2
ψ ΛiA

> where
Λi = diag

(
(φ>i R1)2, . . . , (φ>i Rd)

2
)

and Ri denote
the ith column of R. Then M = T1T

−1
2 = AΛA−1

with Λ = Λ1Λ−1
2 = diag

((
φ>
1 R1

φ>
2 R1

)2

, . . . ,
(
φ>
1 Rd
φ>
2 Rd

)2
)

.

Thus, Ai are again the eigenvectors of M , but now the
eigenvalues of M are defined in terms of the orthogonal
matrix R instead of A, and so the resulting minimum
spacing

γR = min
i,j:i 6=j

∣∣∣∣∣
(
φ>1 Ri
φ>2 Ri

)2

−
(
φ>1 Rj
φ>2 Rj

)2
∣∣∣∣∣ (9)

is much easier to handle.

The resulting algorithm, called Deterministic ICA (DICA),
is shown in Algorithm 2. Note that on the event Eφ,

Algorithm 2 Deterministic ICA (DICA)
input x(t) for 1 ≤ t ≤ T .
output An estimation of the mixing matrix A.

1: Sample ψ from a d-dimensional standard Gaussian dis-
tribution;

2: Evaluate∇2f̂(ψ),
3: Compute B̂ such that ∇2f̂(ψ) = B̂B̂>;
4: Sample φ1 and φ2 independently from the standard

Gaussian distribution;
5: Compute T̂1 = ∇2f̂(B̂−>φ1) and T̂2 =

∇2f̂(B̂−>φ2);

6: Compute all the eigenvectors of M̂ = T̂1

(
T̂2

)−1

,
{µ1, . . . , µd};

7: Return Â = {µ1, . . . , µd}.

‖φ>j R‖2 ≤ Lu, j ∈ {1, 2}. We will show later that this
event Eφ, as well as other events defined later, will hold
simultaneously with high probability.
Definition 5.1. Let Eφ denote the following event: For
some fixed constant Lu ≥

√
2d and `l such that `l =

√
π√
2d
`

for 0 ≤ ` ≤ 1, ‖φ1‖2 ≤ Lu, ‖φ2‖2 ≤ Lu, and
mini{|φ>2 Ri|} ≥ `l hold simultaneously.

Similarly to Theorem 4.2, one can show that under some
technical assumptions, which hold with probability 1 if ξ,

P (Lu), and P
( √

3Lu√
2σminκ

1/2
minC1

)
are small enough, on the

event Eψ ∩ Eφ, there exists a permutation π and constants
{c1, . . . , cd}, such that for 1 ≤ k ≤ d,

‖ckÂπ(k) −Ak‖2 ≤
4σ2

max

γRσmin
Q̃,

where Â is the output of the DICA algorithm and Q̃ is poli-
nomial in the usual problem parameters and decays roughly
as (ξ + P (Lu)). Details are given in the full version of the
paper (Huang et al., 2015). It is very similar to the result of
Theorem 4.2, with γR in place of γA, as required.

To analyze γR analytically, note that φ1 and φ2 are in-
dependently sampled from standard Gaussian distribution.
Thus, {φ>1 R1, · · · , φ>1 Rd, φ>2 R1, · · · , φ>2 Rd} are 2d in-
dependent standard Gaussian random variables. Let Zi =
φ>
1 Ri
φ>
2 Ri

. Therefore, Zi, 1 ≤ i ≤ d are d independent
Cauchy(0, 1) random variables. Using this observation, we
show in the full version (Huang et al., 2015) that, among
others, γR ≥ δ

2d2 with probability at least 1− δ.

Based on the above, one can show that Theorem 3.2 holds
for DICA (Huang et al., 2015). Furthermore, a heuristic
modification of DICA can also be derived that performs
better in the experiments, but proving performance guaran-
tees for that algorithm has defied our efforts so far (details
are given in the full version of the paper, Huang et al. 2015).

5.1. Recursive Versions

Recently, Vempala and Xiao (2014) proposed a recursion
idea to improve the sample complexity of the Fourier PCA
algorithm of Goyal et al. (2014). Instead of recovering all
the columns of A in a single eigen-decomposition, the re-
cursive algorithm only decomposes the whole space into
two subspaces according to the maximal spacing of the
eigenvalues, then recursively decomposes each subspaces
until they are all 1-dimensional. The insight of this recur-
sive procedure is the following: when the maximal spac-
ing of the eigenvalues are much larger than the minimal
one, the algorithm may win over a single decomposition
even with the accumulating errors through the recursion.
However, this algorithm is based on the assumption that
the mixing matrix is orthonormal, so that the projection to
its subspaces can always eliminate some component of the
source signal.

We adapt the above idea to our algorithms. Due to space
limitations, we will only consider the simplest recursive al-
gorithm, the recursive version of HKICA, as an example.

To force an orthonormal mixing matrix, we will first com-
pute the square root matrix B of ∇2f(ψ) = ADψKA

>.
Thus B = AD

1/2
ψ K1/2R> for some orthonormal ma-

trix R. Transforming our observations by B−1, we have
the new observations y(t) = B−1x(t) + B−1ε(t) =

RD
1/2
ψ K1/2s(t) + B−1ε(t). Note that transformed noise
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vectorB−1ε(t) is still Gaussian. Also, D1/2
ψ K1/2 is diago-

nal, thus RD1/2
ψ K1/2s(t) is an orthonormal mixture of in-

dependent sources. We then apply the recursive algorithm
to recover the mixing matrix R. Finally, BR gives an esti-
mate of A up to scaling.

To recover R using a recursive algorithm, we follow the
idea of HKICA (and DICA) to compute two Hessian ma-
trices T1 = RD−1

ψ Λ1R
> and T2 = RD−1

ψ Λ2R
>. Then,

instead of computing the eigen-decomposition of T0 =
T1T

−1
2 (as in HKICA), we only decompose its eigenspace

into two subspaces, according to the maximal spacing of
the eigenvalues of T0. The Decompose helper function
takes a projection matrix P of a subspace spanned by
some columns of R (WLOG we assume it is the first k
columns of R). Then we compute the projection of T0 as
M = P>T0P . Thus the eigenspace of PMP> is in the
span of P . Lastly, by separating the eigenvectors of M ac-
cording to its eigenvalues into PP1 and PP2, the Decom-
pose function repeatedly decomposes the subspaces into
two smaller subspaces.

Algorithm 3 Recursive version of HKICA (HKICA.R)
input x(t) for 1 ≤ t ≤ T .
output An estimation of the mixing matrix A.

1: Sample ψ from a d-dimensional standard Gaussian dis-
tribution;

2: Evaluate∇2f̂(ψ) = Ĝ(ψ);
3: Compute B̂ such that ∇2f̂(ψ) = B̂B̂>;
4: Compute ŷ(t) = B̂−1x(t) for 1 ≤ t ≤ T ;
5: Let P = Id;
6: Compute R̂ = Decompose(ŷ, P );
7: Return B̂R̂;

Algorithm 4 The Decompose helper function
input x(t) for 1 ≤ t ≤ T , a projection matrix P ∈ Rd×k

(d ≥ k).
output An estimation of the mixing matrix A ∈ Rd×k.

1: if k == 1, Return P ;
2: Sample φ1 and φ2 independently from a standard

Gaussian distribution of dimension d;
3: Evaluate∇2f̂(φ1) and ∇2f̂(φ2),
4: Compute T̂ = (∇2f̂(φ1))(∇2f̂(φ2))−1;
5: Compute M̂ = P>T̂P ;
6: Compute all the eigen-decomposition of M̂ , its

eigenvalues{σ1, . . . , σd} where σ1 ≥ . . . ≥ σk and
their corresponding eigenvectors {µ1, . . . , µk};

7: Find the index m = arg maxσm − σm+1;
8: Let P1 = (µ1, . . . , µm), and P2 = (µm+1, . . . , µk);
9: Compute W1 = Decompose(x, PP1), and W2 =

Decompose(x, PP2);
10: Return [W1,W2];

Remark 5.2. Other algorithms can be modified into a re-
cursive version in a similar way.

Theorem 5.3. Under the conditions of Theorem 3.2, with
probability at least 1 − δ, the recursive version of HKICA
returns a mixing matrix Â with an error ‖Â − ADP‖2
bounded by

Poly

(
d,

1

κmin
,

1

σmin
,

1

`
, Lu, L, C, σmax

)
(Q̃2 + ξ̄)

for some diagonal matrix D and permutation matrix P .

Remark 5.4. Note that when T is large enough, the term
Q̃2 will be dominated by ξ̄, which is the error carried over
from quasi-whitening. The recursion idea improves the
sample complexity of the eigen-decomposition (to recover
the orthonormal mixing matrix R).

6. Experimental Results
In this section we compare the performance of different
ICA algorithms in some synthetic examples, with mixing
matrices of different coherences.

We test 9 algorithms: HKICA (HKICA), and its recur-
sive version (HKICA.R); DICA (DICA), and its recur-
sive version (DICA.R); the modified version of DICA
(MDICA), and its recursive version (MDICA.R); the de-
fault FastICA algorithm from the ’ITE’ toolbox (Szabó
et al., 2012) (FICA); the recursive Fourier PCA algorithm
of Xiao (2014) (FPCA); and random guessing (Random).
FPCA is modified so that it can be applied to the case of
non-orthogonal mixing matrix.

In the simulation, a common mixing matrix A of dimen-
sion 6 is generated in the following ways: We construct
four kinds of matrices: A1 = P ; A2 = vb × 1′ + 0.3× P ;
A3 = vb × 1′ + 0.05×P ; and A4 = vb × 1′ + 0.005×P .
Here the vector vb and the matrix P are both generated
from standard normal distribution (with different dimen-
sions). Then all the mixing matrices are rescaled to a same
magnitude. We also generate an orthonormal mixing ma-
trix R, obtained by computing the left column space of a
non-singular random matrix (from standard normal distri-
bution). Then we generate a 6-dimensional BPSK signal s
as follows. Let p = (

√
2,
√

5,
√

7,
√

11,
√

13,
√

19). We
generate a {+1,−1} valued sequence q(t) uniformly at
random for 1 ≤ t ≤ T , and set si(t) = q(t)i × sin(pit).
Note that in order to have the components of s close to
independent, we need the ratio of their frequencies are ir-
rational.

Lastly, the observed signal is generated as x = As + cε
where ε is the noise generated from a d-dimensional normal
distribution with randomly generated covariance. We take
T = 20000 instances of the observed signal on time steps
t = 1, . . . , 20000. We test the noise ratio c from 0 (noise-
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Figure 2. Reconstruction Error

free) to 1 (very noisy). All the algorithms are evaluated on
a 150 repetitions. For each repetition, we try 3 times and
report the best.

We measure the performances of the algorithms by its ac-
tual reconstruction error. In particular, we evaluate the fol-
lowing quantity between the true mixing matrix A and the
estimate Â returned by the algorithms: minΠ,S ‖ÂΠS −
A‖Frob, where Π is a permutation matrix, and S is a column
scaling matrix (diagonal). The calculation of this measure
would require a exhaust search for the optimal permutation.

6.1. Results

We report the reconstruction errors for different kinds of
mixing matrices and noise ratios.

The experimental results suggest that moment methods are
more robust to high-coherence mixing matrices and Gaus-
sian noise than FastICA. FastICA achieves the best per-

formance in case of low coherence. As the coherence of
the mixing matrix A increases, its performance decreases
quickly and becomes sensitive to noise.

We expected that DICA will achieve smaller error for an
extremely coherent A, since 1/γA will be much larger than
1/γR. However, the experimental results indicate the op-
posite. Note that high coherence implies small minimal
singular value. In this case, the estimation error of M in
DICA could be much larger than that in HKICA, because
of the fourth degree of A−1. This error overwhelms the
improvement brought by larger eigenvalue spacings, if the
sample size is not large enough. The investigation of this
phenomenon is left for future work.

On the other hand, MDICA tries to achieve a small estima-
tion error, meanwhile we expect it to keep the eigenvalue
spacing large (intuitively, it is approximately the spacing
of the square of d Gaussian random variables), leading to
good performance. This is confirmed by the experimental
results, in both the non-recursive and recursive versions.

The recursive idea is not always helpful for the moment
methods. For a highly coherent A, the recursive versions
outperform their non-recursive counterparts. Note that in
this case, A is close to singular (small minimal singular
value), and thus it requires more samples. On the other
hand, when A has relatively low coherence, the estimation
error of the fourth moments contributes more to the recon-
struction error. Recursive algorithms suffers from making
several such estimations.

In summary, the results suggest that these moment methods
are comparable to each other in practice, while FastICA is
better for mixing matrices with low coherence or mild co-
herence with low noise. If the mixing matrix is orthonor-
mal, then FPCA performs better than the other algorithms.
If the observations have large noise and the mixing matrix
is not extremely coherent, then HKICA may be the best
choice. In the case of an extremely coherent mixing ma-
trix, MDICA performs the best. Also, the recursive idea is
very helpful for small sample sizes.

7. Conclusions
We considered the problem of independent component
analysis with noisy observation. For the first time in the lit-
erature, we presented ICA algorithms that can recover non-
Gaussian source signals with polynomial computational
complexity and provable performance guarantees on the
reconstruction error that guarantee that for T samples the
reconstruction error vanishes at a 1/

√
T rate and depends

only polynomially on the natural parameters of the prob-
lem. The algorithms do not depend on unknown problem
parameters, and also extend to deterministic sources with
approximately independent empirical distributions.
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