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Abstract
We show that the widely used Kendall tau corre-
lation coefficient, and the related Mallows ker-
nel, are positive definite kernels for permuta-
tions. They offer computationally attractive
alternatives to more complex kernels on the
symmetric group to learn from rankings, or to
learn to rank. We show how to extend the
Kendall kernel to partial rankings or rankings
with uncertainty, and demonstrate promising re-
sults on high-dimensional classification prob-
lems in biomedical applications.

1. Introduction
Kernel-based algorithms have been proved successful in
numerous applications and enjoy great popularity in the
machine learning community (Cortes & Vapnik, 1995;
Vapnik, 1998; Schölkopf & Smola, 2002; Shawe-Taylor &
Cristianini, 2004). The essential idea behind these meth-
ods is to define a positive definite kernel K : X × X → R
over an input space X , which can often be thought of as a
measure of similarity, and which implicitly defines an em-
bedding Φ : X → F of the input space X to a Hilbert
space F in which the kernel becomes an inner product:

∀x,x′ ∈ X , K(x,x′) = 〈Φ(x),Φ(x′)〉F .

Kernel methods operate implicitly in the Hilbert space F ,
which can be high-dimensional, by only manipulating the
kernel function between data. This kernel trick is particu-
larly interesting when K(x,x′) is inexpensive to evaluate,
compared to Φ(x) and Φ(x′). In particular, kernel methods
have found many applications where the input data are dis-
crete or structured, such as strings or graphs, thanks to the
development of numerous kernels for these data (Haussler,
1999; Kashima et al., 2003; Gärtner et al., 2004; Shawe-
Taylor & Cristianini, 2004; Schölkopf et al., 2004; Vish-
wanathan et al., 2009).
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In this paper, we are interested in developing and study-
ing positive definite kernels for a particular type of discrete
data, namely, permutations. A permutation is a 1-to-1 map-
ping from a finite set into itself. Permutations are ubiq-
uitous in many applications involving rankings or partial
rankings, such as analyzing data describing the preferences
or votes of a population (Diaconis, 1988), learning or track-
ing correspondances between sets of objects (Huang et al.,
2009), or estimating a single ranking that best represents a
collection of individual rankings (Ailon et al., 2008). An-
other potentially rich source of ranking data comes from
real-valued vectors in which the relative order of the values
of multiple features is more important than their absolute
magnitude. For example, in the case of high-dimensional
gene expression data, Geman et al. (2004) showed that sim-
ple classifiers based on binary comparisons between the
expression of different genes in a sample show competi-
tive prediction accuracy with much more complex classi-
fiers built on the quantitative gene expression levels, a line
of thoughts that have been further investigated by Tan et al.
(2005); Xu et al. (2005); Lin et al. (2009). In these ap-
proaches, a n-dimensional vector is thus first transformed
into a permutation by sorting its entries, and a classifier is
trained on the resulting permutations.

Working with permutations is, however, computationally
challenging. There are n! permutations of n items, sug-
gesting that various simplifications or approximations are
necessary in pursuit of efficient algorithms to analyze or
learn permutations. Such simplifications include for exam-
ple, reducing ranks to a series of binary decisions (Ailon
et al., 2008; Balcan et al., 2008), or estimating a paramet-
ric distribution over permutations (Lebanon & Mao, 2008;
Helmbold & Warmuth, 2009; Huang et al., 2009).

In this context, it is surprising that relatively little atten-
tion has been paid to the problem of defining positive def-
inite kernels between permutations, which could pave the
way to the use of computationally efficient kernel meth-
ods in problems involving permutations. A notable ex-
ception is the work of Kondor (2008); Kondor & Barbosa
(2010), who exploit the fact that the set of permutations
endowed with the composition operation forms a group,
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called the symmetric group (Diaconis, 1988; Huang et al.,
2009), on which right-invariant positive definite kernels are
fully characterized by Bochner’s theorem (Kondor, 2008;
Fukumizu et al., 2008). They derive interesting kernels,
such as a diffusion kernel for rankings or partial rankings,
which however remains prohibitive to compute when the
number of ranked items is large.

In this paper we take one step further towards the devel-
opment of computationally attractive kernels for permuta-
tions, by noticing that two widely-used and computation-
ally efficient measures of similarity between permutations,
the Kendall tau correlation coefficient and the Mallows ker-
nel, are positive definite. These kernels compare two per-
mutations of n items in terms of

(
n
2

)
pairwise comparisons,

but can be computed in O(n log n), paving the way to the
use of kernel methods for problems involving rankings or
permutations of a large number of items. In particular, the
feature space of the Kendall and Mallows kernels is pre-
cisely the space of binary pairwise comparisons defined by
Geman et al. (2004), and we show that instead of selecting
a few features in this space as the Top Scoring Pairs (TSP)-
family classifiers do (Geman et al., 2004; Tan et al., 2005;
Xu et al., 2005; Lin et al., 2009), one can simply work with
all pairs with the kernel trick. We further study how the
new kernels can be extended to partial rankings, and to
uncertain rankings which is particularly relevant when the
rankings are obtained by sorting a real-valued vector where
ties or near-ties occur. Finally, we demonstrate promising
results of the underlying kernels on a large benchmark of
high-dimensional biomedical data classification problems.

2. The Kendall and Mallows Kernel for Total
Rankings

Let us first fix some notations. Given a list of n items
{x1, x2, . . . , xn}, a total ranking is a strict ordering of the
n items of the form

xi1 � xi2 � · · · � xin , (1)

where {i1, . . . , in} are distinct indices in {1, 2, . . . , n} =:
[1, n]. Each total ranking can equivalently be represented
by a permutation σ : [1, n] → [1, n] such that σ(i) 6= σ(j)
for i 6= j, and σ(i) = j indicates that a ranker assigns rank
j to item i. For example, the ranking x2 � x4 � x3 � x1

is associated to the permutation σ =

(
1 2 3 4
1 4 2 3

)
,

meaning σ(1) = 1, σ(2) = 4, etc.. There are n! differ-
ent total rankings, and we denote by Sn the set of all per-
mutations over n items. Endowed with the composition
operation σ1σ2(i) = σ1(σ2(i)), Sn is a group called the
symmetric group.

Given two permutations σ, σ′ ∈ Sn, the number of concor-

dant and discordant pairs between σ and σ′ are respectively

nc(σ, σ
′) =

∑
i<j

[
1{σ(i)<σ(j)}1{σ′(i)<σ′(j)}

+ 1{σ(i)>σ(j)}1{σ′(i)>σ′(j)}
]
,

nd(σ, σ
′) =

∑
i<j

[
1{σ(i)<σ(j)}1{σ′(i)>σ′(j)}

+ 1{σ(i)>σ(j)}1{σ′(i)<σ′(j)}
]
.

As their names suggest, nc(σ, σ′) and nd(σ, σ′) count how
many pairs of items are respectively in the same or opposite
order in the two rankings σ and σ′. nd is frequently used
as a distance between permutations, often under the name
Kendall tau distance, and underlies two popular similarity
measures between permutations:

• The Mallows kernel defined for any λ ≥ 0 by

Kλ
M (σ, σ′) = e−λnd(σ,σ′) , (2)

• The Kendall kernel defined as

Kτ (σ, σ′) =
nc(σ, σ

′)− nd(σ, σ′)(
n
2

) . (3)

The Mallows kernel plays a role on the symmetric group
similar to the Gaussian kernel on Euclidean space, for ex-
ample for statistical modeling of permutations (Mallows,
1957; Critchlow, 1985; Fligner & Verducci, 1986; Meilă
et al., 2007) or nonparametric smoothing (Lebanon & Mao,
2008), and the Kendall kernel (Kendall, 1938; 1948) is
probably the most widely used measure of rank correlation
coefficient. In spite of their pervasiveness, to the best of our
knowledge the following property has been overlooked:
Theorem 1. The Mallows kernel Kλ

M , for any λ ≥ 0, and
the Kendall kernel Kτ are positive definite.

Proof. Consider the mapping Φ : Sn → R(n
2) defined by

Φ(σ) =

(
1√(
n
2

) (1{σ(i)>σ(j)} − 1{σ(i)<σ(j)})

)
1≤i<j≤n

.

Then one immediately sees that, for any σ, σ′ ∈ Sn,

Kτ (σ, σ′) = Φ(σ)>Φ(σ′) ,

showing that Kτ is positive definite, and that

‖Φ(σ)− Φ(σ′)‖2 = Kτ (σ, σ) +Kτ (σ′, σ′)− 2Kτ (σ, σ′)

= 1 + 1− 2
(nc(σ, σ′)− nd(σ, σ′)(

n
2

) )
=

4(
n
2

)nd(σ, σ′) ,
showing that nd is conditionally positive definite (Schoen-
berg, 1938) and therefore that Kλ

M is positive definite for
all λ ≥ 0.
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Although the Kendall and Mallows kernels correspond
respectively to a linear and Gaussian kernel on a

(
n
2

)
-

dimensional embedding of Sn such that they can in par-
ticular be computed in O(n2) time by a naive implemen-
tation of pair-by-pair comparison, it is interesting to notice
that more efficient algorithms based on divide-and-conquer
strategy can significantly speed up the computation, up to
O(n log n) using a technique based on Merge Sort algo-
rithm (Knight, 1966). Computing in O(n log n) a kernel
corresponding to a O(n2)-dimensional embedding of Sn is
a typical example of the kernel trick, which allows to scale
kernel methods to larger values of n than what would be
possible for methods working with the explicit embedding.

3. Extension to Partial Rankings
In this section we show how the Kendall kernel Kτ can
efficiently be adapted to partial rankings, a situation fre-
quently encountered in practice. For example, in a movie
recommendation system, each user only grades a subset of
movies that he has watched according to personal prefer-
ence. As another example, in a chess tournament, each
match results in an relative ordering between two contes-
tants, and one would like to find globally a single ranking
that best represents the large collection of binary outcomes.

As opposed to a total ranking (1), a partial ranking is in gen-
eral of the form X1 � X2 � · · · � Xk, where X1, . . . , Xk

are k disjoint subsets of n items {x1, . . . , xn}. For exam-
ple, {x2, x4} � x6 � {x3, x8} in a social survey could
represent the fact that items 2 and 4 are ranked higher by
an interviewee than item 6, which itself is ranked higher
than items 3 and 8. Note that it is uninformative of the
relative order of items 2 and 4, nor of how item 1 is rated.

To extend any kernel K over Sn to a kernel over the set
of partial rankings, we represent a partial ranking by the
set R ⊂ Sn of permutations which are compatible with all
partial orders described by the partial ranking, and adopt
the convolution kernel between two partial rankings R and
R′ as

K(R,R′) =
1

|R||R′|
∑
σ∈R

∑
σ′∈R′

K(σ, σ′). (4)

As a convolution kernel, it is positive definite as long as
K is positive definite (Haussler, 1999). However, a naive
implementation to compute (4) typically requires O((n −
k)!(n−k′)!) operations when the number of observed items
inR,R′ is respectively k and k′, which can quickly become
prohibitive.

We now show that we can circumvent the computational
burden of naively implementing (4) with the Kendall kernel
on at least two particular cases of partial rankings:

a) An interleaving partial ranking is of the form

xi1 � xi2 � · · · � xik , k ≤ n,

where we have a total ranking for k out of n items. This
type of partial ranking is frequently encountered in real
life, for example if each person is able to vote for only a
few candidates in an election example, or in case there ex-
ist interleaved inaccessible values. The interleaving partial
ranking corresponds to the set of permutations compatible
with it:

Ai1,...,ik = {σ ∈ Sn|σ(ia) > σ(ib) if a < b, a, b ∈ [1, k]}.
(5)

b) A top-k partial ranking is of the form

xi1 � xi2 � · · · � xik � Xrest, k ≤ n,

where we have a total ranking for k out of n items and also
know that these k items are ranked higher than all the other
items. For example, the top k hits returned by a search
engine leads to a top k partial ranking, or so does a survey
on top k favorite flavors of ice cream. The top-k partial
ranking corresponds to the set of compatible permutations

Bi1,...,ik = {σ ∈ Sn|σ(ia) = n+ 1− a, a ∈ [1, k]}. (6)

Indeed, the following holds:

Theorem 2. The Kendall kernel between two interleaving
partial rankings of respectively k andm observed items, or
between a top-k partial ranking and a top-m partial rank-
ing, of form (4) can be computed in O(k log k + m logm)
operations.

Proof. We prove this theorem by showing explicitly how
to compute the Kendall kernel between two partial rank-
ings of type (5) or (6) in supplementary material. Checking
the correctness of the algorithms is tedious but easy once
we notice that most of the additive terms in the Kendall
kernel for partial rankings cancel each other out because
of the symmetry of the compatible set of full permuta-
tions. This also means that such a fast algorithm is not
likely to exist for the Mallows kernel over partial rank-
ings taking form (4). Note that in both algorithms, the first
step is the computationally most expensive one, where we
need to identify the total ranking restricted to the observed
items in partial rankings. This can be achieved by any sort-
ing algorithm, leading the algorithms to time complexity
O(k log k +m logm) overall.

4. The Kendall Kernel for Quantitative
Vectors

When data to analyze are n-dimensional real-valued quan-
titative vectors, converting them to permutations in Sn by
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ranking their entries can be beneficial in cases where we
trust more the relative ordering of the values than their ab-
solute magnitudes. For example, an interesting line of work
in the analysis of gene expression data promotes the devel-
opment of classifiers built upon relative reversals of pair-
wise feature comparison, based on the observations that
gene expression measurements are subject to various mea-
surement errors such as technological biases and normal-
ization issues, while assessing whether a gene is more ex-
pressed than another gene is generally a more robust task
(Geman et al., 2004; Tan et al., 2005; Xu et al., 2005; Lin
et al., 2009). This suggests that the Kendall kernel can be
relevant for analyzing quantitative vectors as well. It now
takes the form of dot product as

Kτ (x,x′) = Φ(x)>Φ(x′) , (7)

where Φ : Rn → R(n
2) is defined for x = (x1, . . . , xn)

> ∈
Rn by

Φ(x) =

(
1√(
n
2

) (1{xi>xj} − 1{xi<xj})

)
1≤i<j≤n

. (8)

In this case, the interpretation of the Kendall kernel in terms
of concordant and discordant pairs (3) is obviously still
valid, with the caveats that in the presence of ties between
entries of x, say two coordinates i and j such that xi = xj ,
the tied pair {xi, xj} will be neither concordant nor discor-
dant. This implies in particular that if x has ties or so does
x′, then |Kτ (x,x′)| < 1 strictly. As for permutations, the
fast implementation of Kendall kernel also applies to quan-
titative vectors in O(n log n) time, even in the presence of
ties (Knight, 1966).

Feature mapping (8) is by construction very sensitive to the
presence of entry pairs that are “almost ties” but not “sheer
ties”. In fact, each entry of Φ(x) is, up to a normalization
constant, the Heaviside step function which takes discrete
values in {−1, 0,+1}, and thus can change abruptly even
when x changes slightly but reverses the order of two en-
tries whose values are close. We propose to make the map-
ping more robust by assuming a random noise ε added to x
and checking where Φ(x + ε) is, on average (similarly to,
e.g., Muandet et al., 2012). In other words, we consider a
smoother mapping Ψ : Rn → R(n

2) defined by

Ψ(x) = EΦ(x + ε), (9)

where ε is a n-dimensional random vector, and the corre-
sponding kernel

G (x,x′) = Ψ(x)>Ψ(x′) . (10)

Denoting x̃ := x + ε the randomly jittered vector, we de-
duce from (8) that Ψ is equivalently written as

Ψ(x) =

(
1√(
n
2

) (P (x̃i > x̃j)− P (x̃i < x̃j))

)
1≤i<j≤n

.

Depending on the noise distribution, various kernels are ob-
tained. In particular, assuming that ε ∼ (U [−a2 ,

a
2 ])n the

n-dimensional uniform noise of window size a centered at
0, the (i, j)-th entry of Ψ(x) for all i < j becomes

Ψij(x) =
1√(
n
2

)ga(xi − xj) , (11)

where

ga(t) :=


1 t ≥ a
2( ta )− ( ta )2 0 ≤ t ≤ a
2( ta ) + ( ta )2 −a ≤ t ≤ 0
−1 t ≤ −a

. (12)

ga is odd, continuous, piecewise quadratic between [−a, a]
and constant elsewhere at ±1, and thus can be viewed as
smoothed version of the Heaviside step function to com-
pare any two entries xi and xj from their difference xi−xj .

Although the kernel (10) can be an interesting alterna-
tive to the Kendall kernel (7), we unfortunately lose for
G the computational trick that allows to compute Kτ in
O(n log n). Specifically, we have two ways to compute G:

• Exact evaluation. The first alternative is to compute
explicitly the

(
n
2

)
-vector representation Ψ(x) in the

feature space by (11) and (12), and then take the dot
product to obtain G. The computational cost is there-
fore linear with the dimension of the feature space, i.e.
O(n2).

• Monte Carlo approximation. The second alter-
native requires the observation that G(x,x′) =
EΦ(x̃)>EΦ(x̃′) = EKτ (x̃, x̃′), where x̃ and x̃′ are
independently noise-perturbed versions of x and x′,
and we can thus approximate G by a D2-sample
mean:

GD(x,x′) =
1

D2

D∑
i=1

D∑
j=1

Kτ

(
x̃i, x̃′j

)
, (13)

where x̃1, . . . , x̃D are i.i.d. noisy versions of x, and
the same for x′. Since computing Kτ has com-
plexity O(n log n), the computational cost of GD is
O(D2n log n)

We note that the second alternative is faster to compute than
the first one as long as, up to constants, D2 < n/ log n,
and small values of D are thus favored. In this case, how-
ever, the approximation performance can be unappealing.
To better understand the trade-off between the two alterna-
tives, there is therefore a pressing need to understand how
large D should be to ensure that the approximation error
is not detrimental to learning with the approximate kernel
GD instead of G.
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For this purpose, let us consider for example the case where
the smoothed kernel G is used to train a Support Vector
Machine (SVM) from a training set D = {(xi, yi)}mi=1 ⊂
(Rn × {−1,+1})m, specifically to estimate a function
h(x) = w>Ψ(x) by solving

min
w

F (w) =
λ

2
‖w‖2 + R̂(w), (14)

where R̂(w) = 1
m

∑m
i=1 `(yiw

>Ψ(xi)) is the empirical
loss, with `(yiw>Ψ(xi)) = max(0, 1 − yiw>Ψ(xi)) the
hinge loss associated to the i-th point, λ the regulariza-
tion parameter. Now suppose that instead of training the
SVM with smoothed feature mapping on the original points
{Ψ(xi)}i=1,...,m, we first randomly jitter {xi}i=1,...,m at
each point D times, resulting in {x̃ji}i=1,...,m;j=1,...,D, and
then replace each Ψ(xi) by the D-sample empirical aver-
age of jittered points mapped by Φ into the feature space,
that is

ΨD(xi) :=
1

D

D∑
j=1

Φ(x̃ji ) .

Note that ΨD(xi)
>ΨD(xj) = GD(xi,xj), hence train-

ing a SVM with the Monte Carlo approximate GD in-
stead of exact version G is equivalent to solving (14)
with {ΨD(xi)}i=1,...,m in the hinge loss instead of
{Ψ(xi)}i=1,...,m. The following theorem quantifies the ap-
proximation performance in terms of objective function F .

Theorem 3. For any 0 ≤ δ ≤ 1, the solution ŵD of the
SVM trained with the Monte Carlo approximation (13) with
D random jittered samples for each training point satisfies,
with probability greater than 1− δ,

F (ŵD) ≤ min
w

F (w) +

√
8

λD

(
2 +

√
8 log

m

δ

)
.

The proof is left in supplementary material. It is known
that compared to the exact solution of (14), an O(m−1/2)-
approximate solution is sufficient to reach the optimal sta-
tistical accuracy (Bottou & Bousquet, 2008). This accu-
racy can be attained in our analysis when D = O(m/λ),
and since typically λ ∼ m−1/2 (Steinwart, 2005), this sug-
gests that it is sufficient to take D of order m3/2. Going
back to the comparison strategy of the two alternatives G
and GD, we see that the computational cost of comput-
ing the full m × m Gram matrix with the exact evalua-
tion is O(m2n2), while the cost of computing the approxi-
mate Gram matrix with D = O(m3/2) random samples is
O(m2D2n log n) = O(m5n log n). This shows that, up to
constants and logarithmic terms, the Monte Carlo approach
is interesting when m = o(n1/3), otherwise the exact eval-
uation using explicit computation in the feature space is
preferable.

5. Relationship to the Diffusion Kernel on Sn

It is interesting to relate the Mallows kernel (2) to the dif-
fusion kernel on symmetric group proposed by Kondor &
Barbosa (2010), which is the diffusion kernel (Kondor &
Lafferty, 2002) on the Cayley graph of Sn generated by ad-
jacent transpositions with left-multiplication. This graph,
illustrated for a specific case n = 4 in Figure 1, is de-
fined by G = (V, E) with V = Sn as vertices, and undi-
rected edge set E =

{
{σ, πσ} : σ ∈ Sn, π ∈ Q

}
, where

Q = {(i, i + 1)|i = 1, . . . , n − 1} the set of all adja-
cent transpositions. Note Q is symmetric in the sense that
π ∈ Q ⇔ π−1 ∈ Q, and the graph adjacency relation is a
right-invariant relation, that is σ ∼ σ′ ⇔ σ′σ−1 ∈ Q. The
corresponding graph Laplacian is the matrix ∆ with

∆σ,σ′ =

 1 if σ ∼ σ′
−(n− 1) if σ = σ′

0 otherwise
,

where n − 1 is the degree of vertex σ (number of edges
connected with vertex σ), and the diffusion kernel on Sn is
finally defined as

Kβ
dif(σ, σ

′) = [eβ∆]σ,σ′ (15)

for some diffusion parameter β ∈ R, where eβ∆ is the
matrix exponential. Kβ

dif is a right-invariant kernel on
the symmetric group (Kondor & Barbosa, 2010, Proposi-
tion 2), and we denote by κβdif the positive definite func-
tion induced by Kβ

dif such that Kβ
dif(σ, σ

′) = κβdif(σ
′σ−1).

Since it is straightforward that the Mallows kernel Kλ
M is

also right-invariant, we denote by κλM the positive defi-
nite function induced by the Mallows kernel Kλ

M such that
Kλ
M (σ, σ′) = κλM (σ′σ−1).

Figure 1. Cayley graph of S4, generated by the transpositions (1
2) in blue, (2 3) in green, and (3 4) in red.

Interestingly, the Mallows kernel has a similar interpreta-
tion. Indeed, it is well-known that the Kendall tau distance
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nd(σ, σ
′) is the minimum number of adjacent swaps re-

quired to bring σ to σ′, i.e. nd(σ, σ′) equals to the shortest
path distance on the Cayley graph, or simply written

nd(σ, σ
′) = dG(σ, σ′). (16)

Different from the diffusion kernel for which communica-
tion between permutations is a diffusion process over the
graph, the Mallows kernel Kλ

M = e−λnd = e−λdG con-
siders exclusively the shortest path over the graph when
expressing the similarity between permutations.

A notable advantage of the Mallows kernel over the diffu-
sion kernel is that the Mallows kernel enjoys faster eval-
uation. On one hand if data examples are total rankings,
i.e. σ, σ′ ∈ Sn, evaluating Kβ

dif(σ, σ
′) would require ex-

ponentiating a n!-dimensional Laplacian matrix by naive
implementation, and can reduce to exponentiating matrices
of smaller sizes by careful analysis in the Fourier space,
which still remains problematic if working dimension n
is large (Kondor & Barbosa, 2010). However, evaluating
Kλ
M (σ, σ′) only takes O(n log n) time. On the other hand

if data examples are partial ranking of size k � n, i.e.
R,R′ ⊂ Sn, and we take convolution kernel (4), the anal-
ysis of exploring the sparsity of the Fourier coefficients of
the group algebra of partial rankings R,R′ of size k re-
duces the evaluation of both the diffusion kernel and the
Mallows kernel to O((2k)2k+3) time, provided that the ex-
ponential kernel Fourier matrices [κ̂(µ)]≥[... ]n−k

are pre-
computed before any kernel evaluations take place (Kondor
& Barbosa, 2010, Theorem 13). To avoid notation over-
flow, we simply point out that the complexity bound should
be further refined if we additionally consider the sparsity of
the Fourier coefficients κ̂M (µ) for the Mallows kernel. In
fact, since κM (σ) depends only on the destination of the
ordered item pairs {(i, j)}i<j sent by permutation σ, the
Fourier coefficient κ̂M (µ) is zero whenever µC(n−2, 1, 1)
with respect to dominance order indexed by integer parti-
tion (Huang et al., 2009), regardless of k, which renders a
huge interest in terms of computational issue.

6. Experimental Results
Datasets. We investigate the performance of classifying
high-dimensional biomedical data, motivated by previous
work demonstrating the relevance of replacing numerical
features by pairwise comparisons in this context (Geman
et al., 2004; Tan et al., 2005; Xu et al., 2005; Lin et al.,
2009). For that purpose, we collected 10 datasets related to
human cancer research publicly available online (Li et al.,
2003; Schroeder et al., 2011; Shi et al., 2011), as summa-
rized in Table 1. The features are proteomic spectra rel-
ative intensities for the Ovarian Cancer dataset and gene
expression levels for all the others. The contrasting classes
are typically “Non-relapse v.s. Relapse” in terms of can-
cer prognosis, or “Normal v.s. Tumor” in terms of cancer

identification. The datasets have no missing values, except
the Breast Cancer 1 dataset for which we performed addi-
tional preprocessing to remove missing values as follows:
first we removed two samples (both labeled “relapse”) from
the training set that have around 10% and 45% of missing
gene values; next we discarded any gene whose value was
missing in at least one sample, amounting to a total of 3.5%
of all genes.

Methods. We compare the Kendall kernel to other stan-
dard kernels (linear, homogeneous 2nd-order polynomial
and Gaussian RBF with bandwidth set with “median
trick”), using SVM (with regularization parameter C) and
Kernel Fisher Discriminant (KFD, without tuning param-
eter) as classifiers. In addition, we include in the bench-
mark classifiers based on Top Scoring Pairs (TSP) (Geman
et al., 2004), namely (1-)TSP, k-TSP (Tan et al., 2005)1 and
APMV (all-pairs majority votes, i.e.

(
n
2

)
-TSP). Finally we

also test SVM with various kernels using as input only top
features selected by TSP (Shi et al., 2011).

In all experiments, each kernel is centered (on the train-
ing set) and scaled to unit norm in the feature space. For
KFD-based models, we add 10−3 on the diagonal of the
centered and scaled kernel matrix, as suggested by (Mika
et al., 1999). The Kendall kernel we use in practice is a soft
version to (7) in the sense that the extremes ±1 can still be
attained in the presence of ties, specifically we use

Kτ (x,x′) =
nc(x,x

′)− nd(x,x′)√
(n0 − n1)(n0 − n2)

,

where n0 =
(
n
2

)
and n1, n2 are the number of tied pairs in

x,x′ respectively.

Except for three datasets that are split into training and test
sets, in which case we report the performance on the test
set, we perform a 5-fold cross-validation repeated 10 times
and report the mean performance over the 5 × 10 = 50
splits to evaluate the performance of the different meth-
ods. In addition, on each training set, an internal 5-fold
cross-validation is performed to tune parameters, namely
the C parameter of SVM-based models optimized over a
grid ranging from 10−2 to 103 in log scale, and the num-
ber k of TSP in case of feature selection (ranging from 1 to
5000 in log scale).

Results. Table 2 and Figure 2 (Left) summarize the per-
formance of each model across the datasets. A SVM with
the Kendall kernel achieves the highest average predic-
tion accuracy overall (79.39%), followed by a linear SVM

1While the original k-TSP algorithm selects only top k disjoint
pairs with the constraint that k is less than 10, we do not restrict
ourselves to any of these two conditions since we consider k-TSP
in this study essentially a feature pair scoring algorithm.
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Table 1. Information of biomedial datasets.

Dataset No. of features No. of samples (training/test) Reference
C1 C2

Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse) (van ’t Veer et al., 2002)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse) (Desmedt et al., 2007)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis) (Wang et al., 2005)

Colon Tumor 2000 40 (Tumor) 22 (Normal) (Alon et al., 1999)
Lung Adenocarcinoma 1 7129 24 (Poor Prognosis) 62 (Good Prognosis) (Beer et al., 2002)

Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM) (Gordon et al., 2002)
Medulloblastoma 7129 39 (Failure) 21 (Survivor) (Pomeroy et al., 2002)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal) (Petricoin et al., 2002)

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor) (Singh et al., 2002)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse) (Singh et al., 2002)

Table 2. Prediction accuracy (%) of different models across datasets.

Average BC1 BC2 BC3 CT LA1 LC2 MB OC PC1 PC2
SVMkdtALL 79.39 78.95 71.31 67.34 85.78 70.98 97.99 63.67 99.48 100 58.4

SVMlinearTOP 77.16 84.21 69.29 67.11 84.19 63.92 97.32 65.17 99.41 85.29 55.7
SVMlinearALL 76.09 78.95 71.67 64.27 86.73 70.23 97.99 62.67 99.64 73.53 55.17

SVMkdtTOP 75.5 52.63 70.61 65.81 85.46 67.7 97.99 58.33 99.92 97.06 59.47
SVMpolyALL 74.54 68.42 71.62 63.66 78.43 70.53 98.66 61.17 99.28 79.41 54.23
KFDkdtALL 74.33 63.16 59.41 67.22 85.46 59.08 99.33 59.33 98.73 97.06 54.57

kTSP 74.03 57.89 58.22 64.47 87.23 61.7 97.99 56 99.92 100 56.83
SVMpolyTOP 73.99 63.16 69.44 66.26 79.14 65.98 99.33 60 99.21 88.24 49.1
KFDlinearALL 71.81 63.16 60.43 67.52 77.26 57.24 97.99 59.5 100 73.53 61.43
KFDpolyALL 71.39 63.16 60.48 67.38 75.1 58.52 97.99 60.33 100 73.53 57.43

TSP 69.71 68.42 49.58 57.8 85.61 58.96 95.97 52.67 99.8 76.47 51.83
SVMrbfALL 69.31 63.16 71.41 65.87 81.18 70.84 93.96 63.83 98.85 26.47 57.5
KFDrbfALL 66.39 63.16 60.48 66.03 83.71 58.73 97.32 59.67 98.46 26.47 49.87

APMV 61.91 84.21 65.98 33.96 64.49 33.6 89.93 42.17 85.19 73.53 46

trained on a subset of features selected from the top scoring
pairs (77.16%) and a standard linear SVM (76.09%). The
SVM with Kendall kernel outperforms all the other meth-
ods at a P-value of 0.07 according to a Wilcoxon rank test.
We note that even though models based on KFD generally
are less accurate than those based on SVM, the relative or-
der of the different kernels is consistent between KFD and
SVM, adding evidence that the Kendall kernel provides an
interesting alternative to other kernels in this context. The
performance of TSP and k-TSP, based on majority vote
rules, are comparatively worse than those of SVM using
the same features, as already observed by Shi et al. (2011).

Figure 2 further shows how the performance of different
kernels depends on the choice of the C parameter or the
SVM (Middle), and on the number of features used (Right),
on some representative datasets. We observe that compared
to other kernels, a SVM with the Kendall kernel is rela-
tively insensitive to hyper-parameter C especially when C
is large, which corresponds to a hard-margin SVM. This
may explain in part the success of SVM in this setting,
since the risk of choosing a bad C during training is re-
duced. Regarding the number of features used in case of
feature selection, we notice that it does not seem to be ben-
eficial to perform feature selection in this problem, explain-

ing why the Kendall kernel which uses all pairwise compar-
isons between features outperforms other kernels restricted
to a subset of these pairs.

Finally, as a proof of concept we empirically compare on
one dataset the smooth alternative (10) and its Monte Carlo
approximate (13) with the original Kendall kernel. Figure
3 shows how the performance varies with the amount of
noise added to the samples (Left), and how the performance
varies with the number of samples in the Monte Carlo
scheme for a given amount of noise (Right). It confirms that
the smooth alternative (10) can improve the performance of
the Kendall kernel, and that the amount of noise (window
size) should be considered as a parameter of the kernel to
be optimized. Although the D2-sample Monte Carlo ap-
proximate kernel (13) mainly serves as a fast estimate to the
exact evaluation of (10), it shows that the idea of jittered in-
put with specific noise can also bring a tempting benefit for
data analysis with Kendall kernel, even when D is small.
This also justifies the motivation of our proposed smooth
alternative (10). Last but not least, despite the fact that the
convergence rate of D2-sample Monte Carlo approximate
to the exact kernel evaluation is guaranteed by Theorem 3,
experiments show that the convergence in practice is typ-
ically faster than the theoretical bound, and even faster in
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Figure 2. Left: Model performance comparison (ordered by decreasing average accuracy across datasets). Middle: Sensitivity of kernel
SVMs to C parameter on the Breast Cancer 1 dataset. Right: Impact of TSP feature selection on the Prostate Cancer 1 dataset. (Special
marks are returned by cross-validation.)
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Figure 3. Left: Empirical performance of smoothed alternative to Kendall kernel on the Medulloblastoma dataset. Right: Empirical
convergence of Monte Carlo approximate at the fixed window size attaining maximum underlying accuracy from the left plot.

case that the window size a is small. This is due to the fact
that the convergence rate is also dependent of the observed
data distribution in the input space, for which we have not
made any specific assumption in our analysis.

7. Conclusion
Based on the observation that the classical Kendall tau cor-
relation between total rankings is a positive definite kernel,
we presented some extensions and applications pertaining
to learning with the Kendall kernel and the related Mal-
lows kernel. We showed that both kernels can be evaluated
efficiently in O(n log n) time, and that the Kendall kernel
can be extended to partial rankings containing k items out
of n in O(k log k) time. When permutations are obtained

by sorting real-valued vectors, we proposed an extension
of the Kendall kernel based on random perturbations of
the input vector to increase its robustness to small varia-
tions, and discussed two possible algorithms to compute it.
We further highlighted a connection between the fast Mal-
low kernel and the diffusion kernel of Kondor & Barbosa
(2010). We also reported promising experimental results on
biomedical data demonstrating that for highly noisy data,
the Kendall kernel is competitive or even outperforms other
state-of-the-art kernels. We leave for future work further
applications of kernel methods to permutations with these
kernels, such as clustering of rankings with kernel k-means
as an alternative to existing techniques based on mixtures
of Mallows models.
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