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APPENDIX A. PARAMETRIC MJPs FOr SVA

To obtain the SVA objective from the parametric MJP model, we begin by scaling the exponential
distribution f(t; A) = Aexp(—At), which is an exponential family distribution with natural parameter n = —\,
log-partition function ¢ (n) = —In(—n), and base measure v(dt) = 1 [1]. To scale the distribution, introduce
the new natural parameter 77 = n and log-partition function $(7j) = 8¢(7/8). The new base measure (dt)
is uniquely defined by the integral equation [see 1, Theorem 5]

- B
[ expit)itan) = exp(G(3) = exp(~51n(/8) = 2.
Choosing (dt) = %dt satisfies the condition, so we have
f(t:\,B) = %tﬁle“t = exp(—BM + (B —1)Int + Bln A3 — InT'(B))
:exp{—ﬁ ()\t—lnt—ln)\—ﬁmﬁ_ﬁlnr(ﬂ)—i—mﬂt)}.

It can now be seen that f(¢; A, 8) is the density of a gamma distribution with shape parameter 8 and rate

parameter SA. Hence, the mean of the scaled distribution is % and its variance is ﬁ Letting F(t; \, 8)

denote the CDF corresponding to f(t; A, 8), we have 1 — F(t; A, 8) = F(&g;‘t), where T'(+,-) is the upper
incomplete gamma function.

For the state at the k-th jump we use a 1-of-M representation; that is, s, is an M-dimensional binary
random variable which satisfies s, € {0,1} and Zn]\le sipm = 1. Hence, we have:

M
plsklse—1,; =1) = [ pii (A1)
m=1
Given the Bregman divergence for a multinomial distribution, dg(sk, p;) = KL(sk||p;) where p; £ (pj1,...,pjnm),
this can be written in terms of exponential family notation in the following form [1]:
p(sklsk—1, = 1) = by (sk) exp(—dy(sk, ;) (A.2)

where by(s;) = 1. For a scaled multinomial distribution we have bs,(sy) exp(—3d¢(sk,pj)), where 3 = ¢
is the scaling parameter for the multinomial distribution. Writing the trajectory probility with the scaled
exponential families yields:
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h=0 (A.3)
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Since  — oo, we can apply the asymptotic expansions for I'(-) and T'(-,-). In particular, applying Stirling’s
formula and the facts in [2] we have:

fInf—InT(B) BInf—pFInp+ 5+ o0(B)
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We also place a Gam(ay, aypey) prior on each ;. With ay = £,3, we obtain
Inp(As | ax, anpr) = axIn(axpy) + (@x — 1) InAg — InT'(ay) — aaprds
=BInAs — ExpaBAs + 6B + o(B)
= —B(Eapads —ExIn A — 1) +0(B).

Hence, when 8 — oo, obtain

K—-1 K-1
min, {5 S KLt llpa) + 3 Oueti — In gyt — 1)
k=0 k=0 (A4)
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APPENDIX B. BAYESIAN NONPARAMETRIC MJPs FOR SVA

First we recall that the Moran gamma process is a distribution over measures. If u ~ I'P(H,7) is a
random measure distributed according to a Moran gamma process with base measure H on the probability
space (2, F) and rate parameter v, then for all measurable partitions of Q, (A4y,..., Ay), u satisfies

(4(Ar), -, 1(Ar)) ~ Gam(H (A1), ) x - x Gam(H (A7), 7). (B.1)
The hierarchical gamma-gamma process (HI'T'P) is defined to be:

po ~ TP (e Ho, v0) (B.2)
113 | o = TP (Bpo, ) i=12,... (B.3)
sk [ {pi}iZo, Uk—1 ~ isy_, (B.4)
123 | {Ni};?imukfl ~ Gam(ﬁ7 H/’[‘Sk—l H) (B5)

Consider the gamma-gamma process (I'TP), defined by (B.3)-(B.5) (with pg treated as an arbitrary fixed
measure). We now show that the I'T'P retains the key properties of the P’EP: conjugacy and exchangeability.

Let T; £ 2?21 1[sj_y =i]t; and F; & Z?Zl 1[sj—1 =i]ds; be the sufficient statistics of the observations.

Proposition B.1. The I'TP is a conjugate family: p; |Uy ~ TP(Bus,~;), where ), = po+F; and v, = v+T;.
Proof sketch. The proof is analogous to that for Proposition 2 in [4]. The key additional insight is that
X ~ Gam(Ba,b) and Y | X ~ Gam(8, X) are conjugate: X |Y ~ Gam(B(a+1),b+7Y). O

In order to give the joint distribution of the times 7 £ Tx £ (t1,...,tx), we first derive the predictive
distribution for the I'TP, (sg41,tx+1) |Us. We make use of the following family of densities.

Definition B.2 (Shaped Translated Pareto). Let 8 > 0, > 0,7 > 0. A random variable S is shaped
translated Pareto, denoted S ~ STP(8, a,7), if it has density
,yaﬂ tﬂ—l

(6, aB) (i + ) 0+I?"

1) =3

where B(a,b) = 1}(85_%) is the beta function.

Proposition B.3. The predictive distribution of the T'TP is
(Sk+1s 1) [ Un ~ i, < STP(B, (I, [l vs, ) (B.6)
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Proof. By Proposition B.1, it suffices to show that if u ~ I'P(Bug,v), s|p ~ &, and t|p ~ Gam(B, |||,
then (s,t) ~ i x STP(B, ko, ), where kg 2 ||pol|. Letting 2 = ||u||, the distribution of ¢ is

0o oo .B4B—1_—xt A BKoBro—1,—vT
w0y = [ pttlompens = [ Tt

_ M = B(1+ro)—1,—(v )z, — yPro¢h—1 L'(B(1 + ko))
B F(B)F(BHO) /0 v ¢ r= F(ﬂ)r(ﬂmo) (,y th)ﬁ(lJrno)'

O

We can now show that the process is exchangeable by exhibiting the joint distribution of waiting times:

Proposition B.4. Let t;, = (t,1,...,tr x ) be the waiting times following state m. Then t,, is an ex-

changeable sequence with joint distribution

L(Bro + Kon)) <Hf“1 thng)* !
r(p)Km (7+Z ™ Ty ) PR+ Km)

p(ty) = (B.7)

Proof sketch. Take the product of the predictive distributions of 71, ..., Tmk,, - O

The measures {u; 152, and Hy can be integrated out of the HI'TP generative model in a manner analogous
to the way in the the Chinese restaurant franchise in obtained from the hierarchical Dirichlet process [5].
However the mass of the measure po cannot be integrated out. We omit details as they are essentially
identical to those in case of the HT'EP [4].

First, we consider the case of integrating out {u;};>0. Let M denote the number of used states, K,, the
number of transitions out of state m, and r,, the number of states that can be reached from state m in one
step. The contribution to the likelihood from the HI'T'P prior is

p(uv Ko | BvVO)’%O‘O) = p(K:O | aOaVO)p(S | ﬁa Qp, KO)p(T| 5?77 K‘O)

M
ap—1 —’YonoaM 1 F(O‘O + 1) H (ﬁﬁo)rvn—l F(ﬁHO + 1)

X K e
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% H /i()"f‘K )) (H] 1tmj)ﬁ !
K D )t

m=1

where 7. £ > Tm- Taking the logarithm, using asymptotic expansions for the Gamma terms, and ignoring
o(f) terms yields

(g —1)Inkg —voko + (M — 1) Inag + Z{ 1) Inko + B(ko + Ky) In[B(ko + Kp)]}

M
>~ {-Blko + Kin) = Knn[B1B — 8] 4+ 810 It — Blro + Kon) In (7 + 15, }

m=1

where ¢, £ ZjK_”i tm;- In order to retain the effects of the hyperparameters in the asymptotics, set ag =

exp(—&18) and vo = exp(§28). Thus, kg — 0 as B — oo. We require that limsupg_, ., K070 < 00, so without
loss of generality we can choose kg = '70_ ! = exp(—&;0) to obtain

Thus, the objective function to minimize is

L M
(Y KL(rllp,,) + &M+ 3 {&lrn —1) - S, ~ Kol (b +65,)/Kn)} . (BS)
(=1 m=1
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Alternatively, the small variance asymptotics can be derived in the case where {u;};>0 is not integrated
out. To do so, we first rewrite the H['T'P generative model in an equivalent form, with H, integrated out:

7o ~ GEM(ap) (B.9)
ko ~ Gam(ag,Y0) (B.10)
;i | ™o R DP(Bromo), 1=1,2,... (B.11)
ki | mo R Gam(B,7), i=1,2,... (B.12)
S [ {mi 2y, Up—1 ~ s, (B.13)
ti [ {ki}20, U1 ~ Gam(B, ks, ). (B.14)

For0<i<M,1<j5<M,letm; £ mij; and for 0 <4 < M, let T; pr41 L1 Z]J\/il ;. Integrating out
{ki}i>1, the contribution to the likelihood from the HI'TP prior is now

p(uK7E077?‘ﬂ770777a0) (B15)
= p(Ko | a0, 70)p (7?0 | 0)p(T1:r | BroTo)p(Sk | T1:n)p(Txe | By, ffo) (B.16)

o KGO e 10m0 H Beta ﬁ 1, ap | Dir(; | BroTo) H Tsp_1,ox | P(T | B, 7, ko) (B.17)
Z; 1 70,5
M 4ag) (1m0, ) M1 ﬁ@ﬁowojfl
e ] : =170 k) [
i=1 INGTY! 1-—- ijl 0,5 ol F(Bﬁoﬂoj)

Km * -
o T BB+ Ku)) (L )
Sk—1,5k I'(B)Em (v +Z g )6(no+Km)

(B.18)

3

SIE

We use a slightly different limiting process, with vg = ko = &2, a positive constant, and scale the multinomial
distributions (B.13) by 8. Taking the logarithm and and ignoring o(/3) terms as before yields

m=1

M M+1
Z In ag + BrolIn Brg — B+ Z {=BkoTo,; In(BroTo,;) + BroTo,j + BroTo,; In7s;}
i=1 =1

K M
£ BT+ D { SN Bty — B n ([ + £, ]/K) |
k=1 m=1

M M+1
~ Z 75§1 + Z {*ﬂlﬁoﬁ'ovj 111(7_1'07]') + ,Blioﬁ'o,j 11177'1;]'}
i=1 j=1

K M
£ BTy e+ D { SIS Blnts,; — BKIn ([y + 5,1/ K) |
k=1 m=1

K M
~—p {&M +EY MTg o+ Y {&KL(%HM — >t — Ko In [y + t%]/f%)}} :

k=1 m=1

Thus, the objective function to minimize is

L K
Zlnpsfzmg + gzlnﬁsk,l,sk + glM

=t (B.19)

{=1
M
+ 3 {@KLFollfm) = X5 Inty,; — Ko In ([ + 5,/ Kn) }

m=1
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FIGURE C.1. Mean error vs CPU runtime for (a) Synthetic 1; (b) Synthetic 2; (¢) MS; and (d) MIMIC
datasets. In each case the JUMP-means algorithms have better or comparable performance to other standard
methods of inference in MJPs.

APPENDIX C. TIME-ACCURACY PLOTS FOR THE EXPERIMENTS

In the main paper we include the error versus iteration as it is more objective than time-accuracy results.
In Fig. C.1, we compare the time-accuracy across different methods for different datasets. EM, PMCMC,
and JUMP-means are implemented in Java and MCMC is implemented in Python. To plot the MCMC
results, we give a speed boost of 100x in the results to compensate for Python’s slow interpreter. From our
experience with scientific computing applications, we believe this is a generous adjustment. Also we note that
the EM implementation used in our experiments is not the most optimized in terms of time per iteration.
However, our goal is to show that JUMP-means can achieve comparable performance with a reasonable
implementation of MCMC and EM.

APPENDIX D. SCALING EXPERIMENTS

For the scaling experiments we generated 4 datasets consisting of 102 to 10° sequences. All datasets
are sampled from a single hidden state MJP with 5 hidden states and 5 possible observations. For the 20
observations in each sequence a Gaussian likelihood is used. Finally, for the held out results, we categorized
the observations in 5 bins, removed 30% of the data points and predicted their category.
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