
A Fast Variational Approach
for Learning Markov Random Field Language Models: Appendix

A. Proof of Lemma 1
Let us start by reviewing some of the notions supporting
the model presented in the main paper. All probability
distributions defined in this paper correspond to Markov
random field sequence models, so we begin by describing
these models in detail.

A.1. Sequence models

Linear-chain Markov sequence model We start by con-
sidering a sequence x = (x1, . . . , xn) of n variables with
state space X . We define an order K Markov sequence
model as a Markov random field where each element of the
sequence is connected to its K left and right neighbours.
Figure 1 presents such a model for n = 8, K = 2.

x2x1 x4x3 x5 x7x6 x8

Figure 1. Second-order Markov sequence model for n = 8.

As mentioned in Section 3, a pairwise MRF with this struc-
ture gives the following distribution pnseqK

over Xn:

∀x ∈ Xn, log(pnseqK
(x)) =

n−K∑
i=1

K∑
l=1

θ(i,i+l)
xi,xi+l

−An
seqK

(θ)

(1)

Where:

An
seqK

(θ) = log

(∑
y∈Xn

exp

(n−K∑
i=1

K∑
l=1

θ(i,i+l)
yi,yi+l

))

Cyclic Markov sequence model Now consider the
cyclic version of the above sequence model, where the last
K tokens are connected to the first K (specifically, edges
are added between vn−k and vl, ∀1 ≤ k + l ≤ K), as
illustrated in Figure 2.

This gives the following distribution pncyclK
over Xn:

∀x ∈ Xn, log(pncyclK
(x)) =

n∑
i=1

K∑
l=1

θ(i,i+l)
xi,xi+l

−An
cyclK

(θ)

(2)

x2x1

x4

x3

x5

x7

x6

x8

Figure 2. Cyclic second order Markov sequence model for n = 8.

Where:

An
cyclK

(θ) = log

(∑
y∈Xn

exp

(n∑
i=1

K∑
l=1

θ(i,i+l)
yi,yi+l

))

And ∀l ∈ [1,K], xn+l = xl, yn+l = yl.

A.2. Language modelling

To apply a Markov sequence model to language modelling
we also need to explicitly handle the boundary cases of a
sentence.

Consider a linear-chain Markov sequence model over a
sentence of size M , let T denote the vocabulary of our cor-
pus, and define the bidirectional context of a word as its K
left and right neighbouring tokens. By addingK “padding”
or “separator” tokens 〈S〉 6∈ T to the left and right bound-
ary of the sentence, this notion of context also allows us to
bias the distribution of tokens at the beginning and end of
the sentence.

In terms of the sequence model defined above, a
sentence t ∈ T M will then correspond to a se-
quence x(t) ∈ XM+2K , with X = T ∪ {〈S〉}, such that
x(t)K+M

K+1 = t and x(t)K1 = x(t)M+2K
M+K+1 = 〈S〉K .

This allows us to define the following distribution pM over

A Fast Variational Approach for Learning Markov Random Field Language Models

<S><S> dogThe barked <S>. <S>

M = 4 τ

p4

Figure 3. The full generative model for a sentence.

sentences of length M :

∀t ∈ T M , pM (t) = pM+2K
seqK

(
xK+M
K+1 = t∣∣∣∣xK

1 = xM+2K
M+K+1 = 〈S〉K

)
(3)

We can then define the following generative process for
sentences (as illustrated in Figure 3):

• Draw the sentence length M from a distribution over
integers τ .

• Draw a sequence of M tokens:
tM = (t1, . . . , tM) ∼ pM (tM) .

Under this model, the likelihood of a corpus tc =
(t1, . . . , tnc) is then:

p(tc) =

nc∏
i=1

τ(Mi)p
Mi(ti)

= τ(M1, . . . ,Mnc
)

nc∏
i=1

pMi(ti)

Since the maximum likelihood parameters of τ can easily

be estimated, we focus on the second part
nc∏
i=1

pMi(ti) in

the rest of the proof.

A.3. Proving the Lemma

Now we consider the lemma of interest relating the linear-
chain Markov sequence model to the cyclic model. We re-
state the lemma here:

Lemma. Let S = {x(tc)|tc ∈ T M1 × . . .× T Mnc}.
Then,

nc∏
i=1

pMi(ti) =
pNcyclK

(x = x(t))

pNcyclK
(x ∈ S)

.

Our proof first shows how to chain together sentences in
a corpus, and then applies the cyclic Markov sequence
model.

Concatenating sentences Consider a corpus of c sen-
tences x(tc) = (t1, . . . , tnc) (of lengths (M1, . . . ,Mc))
independently drawn from the above model. As above,
we can use a mapping x of t to XN+K , where:
N = K +M1 + . . .+K +Mnc , by adding 〈S〉 tokens at
the beginning and end of the corpus and between adjacent
sentences:

x(t1, . . . , tnc) = (4)(
〈S〉, . . . , 〈S〉︸ ︷︷ ︸

×K

, t11, . . . , t
1
M1
, 〈S〉, . . . , 〈S〉︸ ︷︷ ︸

×K

, t21,

. . . , tcMc
, 〈S〉, . . . , 〈S〉︸ ︷︷ ︸

×K

)

Let us first consider the base case where c = 2. From
Equations 1 and 3, we get that:

∀j ∈ {1, 2} pMj (tj) ∝ pMj+2K
seqK (x(tj))

∝ exp(

Mj+K∑
i=1

K∑
l=1

θlx(tj)i,x(tj)i+l
)

t1 t2 <S> <S> s1 s2 <S><S> <S> <S>

t1 t2 <S> <S><S> <S>

<S> <S> s1 s2 <S> <S>

Figure 4. Concatenating sentences t1 and t2

Additionally, we have by construction:

∀l ∈ [1,K], x(t1)M1+K+l = x(t2)l

= x(t1, t2)M1+K+l

= 〈S〉

A Fast Variational Approach for Learning Markov Random Field Language Models

Hence:
M1+M2+2K∑

i=1

∑
l=1K

θlx(t1,t2)i,x(t1,t2)i+l
=

M1+K∑
i=1

∑
l=1K

θlx(t1)i,x(t1)i+l

+

M2+K∑
j=1

∑
l=1K

θlx(t2)j ,x(t2)j+l

In other words:

pM1(t1)pM2(t2) ∝ exp(

M1+K∑
i=1

K∑
l=1

θlx(t1)i,x(t1)i+l
)

× exp(

M2+K∑
i=1

K∑
l=1

θlx(t2)i,x(t2)i+l
)

∝ exp(

M1+M2+2K∑
i=1

∑
l=1K

θlx(t1,t2)i,x(t1,t2)i+l
)

∝ pM1+M2+3K
seqK

(x = x(t1, t2))

By induction, we get that:
nc∏
i=1

pMi(ti) ∝ pN+K
seqK

(x = x(t))

Now, let SN = {x(t)|t ∈ T M1 × . . .× T Mc}. Since the
text model is defined for x ∈ SN , by normalization, it then
follows that:

nc∏
i=1

pMi(ti) =
pN+K

seqK
(x = x(t))

pN+K
seqK (x ∈ SN)

= pN+K
seqK

(x = x(t)|x ∈ SN) (5)

Using a cyclic model Finally, ∀x ∈ SN , we have that
∀l ∈ [1,K], xl = xN+l = 〈S〉. According to Equations 1
and 2, this means that:

∀x ∈ SN , pN+K
seqK

(x) ∝ pNcyclK
(x)

Hence:
nc∏
i=1

pMi(ti) ∝ pNcyclK
(x)

Which by normalization gives us:

nc∏
i=1

pMi(ti) =
pNcyclK

(x = x(t))

pNcyclK
(x ∈ SN)

= pNcyclK
(x = x(t)|x ∈ SN) (6)

Which proves the lemma.

B. Implementation Details
Synthetic data generation The synthetic data used to
obtain the results presented in Figure 5 consists of a se-
quence of 12 tokens sampled uniformly at random from
T = {a,b,c,d}. For K = 2 this gives a sequence of the
form:

〈S〉 〈S〉 a b c d b a b d c b a c 〈S〉 〈S〉

Language modelling experiments In our implementa-
tion of the inner loop of the algorithm (Algorithm 1 of the
main paper), we use LBFGS to find the optimal value of
δ. However, as mentioned in Section 4, the inner loop does
not need to be run to optimality to find an ascent direction.

The LBL model in Figure 6 was trained using SGD on
minibatches of size 64. The learning rate was initialized
at 0.1, and halved any time the error validation went up.

The second model presented in Table 1 (MRF SGD) was
trained by running SGD on the model pseudo-likelihood,
with minibatches of size 100. The learning rate was initial-

ized at 0.025 and decayed as
1

t0.4
.

Sequence tagger features For part-of-speech tagging
experiments we make use of two feature functions
g(ti, ti+l) and f(ti, wi+m). The tag-tag function g simply
consists of indicator features for all possible pairs of tags.
The feature function f(ti, wi+m) conjoins an indicator of
the tag ti with surface-form features including:

• An indicator for the word wi+m itself.

• Prefixes and suffixes of wi+m up to length 4.

When m = 0, i.e. the potential with the tag directly above
a word, the tag is further conjoined with a standard set of
morphology features including:

• Is wi completely upper case?

• Is the first letter of wi upper case?

• Does wi end with ‘s’?

• Is the first letter of wi upper case and it ends with ‘s’?

• Is wi completely upper-case and it end with ‘S’?

• Does wi contain a digit?

• Is wi all digits?

• Does wi contain a hyphen?

