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Abstract
Sequential querying of differentially private
mechanisms degrades the overall privacy level.
In this paper, we answer the fundamental ques-
tion of characterizing the level of overall pri-
vacy degradation as a function of the number of
queries and the privacy levels maintained by each
privatization mechanism. Our solution is com-
plete: we prove an upper bound on the overall
privacy level and construct a sequence of privati-
zation mechanisms that achieves this bound. The
key innovation is the introduction of an opera-
tional interpretation of differential privacy (in-
volving hypothesis testing) and the use of new
data processing inequalities. Our result improves
over the state-of-the-art and has immediate appli-
cations to several problems studied in the litera-
ture.

1. Introduction
Differential privacy is a formal framework to quantify
to what extent individual privacy in a statistical database
is preserved while releasing useful aggregate information
about the database. It provides strong privacy guarantees
by requiring the indistinguishability of whether or not an
individual is in the database based on the released informa-
tion. Denoting the database when the individual is present
as D and as D′ when the individual is not, a differentially
private mechanism provides indistinguishability guarantees
with respect to the pair (D,D′). The databases D and D′

are referred to as “neighboring” databases.

Definition 1.1 (Differential Privacy (Dwork et al.,

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

2006b;a)). A randomized mechanism M over a set of
databases is (ε, δ)-differentially private if for all pairs of
neighboring databases D and D′, and for all sets S in the
output space of the mechanism X ,

P(M(D) ∈ S) ≤ eε P(M(D′) ∈ S) + δ .

A basic problem in differential privacy is how does the
overall privacy level degrade under the composition of in-
teractive queries where each query meets a certain dif-
ferential privacy guarantee. A routine argument shows
that the composition of k queries, each of which is (ε, δ)-
differentially private, is at least (kε, kδ)-differentially pri-
vate (Dwork et al., 2006b;a; Dwork & Lei, 2009; Dwork
et al., 2010). A tighter bound of (ε̃δ̃, kδ + δ̃)-differential
privacy under k-fold adaptive composition is provided, us-
ing more sophisticated arguments, in Dwork et al. (2010)
for the case when each of the individual queries is (ε, δ)-

differentially private. Here ε̃δ̃ = O
(
kε2 +ε

√
k log(1/δ̃)

)
.

On the other hand, it was not known if this bound could be
improved until this work.

Our main result is the exact characterization of the privacy
guarantee under k-fold composition. Any k-fold adaptive
composition of (ε, δ)-differentially private mechanisms
satisfies this privacy guarantee, stated as Theorem 3.3. Fur-
ther, we construct a specific sequence of privacy mecha-
nisms which under (in fact, nonadaptive) composition ac-
tually degrade privacy to the level guaranteed. Our result
entails a strict improvement over the state-of-the-art: this
can be seen immediately in the following approximation –
using the same notation as above, the value of ε̃δ̃ is now re-

duced to ε̃δ̃ = O
(
kε2 + ε

√
k log(e+ (ε

√
k/δ̃) )

)
. Since

a typical choice of δ̃ is δ̃ = Θ(kδ), in the regime where
ε = Θ(

√
kδ), this improves the existing guarantee by a

logarithmic factor. The gain is especially significant when
both ε and δ are small.
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We start with the view of differential privacy as providing
certain guarantees for the two error types (false alarm and
missed detection) in a binary hypothesis testing problem
(involving two neighboring databases), as in previous work
by Wasserman & Zhou (2010). We bring two benefits of
this operational interpretation of the privacy definition to
bear on the problem at hand.

• The first is conceptual: the operational setting directs
the logic of the steps of the proof, makes the argu-
ments straightforward and readily allows generaliza-
tions such as heterogeneous compositions. While the
state-of-the-art work (Dwork et al., 2010) needed re-
course to sophisticated mathematical results in Rein-
gold et al. (2008); Tao & Ziegler (2008); Green & Tao
(2004) to derive their results, our strengthening is ar-
rived at using relatively elementary techniques.

• The second is technical: the operational interpretation
of hypothesis testing brings both the natural data pro-
cessing inequality, and the strong converse to the data
processing inequality. These inequalities, while sim-
ple by themselves, lead to surprisingly strong techni-
cal results. As an aside, we mention that there is a
strong tradition of such derivations in the information
theory literature: the Fisher information inequality
(Blachman, 1965; Zamir, 1998), the entropy power in-
equality (Stam, 1959; Blachman, 1965; Verdú & Guo,
2006), an extremal inequality involving mutual infor-
mations (Liu & Viswanath, 2007), matrix determi-
nant inequalities (Cover & Thomas, 1988), the Brunn-
Minkowski inequality and its functional analytic vari-
ants (Dembo et al., 1991) – Chapter 17 of Cover &
Thomas (2012) enumerates a detailed list – were all
derived using operational interpretations of mutual in-
formation and corresponding data processing inequal-
ities.

One special case of our results, the strengthening of the
state-of-the-art result in Dwork et al. (2010), could also
have been arrived at directly by using stronger technical
methods than used in Dwork et al. (2010). Specifically, we
use a direct expression for the privacy region (instead of an
upper bound) to arrive at our strengthened result.

The optimal composition theorem (Theorem 3.3) provides
a fundamental limit on how much privacy degrades under
composition. Such a characterization is a basic result in dif-
ferential privacy and has been used widely in the literature
(Dwork et al., 2010; Hardt et al., 2010; Blocki et al., 2012;
Gupta et al., 2012; Muthukrishnan & Nikolov, 2012; Hardt
& Roth, 2013). In each of these instances, the optimal com-
position theorem derived here (or the simpler characteriza-
tion of Theorem 3.4) could be “cut-and-pasted”, allowing
for corresponding strengthening of their conclusions. We

demonstrate this strengthening for two instances: variance
of noise adding mechanisms in Section 4.1 and Gaussian
projection in Section 4.2. We further show that a variety
of existing noise adding mechanisms ensure the same level
of privacy with similar variances. This implies that there is
nothing special about the popular choice of adding a Gaus-
sian noise when composing multiple queries, and the same
utility as measured through the noise variance can be ob-
tained using other known mechanisms. We start our dis-
cussions by operationally introducing differential privacy
as certain guarantees on the error probabilities in a binary
hypothesis testing problem.

2. Differential Privacy as Hypothesis Testing
Given a random output Y of a database access mechanism
M , consider the following hypothesis testing experiment.
We choose a null hypothesis as databaseD0 and alternative
hypothesis as D1:

H0 : Y came from a database D0 ,

H1 : Y came from a database D1 .

For a choice of a rejection region S, the probability of false
alarm (type I error), when the null hypothesis is true but
rejected, is defined as PFA(D0, D1,M, S) ≡ P

(
M(D0) ∈

S
)
, and the probability of missed detection (type II error),

when the null hypothesis is false but retained, is defined as
PMD(D0, D1,M, S) ≡ P

(
M(D1) ∈ S̄

)
where S̄ is the

complement of S. The differential privacy condition on a
mechanism M is equivalent to the following set of con-
straints on the probability of false alarm and missed detec-
tion. Wasserman and Zhou proved that (ε, 0)-differential
privacy implies the conditions (1) for a special case when
δ = 0 (Wasserman & Zhou, 2010). The same proof tech-
nique can be used to prove a similar result for general
δ ∈ [0, 1], and to prove that the conditions (1) imply (ε, δ)-
differential privacy as well. We refer to the supplementary
material for a proof.

Theorem 2.1. For any ε ≥ 0 and δ ∈ [0, 1], a database
mechanism M is (ε, δ)-differentially private if and only if
the following conditions are satisfied for all pairs of neigh-
boring databases D0 and D1, and all rejection regions
S ⊆ X :

PFA(D0, D1,M, S) + eεPMD(D0, D1,M, S) ≥ 1− δ , (1)
eεPFA(D0, D1,M, S) + PMD(D0, D1,M, S) ≥ 1− δ .

This operational perspective of differential privacy relates
the privacy parameters ε and δ to a set of conditions on
probability of false alarm and missed detection. This shows
that it is impossible to get both small PMD and PFA from
data obtained via a differentially private mechanism, and
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Figure 1. Privacy region for (ε, δ)-differential privacy. For sim-
plicity, we only show the privacy region below the line PFA +
PMD ≤ 1, since the whole region is symmetric w.r.t. the line
PFA + PMD = 1.

that the converse is also true. This operational interpreta-
tion of differential privacy suggests a graphical representa-
tion of differential privacy as illustrated in Figure 1.

R(ε, δ) ≡
{

(PMD, PFA)
∣∣PFA + eεPMD ≥ 1− δ ,

and eεPFA + PMD ≥ 1− δ} . (2)

Similarly, we define the privacy region of a database access
mechanism M with respect to two neighboring databases
D0 and D1 as

R(M,D0, D1) ≡

conv
({

(PMD(D0, D1,M, S), PFA(D0, D1,M, S))
∣∣

for all S ⊆ X
})

, (3)

where conv(·) is the convex hull of a set. Operationally,
by taking the convex hull, the region includes the pairs of
false alarm and missed detection probabilities achieved by
soft decisions that might use internal randomness in the
hypothesis testing. Precisely, let γ : X → {H0, H1}
be any decision rule where we allow probabilistic deci-
sions. For example, if the output is in a set S1 we can
accept the null hypothesis with a certain probability p1,
and for another set S2 accept with probability p2. In full
generality, a decision rule γ can be fully described by
a partition {Si} of the output space X , and correspond-
ing accept probabilities {pi}. The probabilities of false
alarm and missed detection for a decision rule γ is de-
fined as PFA(D0, D1,M, γ) ≡ P(γ(M(D0)) = H1) and
PMD(D0, D1,M, γ) ≡ P(γ(M(D1)) = H0).
Remark 2.2. For all neighboring databases D0 and D1,
and a database access mechanism M , the pair of a false
alarm and a missed detection probabilities achieved by any
decision rule γ is included in the privacy region:

(PMD(D0, D1,M, γ), PFA(D0, D1,M, γ)) ∈ R(M,D0, D1) ,

for all decision rules γ.

Let D0 ∼ D1 denote that the two databases are neighbors.
The union over all neighboring databases define the privacy
region of the mechanism.

R(M) ≡
⋃

D0∼D1

R(M,D0, D1) .

The following corollary, which follows immediately from
Theorem 2.1, gives a necessary and sufficient condition on
the privacy region for (ε, δ)-differential privacy.

Corollary 2.3. A mechanism M is (ε, δ)-differentially pri-
vate if and only ifR(M) ⊆ R(ε, δ).

Consider two database access mechanisms M(·) and
M ′(·). Let X and Y denote the random outputs of mech-
anisms M and M ′ respectively. We say M dominates M ′

if M ′(D) is conditionally independent of the database D
conditioned on the outcome of M(D). In other words, the
database D, X = M(D) and Y = M ′(D) form the fol-
lowing Markov chain: D–X–Y (Cover & Thomas, 1988).

Theorem 2.4 (Data processing inequality for differential
privacy). If a mechanism M dominates a mechanism M ′,
then for all pairs of neighboring databases D1 and D2,

R(M ′, D1, D2) ⊆ R(M,D1, D2) .

We refer to the supplementary material for a proof. Wasser-
man & Zhou (2010) have proved that, for a special case
when M is (ε, 0)-differentially private, M ′ is also (ε, 0)-
differentially private, which is a corollary of the above the-
orem. Perhaps surprisingly, the converse is also true.

Theorem 2.5 (Corollary of Theorem 10 from (Blackwell,
1953)). Fix a pair of neighboring databases D1 and D2

and letX and Y denote the random outputs of mechanisms
M and M ′, respectively. If M and M ′ satisfy

R(M ′, D1, D2) ⊆ R(M,D1, D2) ,

then there exists a coupling of the random outputs X and
Y such that they form a Markov chain D–X–Y .

When the privacy region ofM ′ is included inM , then there
exists a stochastic transformation T that operates on X and
produce a random output that has the same marginal distri-
bution as Y conditioned on the database D. We can con-
sider this mechanism T as a privatization mechanism that
takes a (privatized) output X and provides even further pri-
vatization. The above theorem was proved in Blackwell
(1953) in the context of comparing two experiments, where
a statistical experiment denotes a mechanism in the context
of differential privacy.
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3. Composition of Differentially Private
Mechanisms

In this section, we address how differential privacy guaran-
tees compose: when accessing databases multiple times via
differentially private mechanisms, each of which having its
own privacy guarantees, how much privacy is still guar-
anteed on the union of those outputs? To formally define
composition, we consider the following scenario known as
the ‘composition experiment’, proposed in Dwork et al.
(2010).

A composition experiment takes as input a parameter b ∈
{0, 1}, and an adversary A. From the hypothesis testing
perspective proposed in the previous section, b can be in-
terpreted as the hypothesis: null hypothesis for b = 0
and alternative hypothesis for b = 1. At each time i, a
database Di,b is accessed depending on b. For example,
D1,0 could be medical records including a particular in-
dividual and D1,1 does not include the person, and D2,0

could be voter registration database with the same person
present and D2,1 with the person absent. An adversary A
is trying to break privacy (and figure out whether or not
the particular individual is in the database) by testing the
hypotheses on the output of k sequential access to those
databases via differentially private mechanisms. In full
generality, we allow the adversary to have full control over
which database to access, which query to ask, and which
mechanism to be used at each repeated access. Further, the
adversary is free to make these choices adaptively based
on the previous outcomes. The only restrictions are the
differentially private mechanisms belong to a family M
(e.g., the family of all (ε, δ)-differentially private mecha-
nisms), the internal randomness of the mechanisms are in-
dependent at each repeated access, and the hypothesis b is
not known to the adversary. The outcome of this k-fold
composition experiment is the view of the adversary A:
V b ≡ (R, Y b1 , . . . , Y

b
k ), where

Y bi = Mi(D
i,b, qi),

qi is the ith query, Mi ∈M is the ith privatization mecha-
nism, and R is the internal randomness of A.

3.1. Optimal privacy region under composition

In terms of testing whether a particular individual is in the
database (b = 0) or not (b = 1), we want to character-
ize how much privacy degrades after a k-fold composition
experiment. It is known that the privacy degrades under
composition by at most the ‘sum’ of the differential privacy
parameters of each access.

Theorem 3.1 ((Dwork et al., 2006b;a; Dwork & Lei, 2009;
Dwork et al., 2010)). For any ε > 0 and δ ∈ [0, 1],
the class of (ε, δ)-differentially private mechanisms satisfy

(kε, kδ)-differential privacy under k-fold adaptive compo-
sition.

In general, one can show that if Mi is (εi, δi)-
differentially private, then the composition satisfies
(
∑
i∈[k] εi,

∑
i∈[k] δi)-differential privacy. If we do not al-

low any slack in the δ, this bound cannot be tightened. Pre-
cisely, there are examples of mechanisms which under k-
fold composition violate (ε,

∑
i∈[k] δi)-differential privacy

for any ε <
∑
i∈[k] εi. We can prove this by providing a

set S such that the privacy condition is met with equality:
P(V 0 ∈ S) = e

∑
i∈[k] εiP(V 1 ∈ S) +

∑
i∈[k] δi. However,

if we allow for a slightly larger value of δ, then Dwork et al.
(2010) showed that one can gain a significantly higher pri-
vacy guarantee in terms of ε.
Theorem 3.2 (Theorem III.3 from Dwork et al. (2010)).
For any ε > 0, δ ∈ [0, 1], and δ̃ ∈ (0, 1], the class of
(ε, δ)-differentially private mechanisms satisfies (ε̃δ̃, kδ +

δ̃)-differential privacy under k-fold adaptive composition,
for

ε̃δ̃ = kε(eε − 1) + ε

√
2k log(1/δ̃). (4)

By allowing a slack of δ̃ > 0, one can get a higher privacy
of ε̃δ̃ = O(kε2 +

√
kε2), which is significantly smaller

than kε. This is the best known guarantee so far, and has
been used whenever one requires a privacy guarantee under
composition (e.g. (Dwork et al., 2010; Blocki et al., 2012;
Hardt & Roth, 2013)). However, the important question of
optimality has remained open. Namely, is there a compo-
sition of mechanisms where the above privacy guarantee is
tight? In other words, is it possible to get a tighter bound
on differential privacy under composition?

We give a complete answer to this fundamental question
in the following theorems. We prove a tighter bound on
the privacy under composition. Further, we also prove the
achievability of the privacy guarantee: we provide a set of
mechanisms such that the privacy region under k-fold com-
position is exactly the region defined by the conditions in
(5). Hence, this bound on the privacy region is tight and
cannot be improved upon.
Theorem 3.3. For any ε ≥ 0 and δ ∈ [0, 1], the class of
(ε, δ)-differentially private mechanisms satisfies(

(k − 2i)ε , 1− (1− δ)k(1− δi)
)
-differential privacy (5)

under k-fold adaptive composition, for all i =
{0, 1, . . . , bk/2c}, where

δi =

∑i−1
`=0

(
k
`

)(
e(k−`)ε − e(k−2i+`)ε

)
(1 + eε)k

. (6)

Hence, the privacy region of k-fold composition is
an intersection of k regions, each of which is ((k −
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2i)ε, δi)-differentially private: R({(k−2i)ε, δi}i∈[k/2]) ≡⋂b k2 c
i=0 R((k− 2i)ε, δi). We refer to the supplementary ma-

terial for a proof, where we give an explicit mechanism
that achieves this region under composition. Hence, this
bound on the privacy region is tight, and gives the exact
description of how much privacy can degrade under k-fold
adaptive composition. This settles the question left open
in Dwork et al. (2006b;a); Dwork & Lei (2009); Dwork
et al. (2010) by providing, for the first time, the fundamen-
tal limit of composition, and proving a matching mecha-
nism with the worst-case privacy degradation.

To prove the optimality in Theorem 3.3, namely that it is
impossible to have privacy worse than (5), we rely on the
operational interpretation of the privacy as hypothesis test-
ing. Precisely, for a given pair (ε, δ), we define a dom-
inant mechanism whose output can be used to simulate
any (ε, δ)-differentially private mechanism. Therefore, any
k-fold composition of (ε, δ)-differentially private mecha-
nisms can be simulated from the output of k-fold compo-
sition of the dominant mechanisms. The analysis of this
dominant mechanisms gives the exact composition theo-
rem in Eq.(5), and the new analysis tools (Theorem 2.4 and
Theorem 2.5) proves its optimality.

Figure 2 illustrates how much the privacy region of Theo-
rem 3.3 degrades as we increase the number of composi-
tion k. Figure 3 provides a comparison of the three privacy
guarantees in Theorems 3.1, 3.2 and 3.3 for 30-fold com-
position of (0.1, 0.001)-differentially private mechanisms.
Smaller region gives a tighter bound, since it guarantees the
higher privacy.

3.2. Simplified privacy region under composition

In many applications of the composition theorems, a
closed form expression of the composition privacy guar-
antee is required. The privacy guarantee in (5) is tight,
but can be difficult to evaluate. The next theorem pro-
vides a simpler form expression which is an outer bound
of the exact region described in (5). Comparing to
(4), the privacy guarantee is significantly improved from

ε̃δ̃ = O
(
kε2 +

√
kε2 log(1/δ̃)

)
to ε̃δ̃ = O

(
kε2 +

min
{√

kε2 log(1/δ̃), ε log(ε/δ̃)
})

, especially when com-
posing a large number k of interactive queries. Further,
the δ-approximate differential privacy degradation of (1 −
(1 − δ)k(1 − δ̃)) is also strictly smaller than the previous
(kδ + δ̃). We discuss the significance of this improvement
in the next section using examples from existing differen-
tial privacy literature.

Theorem 3.4. For any ε > 0, δ ∈ [0, 1], and δ̃ ∈ [0, 1],
the class of (ε, δ)-differentially private mechanisms satis-
fies

(
ε̃δ̃, 1 − (1 − δ)k(1 − δ̃)

)
-differential privacy under

 0

 0.5

 1

 0  0.5  1

k=1

k=2

k=3

k=4

k=5

PFA

PMD

 0

 0.5

 1

 0  0.5  1

k=1

k=2

k=3

k=4

k=5

PFA

PMD

Figure 2. Privacy regionR({(k−2i)ε, δi}) for the class of (ε, 0)-
differentially private mechanisms (top) and (ε, δ)-differentially
private mechanisms (bottom) under k-fold adaptive composition.

k-fold adaptive composition, for

ε̃δ̃ = min
{
kε ,

(eε − 1)εk

eε + 1
+ ε

√
2k log

(
e+

√
kε2

δ̃

)
,

(eε − 1)εk

eε + 1
+ ε

√
2k log

(1

δ̃

)}
. (7)

In the high privacy regime, where ε ≤ 0.9, this bound can
be further simplified as

ε̃δ̃ ≤ min
{
kε, kε2 + ε

√
2k log

(
e+ (

√
kε2/δ̃ )

)
,

kε2 + ε

√
2k log(1/δ̃)

}
.

We refer to the supplementary material for a proof. This
privacy guarantee improves over the existing result of The-
orem 3.2 when δ̃ = Θ(

√
kε2). Typical regime of interest is

the high-privacy regime for composition privacy guarantee,
i.e. when

√
kε2 � 1. The above theorem suggests that we

only need the extra slack of approximate privacy δ̃ of order√
kε2, instead of Ω(1) as suggested by the existing results.
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a mechanism M , the privacy region can be completely described
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3.3. Composition Theorem for Heterogeneous
Mechanisms

We considered homogeneous mechanisms, where all mech-
anisms are (ε, δ)-differentially private. Our analysis read-
ily extends to heterogeneous mechanisms, where the `-th
query satisfies (ε`, δ`)-differential privacy (we refer to such
mechanisms as (ε`, δ`)-differentially private mechanisms).

Theorem 3.5. For any ε` > 0, δ` ∈ [0, 1] for
` ∈ {1, . . . . , k}, and δ̃ ∈ [0, 1], the class of (ε`, δ`)-
differentially private mechanisms satisfy

(
ε̃δ̃, 1 − (1 −

δ̃)
∏k
`=1(1 − δ`)

)
-differential privacy under k-fold adap-

tive composition, for ε̃δ̃ =

min
{ k∑
`=1

ε` ,

k∑
`=1

(eε` − 1)ε`
eε` + 1

+

√√√√√ k∑
`=1

2 ε2
` log

(
e+

√∑k
`=1 ε

2
`

δ̃

)
,

k∑
`=1

(eε` − 1)ε`
eε` + 1

+

√√√√ k∑
`=1

2 ε2
` log

(1

δ̃

)}
. (8)

This tells us that the ε`’s sum up under composition: when-
ever we have kε or kε2 in (7) we can replace it by the sum-
mation to get the general result for heterogeneous case.

4. Applications
When analyzing a complex mechanism with multiple sub-
mechanisms each with (ε0, δ0)-differential privacy guaran-
tee, we can apply the composition theorem (Theorem 3.3
and Theorem 3.4). To ensure overall (ε, δ)-differential
privacy for the whole complex mechanism, one chooses
ε0 = ε/(2

√
k log(e+ ε/δ)) and δ0 = δ/2k, when there

are k sub-mechanisms. The existing composition theorem
guarantees the desired overall privacy. Then, the utility of
the complex mechanism is calculated for the choice of ε0

and δ0.

Following this recipe, we first provide a sufficient condition
on the variance of noise adding mechanisms. This analysis
shows that one requires smaller variance than what is pre-
viously believed, in the regime where ε = Θ(δ). Further,
we show that a variety of known mechanisms achieve the
desired privacy under composition with the same level of
variance. Applying this analysis to known mechanisms for
cut queries of a graph, we show that again in the regime
where ε = Θ(δ), one can achieve the desired privacy under
composition with improved utility.

For count queries with sensitivity one, the geometric noise
adding mechanism is known to be universally optimal in
a general cost minimization framework (Bayesian setting
in Ghosh et al. (2012) and worst-case setting in Geng &
Viswanath (2012)). Here we provide a new interpretation
of the geometric noise adding mechanism as an optimal
mechanism under composition for counting queries. In the
course of proving Theorem 3.3, we show that a family of
mechanisms are optimal under composition, in the sense
that they achieve the largest false alarm and missed de-
tection region. Larger region under composition implies
that one can achieve smaller error rates, while ensuring the
same level of privacy at each step of the composition. In
this section, we show that the geometric mechanism is one
of such mechanisms, thus providing the new interpretation
to the optimality of the geometric mechanisms.

4.1. Variance of noise adding mechanisms under
composition

In this section, we consider real-valued queries q : D →
R. The sensitivity of a real-valued query is defined as the
maximum absolute difference of the output between two
neighboring databases:

∆ ≡ max
D∼D′

|q(D)− q(D′)| ,



The Composition Theorem for Differential Privacy

where ∼ indicates that the pair of databases are neighbors.
A common approach to privatize such a query output is to
add noise to it, and the variance of the noise grows with
sensitivity of the query and the desired level of privacy. A
popular choice of the noise is Gaussian. It is previously
known that it is sufficient to add Gaussian noise with vari-
ance O(k∆2 log(1/δ)/ε2) to each query output in order to
ensure (ε, δ)-differential privacy under k-fold composition.
We improve the analysis of Gaussians under composition,
and show that for a certain regime where ε = Θ(δ), the
sufficient condition can be improved by a log factor.

When composing real-valued queries, the Gaussian mecha-
nism is a popular choice (Blocki et al., 2012; Hardt & Roth,
2013). However, we show that there is nothing special
about Gaussian mechanisms for composition. We prove
that the Laplacian mechanism or the staircase mechanism
introduced in Geng & Viswanath (2012) can achieve the
same level of privacy under composition with the same
variance.

We can use Theorem 3.4 to find how much noise we
need to add to each query output, in order to en-
sure (ε, δ)-differential privacy under k-fold composi-
tion. We know that if each query output is (ε0, δ0)-
differentially private, then the composed outputs satisfy

(kε2
0 +
√

2kε2
0 log(e+

√
kε2

0/δ̃), kδ0 + δ̃)-differential pri-
vacy assuming ε0 ≤ 0.9. With the choice of δ0 = δ/2k,
δ̃ = δ/

√
2, and ε2

0 = ε2/4k log(e+(ε/δ)), this ensures that
the target privacy of (ε, δ) is satisfied under k-fold compo-
sition as described in the following corollary.
Corollary 4.1. For any ε ∈ (0, 0.9] and
δ ∈ (0, 1], if the database access mechanism satisfies
(
√
ε2/4k log(e+ (ε/δ)), δ/2k)-differential privacy on

each query output, then it satisfies (ε, δ)-differential
privacy under k-fold composition.

One of the most popular noise adding mechanisms is the
Laplacian mechanism, which adds Laplacian noise to real-
valued query outputs. When the sensitivity is ∆, one can
achieve (ε0, 0)-differential privacy with the choice of the
distribution Lap(ε0/∆) = (ε0/2∆)e−ε0|x|/∆. The result-
ing variance of the noise is 2∆2/ε2

0. The above corollary
implies a certain sufficient condition on the variance of the
Laplacian mechanism to ensure privacy under composition.
Corollary 4.2. For real-valued queries with sensitivity
∆ > 0, the mechanism that adds Laplacian noise with vari-
ance

(
8k∆2 log

(
e+(ε/δ)

)
/ε2
)

satisfies (ε, δ)-differential
privacy under k-fold adaptive composition for any ε ∈
(0, 0.9] and δ ∈ (0, 1]. The mean squared error achieved by
the Laplacian mechanism is O

(
k2∆2 log

(
e+ (ε/δ)

)
/ε2
)
.

In terms of variance-privacy trade-off for real-valued
queries, the optimal noise-adding mechanism known as
the staircase mechanism was introduced in Geng &

Viswanath (2012). The probability density function of
this noise is piecewise constant, and the probability den-
sity on the pieces decay geometrically. It is shown
in Geng & Viswanath (2013) that that with variance of
O(min{1/ε2, 1/δ2}), the staircase mechanism achieved
(ε, δ)-differential privacy. Corollary 4.1 implies that with
variance O

(
k∆2 log(e + ε/δ)/ε2

)
, the staircase mecha-

nism satisfies (ε, δ)-differential privacy under k-fold com-
position.

Another popular mechanism known as the Gaussian mech-
anism privatizes each query output by adding a Gaussian
noise with variance σ2. It is not difficult to show that
when the sensitivity of the query is ∆, with a choice of
σ2 ≥ 2∆2 log(2/δ0)/ε2

0, the Gaussian mechanism satisfies
(ε0, δ0)-differential privacy (e.g. (Dwork et al., 2006a)).
The above corollary implies that the Gaussian mechanism
with variance O(k∆2 log(1/δ) log(e+ (ε/δ))/ε2) ensures
(ε, δ)-differential privacy under k-fold composition. How-
ever, we can get a tighter sufficient condition by directly
analyzing how Gaussian mechanisms compose, and we re-
fer to the supplementary material for a proof.

Theorem 4.3. For real-valued queries with sensitivity ∆ >
0, the mechanism that adds Gaussian noise with variance(
8k∆2 log

(
e+ (ε/δ)

)
/ε2
)

satisfies (ε, δ)-differential pri-
vacy under k-fold adaptive composition for any ε > 0 and
δ ∈ (0, 1]. The mean squared error achieved by the Gaus-
sian mechanism is O

(
k2∆2 log

(
e+ (ε/δ)

)
/ε2
)
.

It is previously known that it is sufficient to add i.i.d. Gaus-
sian noise with variance O(k∆2 log(1/δ)/ε2) to ensure
(ε, δ)-differential privacy under k-fold composition (e.g.
Theorem 2.7 from Hardt & Talwar (2010)). The above the-
orem shows that when δ = Θ(ε), one can achieve the same
privacy with smaller variance by a factor of log(1/δ).

4.2. Cut queries of a graph and variance queries of a
matrix

Blocki et al. (2012) showed that classical Johnson-
Lindenstrauss transform can generate a differentially pri-
vate version of a database. Further, they show that this
achieves the best tradeoff between privacy and utility for
two applications: cut queries of a graph and variance
queries of a matrix. In this section, we show how the best
known trade off can be further improved by applying The-
orem 3.4.

First, Blocki et. al. provide a differentially private mecha-
nism for cut queries q(G,S): the number of edges cross-
ing a (S, S̄)-cut in a weighted undirected graph G. This
mechanism produces a sanitized graph satisfying (ε, δ)-
differential privacy, where two graphs are neighbors if they
only differ on a single edge. The utility of the mecha-
nism is measured via the additive error τ incurred by the
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privatization. Precisely, a mechanism M is said to give a
(η, τ, ν)-approximation for a single cut query q(·, ·), if for
every graph G and every nonempty S it holds that

P
(

(1− η)q(G,S)− τ ≤M(G,S) ≤ (1 + η) q(G,S) + τ
)

≥ 1− ν . (9)

For the proposed Johnson-Lindenstrauss mechanism satis-
fying (ε, δ)-differential privacy, it is shown that the addi-
tive error τ0 incurred by querying the database k times is
bounded by Theorem 3.2 from Blocki et al. (2012)1

τ0 = O
(
|S|
√

log(1/δ) log(k/ν)

ε
log
( log(k/ν)

η2δ

))
. (10)

Compared to other state-of-the-art privacy mechanisms
such as the Laplace noise adding mechanism (Dwork,
2006), exponential mechanism (McSherry & Talwar,
2007), multiplicative weights (Hardt & Rothblum, 2010),
and Iterative Database Construction (Gupta et al., 2012),
it is shown in (Blocki et al., 2012) that the Johnson-
Lindenstrauss mechanism achieves the best tradeoff be-
tween the additive error τ0 and the privacy ε. This tradeoff
in (10) is proved using the existing Theorem 3.2. We can
improve this analysis using the optimal composition theo-
rem of Theorem 3.4, which gives

τ = O
(
|S|
√

log(e+ ε/δ) log(k/ν)

ε
log
( log(k/ν)

η2δ

))
. (11)

This is smaller than (10) by (a square root of) a logarith-
mic factor when ε = Θ(δ). We refer to the supplementary
material for a proof of the analysis in (11).

A similar technique has been used in Blocki et al. (2012)
to provide a differentially private mechanism for variance
queries v(A, x) = xTATAx: the variance of a given ma-
trix in a direction x. The proposed mechanism produces a
sanitized covariance matrix that satisfy (ε, δ)-differential
privacy, where two matrices are neighbors if they differ
only in a single row and the difference is by Euclidean
distance at most one. With the previous composition the-
orem in Theorem 3.2, Blocki et al. (2012) get an error
bound τ1 = O

(
log(1/δ) log(k/ν)

ε2η log2
(

log(k/ν)
η2δ

))
. Using

our tight composition theorem, this can be improved as
τ = O

(
log(e+ε/δ) log(k/ν)

ε2η log2
(

log(k/ν)
η2δ

))
. Again, for

ε = Θ(δ), this is an improvement of a logarithmic factor.

4.3. Optimality of geometric noise adding

In this section, we consider integer valued queries q : D →
Z with sensitivity one, also called counting queries. Such

1The original theorem is stated for a single query with k = 1.
Here we state it more generally with arbitrary k. This requires
scaling ν by 1/k to take into account the union bound over k
query outputs in the utility guarantee in (9).

queries are common in practice, e.g. “How many individ-
uals have income less than $100,000?”. Presence of ab-
sence of an individual record changes the output at most by
one. Counting query is a well-studied topic in differential
privacy (Dinur & Nissim, 2003; Dwork & Nissim, 2004;
Blum et al., 2005; 2013) and they provide a primitive for
constructing more complex queries (Blum et al., 2005).

The geometric noise adding mechanism is a discrete vari-
ant of the popular Laplacian mechanism. For integer-
valued queries with sensitivity one, the mechanism adds
a noise distributed according to a double-sided geometric
distribution whose probability density function is p(k) =(
(eε− 1)/(eε + 1)

)
e−ε|k|. This mechanism is known to be

universally optimal in a general cost minimization frame-
work (Bayesian setting in (Ghosh et al., 2012) and worst-
case setting in (Geng & Viswanath, 2012)). In this section,
we show that the geometric noise adding mechanism is also
optimal under composition.

Consider the composition experiment for counting queries.
For a pair of neighboring databases D0 and D1, some of
the query outputs differ by one, since sensitivity is one,
and for other queries the output might be the same. Let
k denote the number of queries whose output differs with
respect to D0 and D1. Then, we show that the privacy re-
gion achieved by geometric mechanism, that adds geomet-
ric noise for each integer-valued query output, is exactly
described by the optimal composition theorem of (5). Fur-
ther, since this is the largest privacy region under compo-
sition for the pair of database D0 and D1 that differ in k
queries, no other mechanism can achieve a larger privacy
region. Since the geometric mechanism does not depend
on the particular choice of pairs of databases D0 and D1,
nor does it depend on the specific query being asked, the
mechanism is optimal universally for every pair of neigh-
boring databases simultaneously.

Here, optimality is with respect to the composed privacy
region itself. Among the mechanisms guaranteeing the
same level of privacy, one with larger privacy region un-
der composition is considered better, in terms of allowing
for smaller false alarm and missed detection rate in hypoth-
esis testing whether the database contains a particular en-
try or not. In this sense, larger privacy degradation under
composition has more utility. The geometric mechanism
has the largest possible privacy degradation under compo-
sition, stated formally below; we refer to the supplementary
material for a proof.

Theorem 4.4. Under the k-fold composition experiment
of counting queries, the geometric mechanism achieves the
largest privacy region among all (ε, 0)-differentially pri-
vate mechanisms, universally for every pair of neighboring
databases simultaneously.
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