
BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization

Tyler B. Johnson TBJOHNS@WASHINGTON.EDU
Carlos Guestrin GUESTRIN@CS.WASHINGTON.EDU

University of Washington, Seattle, WA 98195, USA

Abstract
By reducing optimization to a sequence of small
subproblems, working set methods achieve fast
convergence times for many challenging prob-
lems. Despite excellent performance, theoret-
ical understanding of working sets is limited,
and implementations often resort to heuristics to
determine subproblem size, makeup, and stop-
ping criteria. We propose BLITZ, a fast work-
ing set algorithm accompanied by useful guaran-
tees. Making no assumptions on data, our theory
relates subproblem size to progress toward con-
vergence. This result motivates methods for op-
timizing algorithmic parameters and discarding
irrelevant variables as iterations progress. Ap-
plied to ‘1-regularized learning, BLITZ convinc-
ingly outperforms existing solvers in sequential,
limited-memory, and distributed settings. BLITZ
is not specific to ‘1-regularized learning, making
the algorithm relevant to many applications in-
volving sparsity or constraints.

1. Introduction
With user-specific features for recommendation, n-gram
phrases in text, or high-order transformations for feature
engineering, many learning problems involve large num-
bers of features. In these cases, ‘1 regularization is a popu-
lar tool, as it biases learning toward sparse solutions. Spar-
sity offers many advantages, including reduced resources
needed at test time, more interpretable models, and statis-
tical efficiency, as the feature space may increase exponen-
tially with sample size (Ng, 2004; Wainwright, 2009).

Unfortunately, convergence times for ‘1-regularized loss
minimization tend to grow linearly with the number of fea-
tures. For faster solutions, recent works have considered
parallel algorithms (Boyd et al., 2011; Bradley et al., 2011;

Proceedings of the 32 nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Fercoq & Richtárik, 2013). Despite parallel speedups,
these algorithms in their basic form share a significant in-
efficiency: equal priority is assigned to all features. Due to
sparsity, most features are instead irrelevant to the solution!

We propose BLITZ, a general optimization algorithm that
prioritizes resources on important parts of the problem. For
‘1-regularized learning, BLITZ solves a sequence of sub-
problems restricted to small subsets of features using an ex-
isting solver, converging quickly to the original problem’s
solution. Known as a working set method, this concept is
not new. GLMNET (Friedman et al., 2010) and LIBLIN-
EAR (Yuan et al., 2012), two libraries for ‘1-regularized
learning, prioritize computation with working set heuris-
tics. More broadly, working sets have been applied suc-
cessfully to a diverse set of optimization problems involv-
ing sparsity or constraints; see Fan et al. (2005), Tsochan-
taridis et al. (2005), and Kim & Park (2008) as examples.

Given the practical success of working set methods, the-
oretical understanding of these algorithms is surprisingly
limited. How to choose a subproblem, how large it should
be, and when it should terminate are questions inadequately
answered by existing theory. We present novel analysis to
offer such perspective. Without assumptions on data, our
theory explains how to choose working sets to guarantee a
desired amount of progress toward convergence. This mo-
tivates methods for eliminating irrelevant variables and op-
timizing algorithmic parameters, making BLITZ’s choices
of subproblem size, variables, and stopping criteria more
principled and robust than previous approaches allow.

In practice, our theoretical insights lead to very fast conver-
gence times for ‘1-regularized learning. In the sequential
setting, BLITZ outperforms solvers such as GLMNET and
LIBLINEAR, making BLITZ one of the fastest algorithms
for high dimensional lasso and sparse logistic regression on
a single machine. We then show additional gains for BLITZ
in limited-memory and distributed regimes. By considering
data in subsets, BLITZ prioritizes not only computation but
also memory and bandwidth usage, directly targeting I/O
and communication bottlenecks for problems at scale.

Importantly, BLITZ directly extends to objectives other

BLITZ

Algorithm 1 Common Working Set Algorithm
initialize x0 2 Rn
for t = 1; 2; : : : until converged do

Choose �t 2 R
Ct fhj : hj(xt�1) � �t _ hj(xt�1) = 0g
xt argmin f(x) s:t: hj(x) � 0 for all hj 2 Ct

end for
return x

than ‘1-regularized loss minimization. Given the perfor-
mance of BLITZ for this well-studied application, an in-
triguing open question is whether similar performance is
achievable for additional objectives.

In summary of our contributions, we propose BLITZ, a
working set algorithm that:

� Selects theoretically justified subproblems to maxi-
mize guaranteed progress toward convergence.

� Applies theoretical analysis to automatically tune
algorithmic parameters and discard irrelevant con-
straints as the algorithm runs.

� Achieves very fast convergence times when applied to
‘1-regularized learning in a variety of settings.

� Provides a novel proof path for analyzing working set
methods for sparse or constrained optimization.

2. The BLITZ Algorithm
In this section, we introduce BLITZ, including convergence
analysis and numerical experiments examining our bounds.

2.1. Problem Formulation

We consider the convex problem

minimize f(x)
s:t: hj(x) � 0 j = 1; : : : ;m ;

(P1)

where x 2 Rn, and hj is convex for all j. We assume f
is -strongly convex, and we denote (P1)’s solution by x?.
We define the feasible region

D = fx : hj(x) � 0 for all j = 1; : : : ;mg : (1)

We focus on instances of (P1) with large m. While not ob-
vious, many unconstrained problems involving sparsity are
instances of (P1), as sparsity often appears as constraints in
a problem’s dual (see Section 3 or Bach et al. (2012)).

Define the set of active constraints at x?:

C? = fhj : hj(x
?) = 0g : (2)

In addition to (P1), x? solves the modified problem

minimize f(x)
s:t: hj(x) � 0 for all hj 2 C? : (P2)

Algorithm 2 BLITZ

initialize x0 argmin f(x) and y0 2 D
for t = 1; 2; : : : until converged do

Compute extreme feasible point on segment [x;y]:
�t max f� 2 [0; 1] : �xt�1 + (1� �)yt�1 2 Dg
yt �txt�1 + (1� �t)yt�1

Select constraints with boundaries close to y:
Choose �t > 0
Ct fhj : dist(hj ;yt) � �t _ hj(xt�1) = 0g
Solve subproblem subject to selected constraints:
xt argmin f(x) s:t: hj(x) � 0 for all hj 2 Ct

end for
return x

Figure 1. BLITZ Illustration. At iteration 1, C = fh1g. At it-
eration 2, C will include both h1 and h2. y �x + (1 � �)y
updates y to be the extreme feasible point on segment [x;y].

In other words, constraints hj for which hj =2 C? have no
effect on x?. Often when m is large, jC?j � m. Given C?,
(P1) could be solved extremely efficiently by solving (P2).

Since C? is unknown, algorithms known as working set al-
gorithms instead solve (P1) by minimizing f subject to a
sequence of small constraint sets C1; C2; : : : until CT � C?
at which point the algorithm converges. Algorithm 1 is a
simple working set method. At each iteration, C includes
constraints active or most violated at the previous subprob-
lem solution x. (Note constraints may later exit C.) While
effective in practice, except for guaranteed convergence,
we know of no theoretical guarantees for Algorithm 1. Im-
proving upon Algorithm 1 in both theory and practice is an
important problem this work begins to address.

2.2. BLITZ Algorithm Overview

BLITZ is defined in Algorithm 2. x is initialized as
the unconstrained minimizer of f (unique due to strong
convexity), while y is a point in D. We update y via
y �x + (1� �)y, where � is the largest coefficient in

BLITZ

[0; 1] such that y remains in D. Constraints are prioritized
according to the Euclidean distance

dist(hj ;y) = inf
z :hj(z)=0

kz� yk2 ; (3)

where constraints with boundaries closest to y receive
highest priority. Often (3) can be computed in closed
form (and often lower bounded for more complex hj), and
we include examples for doing so in supplementary mate-
rial. A constraint hj is included in the working set C if
(i.) dist(hj ;y) is less than a threshold � , or (ii.) hj(x) = 0,
meaning hj is active at x. � controls the size of each sub-
problem. Upon determining C, x is set to the minimizer of
f subject only to constraints in C. BLITZ reaches optimal-
ity when x no longer violates any constraints.

Before considering analysis, we can observe two intuitive
advantages Algorithm 2 has over Algorithm 1:

� Scale invariance: Consider hj(x) =
P
i xi. In this

case, hj and hk = 100hj are effectively the same con-
straint. However, in Algorithm 1, hk may be included
in C when hj is not. BLITZ is invariant to this scaling.

� Feasibility regularization: BLITZ chooses constraints
C that are close to a feasible point y or tight at x. This
ensures both f(y) decreases and f(x) increases dur-
ing an iteration. Algorithm 1 chooses constraints that
are active or most violated by x, which only ensures
f(x) increases. By using y to choose C, BLITZ com-
pensates for constraints that are greatly violated by x.

2.3. Convergence Analysis

We now analyze the convergence of BLITZ. For now, we
assume each iteration’s subproblem is solved exactly. All
proofs are provided in supplementary material.

For all iterations t, since yt 2 D and xt minimizes f sub-
ject to a subset of constraints, we have

f(xt) � f(x?) � f(yt) : (4)

Thus, we may define an optimality gap

�t = f(yt)� f(xt) � f(yt)� f(x?) : (5)

A strength of BLITZ is that both f(yt) and f(xt) converge
monotonically to f(x?). At each iteration, substantial im-
provement must be made in f(yt), f(xt), or both. This is
the intuition of our first theorem:

Theorem 2.1 (Convergence Progress at Iteration t). Let �t

and �t+1 be the optimality gaps after iterations t and t+1
of Algorithm 2. Then for all t � 1 if the algorithm does not
converge at iteration t+ 1, we have

�t+1 � �t �
�

2 �

2
t �2

t

�1=3
: (6)

2 4 6 8 10 12 14

Iteration t

10�2

10�1

100

�
t
/

�
0

0.8 0.85 0.9 0.95 1.0

r

10�2

10�1

100

�
t
/

�
0

(a) Fixed r (b) Fixed # Iterations

Figure 2. Theory vs. Practice. (a) For r = 0:95, 15 trials of
observed optimality gap and bound (Corollary 2.2) vs. iteration.
(b) After 2 iterations, optimality gap and bound (Corollary 2.2)
vs. decrease ratio r. Convergence is faster than theory guaran-
tees, but theory and experiments agree on the scaling of � and �
(plotted appropriately, trends are approximately linear).

If � is held constant for all t, Algorithm 2 converges in
a fixed number of subproblems. In practice, � should de-
crease over time to ensure jCj remains small. The following
corollary suggests a scaling of � for fast convergence:
Corollary 2.2 (Linear Convergence). For t � 1, define

�0t = f(yt)� f(xt�1) ; (7)

and suppose we run Algorithm 2 choosing �t as

�t =
q

2
 (1� r)3�0t (8)

for some r 2 [0; 1). Then for t � 1, we have

f(yt)� f(x?) � rt�1�0 : (9)

Another consequence of Theorem 2.1 is a method for iden-
tifying constraints guaranteed to be inactive at x?. This
is similar to prescreening, a useful preprocessing step that
eliminates irrelevant constraints for particular instances of
(P1) (Ghaoui et al., 2012; Liu et al., 2014). Finding �t such
that �t � 0 in (6), we arrive at the following corollary:
Corollary 2.3 (Constraint Elimination). For t � 1, define
�0t as in (7). If

dist(hj ;yt) >
q

2
�0t ; (10)

then hj(x?) < 0, and hj may be eliminated from (P1).

Compared to prescreening, Corollary 2.3 is more general
and can be applied at any iteration of BLITZ; however,
fewer constraints may be discarded initially. Elaboration
on this topic is included in supplementary material.

2.4. Experiments with Bounds

To examine our bounds numerically, we instantiate (P1) as

minimize
x2Rn

kx� bk2
2

s:t:
��AT

j x
�� � � j = 1; : : : ;m :

(P3)

BLITZ

Table 1. Summary of Quantities for ‘1-Regularized Learning. Table includes loss �i, convex conjugate ��
i , primal-dual mapping p,

and smoothness constant L for lasso and logistic regression.

LOSS �i(a
T
i w) ��

i (xi) [p(Aw?;b)]i L

SQUARED 1
2
(aT

i w � bi)
2 1

2
(bi + xi)

2 � 1
2
b2

i aT
i w? � bi 1

LOGISTIC log
�
1 + exp(�bia

T
i w)

�
�xi

bi
log(�xi

bi
) + (1 + xi

bi
) log(1 + xi

bi
)

�bi exp(�biaT
i w?)

1+exp(�biaT
i w?)

1
4

(Later we will see (P3) is dual to the lasso.) We let
m = 10,000 and n = 100. Elements of b and Aj are
drawn i.i.d. from N (0; 1). We set � = 3

10 max
j

��AT
j b
��, re-

sulting in approximately 30 active constraints at x?.

In Figure 2, we compare results solving (P3) with BLITZ
to our worst-case bounds. Figure 2(a) plots convergence
vs. iteration choosing � with (8) and r = 0:95. Figure 2(b)
plots optimality gaps after 2 iterations using a range of r
values. Each plot aggregates 15 problem instances. The
solid green line is our analytical bound. Axes are scaled so
that the bound displays as a line.

From Figure 2, we see that while convergence is faster
in practice than our bounds guarantee, theory and practice
agree well on the scaling of � and �.

3. Application: ‘1-Regularized Learning
We now apply BLITZ to ‘1-regularized optimization. This
class of problems is widely used for supervised learn-
ing, compressed sensing, and algorithms for more complex
problems in which ‘1 penalties appear in subproblems.

3.1. ‘1-Regularized Loss Minimization

We consider problems for which a feature vector ai 2 Rm
is used to predict a label bi 2 B. Our prediction function
is parameterized by a vector w? 2 Rm, which is computed
by maximizing an ‘1-regularized likelihood function over
a set of n training examples f(a1; b1); : : : ; (an; bn)g:

maximize
w2Rm

g(w) = �
nX
i=1

�i(a
T
i w)� � kwk1 : (P4)

Above �i : R! R�0 is a convex loss function parameter-
ized by bi. � > 0 is a tuning parameter. For large enough
�, many values of w? are exactly zero. We let A 2 Rn�m
denote the design matrix, its ith row ai and jth column Aj ,
while b 2 Bn denotes a labels vector with ith element bi.

We focus on two popular forms of (P4): the lasso (Tibshi-
rani, 1996), for which B = R and

g(w) = � 1
2 kAw � bk2

2 � � kwk1 ; (11)

as well as sparse logistic regression (Ng, 2004), for which

B = [�1; 1] and

g(w) = �
nX
i=1

log
�
1 + exp(�biaTi w)

�
� � kwk1 : (12)

For arbitrary loss �i, we require a single assumption:

Assumption 3.1 (Smooth Loss). The derivative �0i exists
and is Lipschitz continuous with constant L:

j�0i(x)� �0i(y)j � Ljx� yj for all x; y 2 R : (13)

3.2. ‘1 Duality

To solve (P4) with BLITZ, we transform (P4) into its dual:

minimize
x2Rn

Pn
i=1 �

�
i (xi)

s:t:
��AT

j x
�� � � j = 1; : : : ;m :

(P5)

Here ��i is the convex conjugate of �i. f(x) =
P
i �
�(xi)

is strongly convex due to the following proposition:

Proposition 3.2 (Strong Convexity of ‘1 Dual). Given As-
sumption 3.1, f(x) is strongly convex with parameter 1

L .

Strong duality holds for this problem (f(x?) = g(w?)),
and there exists a mapping p between optimal variables:

x? = p(Aw?;b) : (14)

Table 1 summarizes relevant quantities for (P4) and (P5).
Derivations are included in supplementary material.

3.3. Partial Subproblem Convergence

(P5) can be solved naturally with BLITZ. Minimizing (P5)
subject to a subset of constraints corresponds to maximiz-
ing (P4) over a subset of variables, prioritizing resources on
important features. However, Algorithm 2 requires exact
subproblem solutions, which is impractical. To accommo-
date partial solutions in our analysis, we require the sub-
problem solver returns a primal-dual pair (xt;wt), where

xt = �t � p(Awt;b) ; (15)

and �t is the largest scaler in (0; 1] such that
��AT

j xt
�� � �

for all constraints in Ct. Here we must redefine �t as

�t = f(yt)� g(wt) ; (16)

BLITZ

so that �t upper bounds f(yt)�f(x?) and g(w?)� g(wt)
for all t. We avoid spending excessive time on subproblem
t by monitoring its duality gap, terminating when

f(xt)� g(wt) � �t (f(yt)� g(wt)) (17)

for a tolerance �t 2 [0; 1). This enables our next theorem:
Theorem 3.3 (Progress for ‘1 with Approximate Solver).
For (P5), define �t as in (16), and assume xt and wt sat-
isfy (17). If �t+1 = 1, assume g(wt+1) � g(wt). If
�t+1 < 1, let hj be the (possibly non-unique) constraint
such that hj(xt) > 0 and hj(yt+1) = 0 and assume
g(wt+1) � max

�
g(wt + �ej). Then for t � 1, we have

�t+1 � max
n

�t �
�

1
2L (1� �t)2�2

t �2
t

�1=3
; �t�t

o
:

(18)

Note that when �t = 0, we recover Theorem 2.1. The tech-
nical condition g(wt+1) � max

�
g(wt + �ej) can easily be

satisfied with one coordinate descent update of wj .

3.4. Optimizing Algorithmic Parameters

The performance of working set algorithms is sensitive to
subproblem size and stopping criteria. We apply Theo-
rem 3.3 to optimize � and � at runtime. This procedure
is not meant to be exact, rather to provide BLITZ with a ba-
sic mechanism for adjusting these parameters. We model
the duration of iteration t as T� + Tsolve-t(�; �), where

T� = C� ; Tsolve-t(�; �) = Csolve
NNZ(�; t)

�
: (19)

Above T� is the time to compute �. Tsolve-t(�; �) estimates
the time to solve the subproblem, increasing proportional to
the number of nonzero elements in columns Aj for which
hj 2 Ct and inversely proportional to �. C� and Csolve are
constants, which are computed using runtime data by solv-
ing for C� and Csolve in (19) after each iteration and taking
median values over this history. Applying Theorem 3.3, we
model convergence progress as

�̂t+1(�; �) = max
n

�0t � CP((1� �)��0t)
2=3; ��0t

o
:

(20)
Above, �0t = f(yt)�g(wt�1), which is used as an approx-
imation to �t since �t cannot be computed before choos-
ing �t. The constant CP accounts for bound looseness (see
Figure 2), estimated using an analogous procedure to that
for C� and Csolve. Finally, we choose �t and �t by solving

�t; �t = argmin
�;�

�̂t+1(�; �)

exp f�CTC [T� + Tsolve-t(�; �)]g
(21)

approximately with grid search. The time constant CTC ac-
counts for empirical evidence that BLITZ’s overall conver-
gence rate should be closer to linear than sublinear (see

10�2 10�1 100

e

100

102

D t

10�3 10�2 10�1

1� r

100

102

10�2 10�1 100

e

10�2
100
102

D t

10�3 10�2 10�1

1� r

10�2
100
102

Auto-adjust Best-case r Best-case e

Figure 3. Optimizing Parameters. (above) Squared loss. (be-
low) Logistic loss. For synthetic problem, BLITZ is run multiple
times for 15 seconds using different � and r which are fixed as
Blitz runs. Plotted is resulting optimality gap. Green curve fixes
best-case r and varies �. Purple curve fixes best-case � and varies
r. Blue line is result of automatically tuning via (21). In these
cases, parameter adaption is better than any fixed (r; �) pair.

Figure 4). We set CTC to the ratio of elapsed time to
log (�0=�

0
t). Since C�; Csolve; CP, and CTC cannot be

computed before the first iteration, we initialize BLITZ with
a relatively small, easy subproblem (100 features in se-
quential setting and �1 = 0:5).

We experiment with this approach using two synthetic
datasets, each containing 5�103 examples, 1�105 features
and elements drawn i.i.d. from N (0; 1). We solve lasso on
the first dataset using labels drawn from N (0; 1), and we
solve logistic regression on the second dataset assigning
labels �1 with equal probability. We solve for 15 seconds
using regularization � = 0:05�MAX

1 and a variety of fixed
r (from (8)) and � values, comparing to the proposed auto-
adjustment method. As Figure 3 illustrates, performance
varies for choice of r and �, but our tuning method makes
BLITZ robust to this effect and improves upon any single
choice of parameters by an order of magnitude in this case.

3.5. Sequential Comparisons

We now demonstrate the performance of BLITZ in practice.
Our comparisons begin with the case that the dataset (A;b)
fits in memory of a single machine. For this setting, we
implement BLITZ in C++ using a coordinate descent-based
proximal Newton method to solve each subproblem.

In this setting, we compare BLITZ to seven alternatives:

� PROXNEWT: Our subproblem solver for BLITZ (no

1�MAX is the smallest � for which w? = 0.

BLITZ

101 102

Time (s)

10�7
10�6
10�5
10�4
10�3
10�2
10�1

100
101
102

R
el

a
ti

v
e

S
u

b
o
p

ti
m

a
li

ty

101 102

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

101 102

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

a
ll

BLITZ PROXNEWT GLMNET L1 LS APPROX

100 101 102

Time (s)

10�7
10�6
10�5
10�4
10�3
10�2
10�1

100
101
102

R
el

a
ti

v
e

S
u

b
o
p

ti
m

a
li

ty

100 101 102

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
P

re
ci

si
o
n

100 101 102

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

a
ll

BLITZ PROXNEWT GLMNET L1 LR LIBLINEAR CD

Figure 4. Sequential Comparisons. (above) Results from lasso problem on finance dataset. (below) Results from logistic regression
problem on RCV1 dataset. BLITZ quickly determines the sparsity pattern of w?, converging faster than alternative solvers.

prioritization of features).
� GLMNET 1.9-8 (Friedman et al., 2010): Popular R

package for lasso and sparse logistic regression; im-
plemented in Fortran; uses working set heuristics2.

� LIBLINEAR 1.94 (Yuan et al., 2012): Widely-used
C++ solver for sparse logistic regression (lasso not im-
plemented); uses working set heuristics3.

� L1_LS (Kim et al., 2007): Interior point method for
lasso implemented in MATLABr.

� L1_LOGREG 0.8.2 (Koh et al., 2007): Interior point
method for sparse logistic regression written in C.

� APPROX (Fercoq & Richtárik, 2013): Parallel, ac-
celerated coordinate descent for lasso; pre-computed
step sizes ensure convergence; C++ implementation.

� CD: C++ implementation of coordinate descent for
sparse logistic regression.

With the exception of L1_LS, each solver is compiled with
version 4.8.2 of the applicable GNU C/C++/Fortran com-
piler and -O3 optimization flag. Our hardware is a 64-bit
machine with 2.0 GHz Intel i7-2630QM processors, 8 GB
memory, and 6 MB cache. Solvers that utilize parallelism
(APPROX, L1_LS, and L1_LR) use up to 8 threads.

2We found the performance of GLMNET depends signifi-
cantly on its termination threshold—even during early iterations.
We run GLMNET using only its default stopping condition.

3 To achieve consistent solutions, we slightly modify this im-

Table 2. Problem Instances for Sequential Comparisons. We
choose � = 0:05�MAX to select a desirable number of features
(kw?k0 significantly smaller than min(n;m) while still resulting
in a difficult problem).

DATASET LOSS n m NNZ kw?k0

FINANCE SQUARED 1.6�104 1.6�106 9.2�107 1419
RCV1 LOGISTIC 2.0�104 2.4�106 6.2�107 537

We include results for two problem instances listed in Ta-
ble 2. Datasets are publicly available from LIBSVM4. To
emphasize the high dimensional setting, we expand RCV1,
including features formed by taking the element-wise prod-
uct of each pair of original features, disregarding new fea-
tures that contain five or fewer nonzeros. Since L1_LS and
APPROX do not support an unregularized intercept term,
we include this variable for logistic regression but not lasso.
We standardize columns to have unit ‘2-norm for lasso and
unit variance for logistic regression. For lasso, we stan-
dardize b to have zero mean and unit variance.

We quantify the performance of each solver using three
metrics. The first metric measures convergence progress

plementation to use an unregularized bias term.
4URL: http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

BLITZ

101 102

Time (min)

10�710�610�510�410�310�210�1100101102
R

el
at

iv
e

Su
bo

pt
im

al
ity

101 102

Time (min)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ec

is
io

n

101 102

Time (min)

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

Figure 5. Limited Memory Comparison. Results for Webspam dataset and logistic loss. ADARDA’s numeral suffix refers to the value
of its step-size parameter. By efficiently prioritizing available memory, BLITZ quickly obtains an accurate solution.

vs. time in terms of relative suboptimality:

jg(w?)� g(wt)j = jg(w?)j : (22)

w? is approximated as the solution returned by BLITZ
after solving to machine precision. We also plot preci-
sion and recall for nonzero weight variables wj . Define
S? = fj : w?j 6= 0g and St as the analogous support set
for wt. (For solvers that do not set values wj to exactly 0,
we take wj to be nonzero i.f.f. jwj j � 10�3.) We measure

Precision =
jSt \ S?j
jStj

; and Recall =
jSt \ S?j
jS?j :

(23)
Precision and recall are suitable metrics for ‘1-regularized
learning, since ‘1 regularization is most prominently used
for feature selection, while generalization performance can
be suppressed by coefficients overly biased toward zero.

Results of our comparison are included in Figure 4. Com-
paring BLITZ to its subproblem solver, PROXNEWT, as
well as other methods without working sets, we see priori-
tizing computation provides extreme gains. With 8 threads,
APPROX requires at least 6 minutes to solve a lasso prob-
lem that our sequential implementation of BLITZ com-
pletes in fewer than 30 seconds. Compared to other work-
ing set algorithms (GLMNET and LIBLINEAR), we see
BLITZ still can be faster. While GLMNET and LIBLIN-
EAR are highly optimized implementations, we see preci-
sion and recall results are superior for BLITZ, suggesting
computation is better-focused on relevant features.

3.6. Limited Memory Comparison

Often datasets are too large to fit in the memory of a single
machine. To solve (P4), one option is to load data multi-
ple times from disk. While disk I/O becomes a bottleneck,
BLITZ can be used to prioritize memory usage.

Applying BLITZ is straightforward in this setting if the set
fAj : w?j 6= 0g fits comfortably in memory. At each it-

eration, � is chosen such that the resulting subproblem in-
cludes as many features as memory limitations allow. Com-
puting this � requires a single pass over the data. Each sub-
problem is then solved with (in-memory) BLITZ.

We compare this approach to three alternatives:

� ADARDA (Duchi et al., 2011): Stochastic gradient
descent method with adaptive step-sizes. RDA is well-
suited for ‘1-regularized learning (Xiao, 2010).

� STRONG (Tibshirani et al., 2012): Like BLITZ but fea-
tures are prioritized according to the “Strong Rule.”
Regularization is initialized to �MAX and decreased at
each iteration until reaching the target �. STRONG
uses (in-memory) BLITZ to solve subproblems.

� CD: A memory-limited coordinate descent imple-
mentation. Aj is loaded, (P4) is maximized with re-
spect to wj , then memory for Aj is deallocated.

We implement each method in C++. To enable sequential
loads, training data is stored on disk in compressed row
format for ADARDA and compressed column format for
all other methods. Data is stored in binary format and com-
pressed with gzip. Our hardware is a 64-bit machine with
2.60 GHz Intel i5-4278U processors and a SATA HDD that
achieves read rates of 100 MB/s.

We compare algorithms using the Webspam dataset from
LIBSVM and logistic loss. This dataset contains 3:5� 105

examples, 6:8�105 features, and 1:3�109 nonzero entries.
We set � = 0:01�MAX, resulting in 762 selected features.
We normalize features to have unit variance. Under default
compression, the dataset occupies approximately 12 GB.
To emphasize the limited memory setting, we allow each
algorithm use of just 1 GB memory.

Results of this experiment are included in Figure 5. BLITZ
and STRONG greatly outperform alternative solvers that do
not use more of the available memory. Clearly for some
large problems, one need not settle for approximate solu-
tions when the solution is sparse.

https://github.com/tqchen/rabit
http://labs.criteo.com/downloads

