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Appendix A. Parametric MJPs for SVA

To obtain the SVA objective from the parametric MJP model, we begin by scaling the exponential
distribution f(t;λ) = λ exp(−λt), which is an exponential family distribution with natural parameter η = −λ,
log-partition function ψ(η) = − ln(−η), and base measure ν(dt) = 1 [1]. To scale the distribution, introduce

the new natural parameter η̃ = βη and log-partition function ψ̃(η̃) = βψ(η̃/β). The new base measure ν̃(dt)
is uniquely defined by the integral equation [see 1, Theorem 5]∫

exp(η̃t)ν̃(dt) = exp(ψ̃(η̃)) = exp(−β ln(η̃/β)) =
ββ

η̃β
.

Choosing ν̃(dt) = tβ−1ββ

Γ(β) dt satisfies the condition, so we have

f(t;λ, β) =
(βλ)β

Γ(β)
tβ−1e−βλt = exp(−βλt+ (β − 1) ln t+ β lnλβ − ln Γ(β))

= exp

{
−β
(
λt− ln t− lnλ− β lnβ − ln Γ(β)

β
+

ln t

β

)}
.

It can now be seen that f(t;λ, β) is the density of a gamma distribution with shape parameter β and rate
parameter βλ. Hence, the mean of the scaled distribution is 1

λ and its variance is 1
λβ . Letting F (t;λ, β)

denote the CDF corresponding to f(t;λ, β), we have 1 − F (t;λ, β) = Γ(β,βλt)
Γ(β) , where Γ(·, ·) is the upper

incomplete gamma function.
For the state at the k-th jump we use a 1-of-M representation; that is, sk is an M -dimensional binary

random variable which satisfies skm ∈ {0, 1} and
∑M
m=1 skm = 1. Hence, we have:

p(sk|sk−1,j = 1) =

M∏
m=1

pskmjm . (A.1)

Given the Bregman divergence for a multinomial distribution, dφ(sk,pj) = KL(sk||pj) where pj , (pj1, . . . , pjM ),
this can be written in terms of exponential family notation in the following form [1]:

p(sk|sk−1,j = 1) = bφ(sk) exp(−dφ(sk,pj)) (A.2)

where bφ(sk) = 1. For a scaled multinomial distribution we have bβ̂φ(sk) exp(−β̂dφ(sk,pj)), where β̂ = ξβ

is the scaling parameter for the multinomial distribution. Writing the trajectory probility with the scaled
exponential families yields:

p(U|s0, sK , P,λ) ∝ exp

{
−β
(

ln Γ(β)− ln Γ(β, βλsK t·)

β
+ ξ

K−1∑
k=0

KL(sk+1||psk)

+

K−1∑
k=0

(
λsktk − lnλsktk −

β lnβ − ln Γ(β)

β
+

ln tk
β

))}
,

(A.3)
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Since β →∞, we can apply the asymptotic expansions for Γ(·) and Γ(·, ·). In particular, applying Stirling’s
formula and the facts in [2] we have:

β lnβ − ln Γ(β)

β
=
β lnβ − β lnβ + β + o(β)

β
→ 1

ln Γ(β)− ln Γ(β, βλt)

β
=

{
−β−o(β)−β lnλt+βλt

β → λt− lnλt− 1 if t ≥ 1
λ

β ln β−β−β ln β+β+o(β)
β → 0 if t < 1

λ

We also place a Gam(αλ, αλµλ) prior on each λi. With αλ = ξλβ, we obtain

ln p(λs |αλ, αλµλ) = αλ ln(αλµλ) + (αλ − 1) lnλs − ln Γ(αλ)− αλµλλs
= ξλβ lnλs − ξλµλβλs + ξλβ + o(β)

= −β(ξλµλλs − ξλ lnλs − 1) + o(β).

Hence, when β →∞, obtain

min
U,λ,P

{
ξ

K−1∑
k=0

KL(sk+1||psk) +

K−1∑
k=0

(λsktk − lnλsktk − 1)

+ 1[λsK t· ≥ 1](λsK t· − lnλsK t· − 1) + ξλ

M∑
s=1

(µλλs − lnλs − 1)

} (A.4)

Appendix B. Bayesian Nonparametric MJPs for SVA

First we recall that the Moran gamma process is a distribution over measures. If µ ∼ ΓP(H, γ) is a
random measure distributed according to a Moran gamma process with base measure H on the probability
space (Ω,F) and rate parameter γ, then for all measurable partitions of Ω, (A1, . . . , A`), µ satisfies

(µ(A1), . . . , µ(A`)) ∼ Gam(H(A1), γ)× · · · × Gam(H(A`), γ). (B.1)

The hierarchical gamma-gamma process (HΓΓP) is defined to be:

µ0 ∼ ΓP(α0H0, γ0) (B.2)

µi |µ0
i.i.d.∼ ΓP(βµ0, γ) i = 1, 2, . . . (B.3)

sk | {µi}∞i=0,Uk−1 ∼ µ̄sk−1
(B.4)

tk | {µi}∞i=0,Uk−1 ∼ Gam(β, ‖µsk−1
‖). (B.5)

Consider the gamma-gamma process (ΓΓP), defined by (B.3)-(B.5) (with µ0 treated as an arbitrary fixed
measure). We now show that the ΓΓP retains the key properties of the ΓEP: conjugacy and exchangeability.

Let Ti ,
∑k
j=1 1[sj−1 = i]tj and Fi ,

∑k
j=1 1[sj−1 = i]δsj be the sufficient statistics of the observations.

Proposition B.1. The ΓΓP is a conjugate family: µi | Uk ∼ ΓP(βµ′i, γ
′
i), where µ

′
i = µ0+Fi and γ

′
i = γ+Ti.

Proof sketch. The proof is analogous to that for Proposition 2 in [4]. The key additional insight is that
X ∼ Gam(βa, b) and Y |X ∼ Gam(β,X) are conjugate: X |Y ∼ Gam(β(a+ 1), b+ Y ). �

In order to give the joint distribution of the times T , TK , (t1, . . . , tK), we first derive the predictive
distribution for the ΓΓP, (sk+1, tk+1) | Uk. We make use of the following family of densities.

Definition B.2 (Shaped Translated Pareto). Let β > 0, α > 0, γ > 0. A random variable S is shaped
translated Pareto, denoted S ∼ STP(β, α, γ), if it has density

f(t) =
γαβ

B(β, αβ)

tβ−1

(t+ γ)(1+α)β
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is the beta function.

Proposition B.3. The predictive distribution of the ΓΓP is

(sk+1, tk+1) | Uk ∼ µ̄′sk × STP(β, ‖µ̄′sk‖, γ′sk). (B.6)
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Proof. By Proposition B.1, it suffices to show that if µ ∼ ΓP(βµ0, γ), s |µ ∼ µ̄, and t |µ ∼ Gam(β, ‖µ‖),
then (s, t) ∼ µ̄× STP(β, κ0, γ), where κ0 , ‖µ0‖. Letting x = ‖µ‖, the distribution of t is

p(t) =

∫ ∞
0

p(t |x)p(x)dx =

∫ ∞
0

xβtβ−1e−xt

Γ(β)

γβκ0xβκ0−1e−γx

Γ(βκ0)
dx

=
γβκ0tβ−1

Γ(β)Γ(βκ0)

∫ ∞
0

xβ(1+κ0)−1e−(γ+t)xdx =
γβκ0tβ−1

Γ(β)Γ(βκ0)

Γ(β(1 + κ0))

(γ + t)β(1+κ0)
.

�

We can now show that the process is exchangeable by exhibiting the joint distribution of waiting times:

Proposition B.4. Let t∗m = (t∗m1, . . . , t
∗
mKm

) be the waiting times following state m. Then t∗m is an ex-
changeable sequence with joint distribution

p(t∗m) =
Γ(β(κ0 +Km))

Γ(β)Km

(
∏Km
j=1 t

∗
mj)

β−1

(γ +
∑Km
j=1 τmj)

β(κ0+Km)
(B.7)

Proof sketch. Take the product of the predictive distributions of τm1, . . . , τmKm . �

The measures {µi}∞i=0 and H0 can be integrated out of the HΓΓP generative model in a manner analogous
to the way in the the Chinese restaurant franchise in obtained from the hierarchical Dirichlet process [5].
However the mass of the measure µ0 cannot be integrated out. We omit details as they are essentially
identical to those in case of the HΓEP [4].

First, we consider the case of integrating out {µi}i≥0. Let M denote the number of used states, Km the
number of transitions out of state m, and rm the number of states that can be reached from state m in one
step. The contribution to the likelihood from the HΓΓP prior is

p(U , κ0 |β, γ0, γ, α0) = p(κ0 |α0, γ0)p(S |β, α0, κ0)p(T |β, γ, κ0)

∝ κα0−1
0 e−γ0κ0αM−1

0

Γ(α0 + 1)

Γ(α0 + r·)

M∏
m=1

(βκ0)rm−1 Γ(βκ0 + 1)

Γ(βκ0 +Km)

×
M∏
m=1

Γ(β(κ0 +Km))

Γ(β)Km

(
∏Km
j=1 t

∗
mj)

β−1

(γ +
∑Km
j=1 t

∗
mj)

β(κ0+Km)
,

where r· ,
∑
m rm. Taking the logarithm, using asymptotic expansions for the Gamma terms, and ignoring

o(β) terms yields

(α0 − 1) lnκ0 − γ0κ0 + (M − 1) lnα0 +

M∑
m=1

{(rm − 1) lnκ0 + β(κ0 +Km) ln[β(κ0 +Km)]}

M∑
m=1

{
−β(κ0 +Km)−Km[β lnβ − β] + β

∑Km
j=1 ln t∗mj − β(κ0 +Km) ln (γ + t∗m·)

}
,

where t∗m· ,
∑Km
j=1 t

∗
mj . In order to retain the effects of the hyperparameters in the asymptotics, set α0 =

exp(−ξ1β) and γ0 = exp(ξ2β). Thus, κ0 → 0 as β →∞. We require that lim supβ→∞ κ0γ0 <∞, so without

loss of generality we can choose κ0 = γ−1
0 = exp(−ξ2β) to obtain

−β
(
ξ1(M − 1) +

M∑
m=1

{
ξ2(rm − 1)−∑Km

j=1 ln t∗mj +Km ln ([γ + t∗m·]/Km)
})

.

Thus, the objective function to minimize is

ζ

L∑
`=1

KL(x`||ρsτ` ) + ξ1M +

M∑
m=1

{
ξ2(rm − 1)−∑Km

j=1 ln t∗mj −Km ln ([γ + t∗m·]/Km)
}
. (B.8)
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Alternatively, the small variance asymptotics can be derived in the case where {µi}i≥0 is not integrated
out. To do so, we first rewrite the HΓΓP generative model in an equivalent form, with H0 integrated out:

π0 ∼ GEM(α0) (B.9)

κ0 ∼ Gam(α0, γ0) (B.10)

πi |π0
i.i.d.∼ DP(βκ0π0), i = 1, 2, . . . (B.11)

κi |π0
i.i.d.∼ Gam(β, γ), i = 1, 2, . . . (B.12)

sk | {πi}∞i=1,Uk−1 ∼ πsk−1
(B.13)

tk | {κi}∞i=1,Uk−1 ∼ Gam(β, κsk). (B.14)

For 0 ≤ i ≤ M, 1 ≤ j ≤ M , let π̄i,j , πij and for 0 ≤ i ≤ M , let π̄i,M+1 , 1 −∑M
j=1 πij . Integrating out

{κi}i≥1, the contribution to the likelihood from the HΓΓP prior is now

p(UK , κ0, π̄ |β, γ0, γ, α0) (B.15)

= p(κ0 |α0, γ0)p(π̄0 |α0)p(π̄1:M |βκ0π̄0)p(SK | π̄1:M )p(TK |β, γ, κ0) (B.16)

∝ κα0−1
0 e−γ0κ0

M∏
i=1

Beta

(
π̄0i

1−∑i−1
j=1 π0,j

∣∣∣∣∣1, α0

)
Dir(π̄i |βκ0π̄0)

(
K∏
k=1

π̄sk−1,sk

)
p(TK |β, γ, κ0) (B.17)

∝ κα0−1
0 e−γ0κ0

M∏
i=1

Γ(1 + α0)

Γ(α0)

(
1−∑i

j=1 π0,j

1−∑i−1
j=1 π0,j

)α0−1

Γ(βκ0)

M+1∏
j=1

π̄
βκ0π̄0j−1
ij

Γ(βκ0π̄0j)


×

K∏
k=1

π̄βξsk−1,sk
×

M∏
m=1

Γ(β(κ0 +Km))

Γ(β)Km

(
∏Km
j=1 t

∗
mj)

β−1

(γ +
∑Km
j=1 t

∗
mj)

β(κ0+Km)
.

(B.18)

We use a slightly different limiting process, with γ0 = κ0 = ξ2, a positive constant, and scale the multinomial
distributions (B.13) by βξ. Taking the logarithm and and ignoring o(β) terms as before yields

M∑
i=1

lnα0 + βκ0 lnβκ0 − β +

M+1∑
j=1

{−βκ0π̄0,j ln(βκ0π̄0,j) + βκ0π̄0,j + βκ0π̄0,j ln π̄ij}


+

K∑
k=1

βξ ln π̄sk−1,sk +

M∑
m=1

{∑Km
j=1 β ln t∗mj − βKm ln ([γ + t∗m·]/Km)

}

∼
M∑
i=1

−βξ1 +

M+1∑
j=1

{−βκ0π̄0,j ln(π̄0,j) + βκ0π̄0,j ln π̄ij}


+

K∑
k=1

βξ ln π̄sk−1,sk +

M∑
m=1

{∑Km
j=1 β ln t∗mj − βKm ln ([γ + t∗m·]/Km)

}
∼ −β

{
ξ1M + ξ

K∑
k=1

ln π̄sk−1,sk +

M∑
m=1

{
ξ2KL(π̄0||π̄m)−∑Km

j=1 ln t∗mj −Km ln ([γ + t∗m·]/Km)
}}

.

Thus, the objective function to minimize is

ζ

L∑
`=1

ln ρsτ`x` + ξ

K∑
k=1

ln π̄sk−1,sk + ξ1M

+

M∑
m=1

{
ξ2KL(π̄0||π̄m)−∑Km

j=1 ln t∗mj −Km ln ([γ + t∗m·]/Km)
}
.

(B.19)
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Figure C.1. Mean error vs CPU runtime for (a) Synthetic 1; (b) Synthetic 2; (c) MS; and (d) MIMIC
datasets. In each case the JUMP-means algorithms have better or comparable performance to other standard

methods of inference in MJPs.

Appendix C. Time-accuracy plots for the experiments

In the main paper we include the error versus iteration as it is more objective than time-accuracy results.
In Fig. C.1, we compare the time-accuracy across different methods for different datasets. EM, PMCMC,
and JUMP-means are implemented in Java and MCMC is implemented in Python. To plot the MCMC
results, we give a speed boost of 100x in the results to compensate for Python’s slow interpreter. From our
experience with scientific computing applications, we believe this is a generous adjustment. Also we note that
the EM implementation used in our experiments is not the most optimized in terms of time per iteration.
However, our goal is to show that JUMP-means can achieve comparable performance with a reasonable
implementation of MCMC and EM.

Appendix D. Scaling experiments

For the scaling experiments we generated 4 datasets consisting of 102 to 105 sequences. All datasets
are sampled from a single hidden state MJP with 5 hidden states and 5 possible observations. For the 20
observations in each sequence a Gaussian likelihood is used. Finally, for the held out results, we categorized
the observations in 5 bins, removed 30% of the data points and predicted their category.
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