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Abstract
We introduce a novel Gaussian process based
Bayesian model for asymmetric transfer learn-
ing. We adopt a two-layer feed-forward deep
Gaussian process as the task learner of source
and target domains. The first layer projects the
data onto a separate non-linear manifold for each
task. We perform knowledge transfer by pro-
jecting the target data also onto the source do-
main and linearly combining its representations
on the source and target domain manifolds. Our
approach achieves the state-of-the-art in a bench-
mark real-world image categorization task, and
improves on it in cross-tissue tumor detection
from histopathology tissue slide images.

1. Introduction
Gaussian processes (GPs) (Rasmussen & Williams, 2006)
attract wide interest as generic supervised learners. This
is not only due to them being effective kernel methods,
but also to their probabilistic nature. They can be plugged
into a larger probabilistic model of a particular purpose as a
component. Furthermore, unlike non-probabilistic discrim-
inative models, they take into account the variance of the
predicted data points, which is known to boost up predic-
tion performance (Seeger, 2003). This probabilistic nature
and the predictive variance has also been used to develop
simple, effective, and theoretically well-grounded active
learning models (Houlsby et al., 2012). GPs also allow a
principled framework for learning kernel hyperparameters,
for which a grid search has to be performed in the support
vector machine (SVM) (Vapnik, 1998) framework.

In this paper, we benefit from the probabilistic nature of
GPs, and show how Deep GPs (Damianou & Lawrence,
2013) can be used as design components to easily build
an effective transfer learning model. We adopt a two-layer
feed-forward deep GP model as the task learner. The first-
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layer GP non-linearly projects the instances onto a latent
intermediary representation. This latent representation is
then fed into the second-layer GP as input. The knowl-
edge transfer takes place asymmetrically (i.e. from source
task to target task only) by projecting the target instances
onto the latent source manifold, and this representation is
linearly combined with the representation of the target in-
stances on their native manifold. The resultant combination
is then fed into the second-layer target GP, which maps it
to the output labels. Figure 1 illustrates the idea.

We evaluate our approach on two applications. The first
is a real-world image categorization benchmark, where the
domains are different image data sets collected by cameras
of different resolutions and for different purposes. The sec-
ond is tumor detection in histopathology tissue slide images
(Gürcan et al., 2009). We treat each of the two tissue types,
breast and esophagus, as different domains. Our model
reaches state-of-the-art prediction performance in the first
application, and improves it in the second. The source code
of our model is publicly available1.

Source Domain Target Domain

Figure 1. The proposed idea for knowledge transfer from a source
deep GP to a target deep GP. We project the target data set Xt

onto the latent source domain space Ds→t by the first-layer GP
(GP1) of the source task. We then combine the outcome with the
latent representation of Xt on the target domain Dt. Finally, we
feed the resultant representation into the second-layer GP (GP2).

1https://github.com/melihkandemir/atldgp

https://github.com/melihkandemir/atldgp
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2. Prior Art
Transfer learning approaches can be dichotomized into two
as symmetric and asymmetric (Kulis et al., 2011). In the
symmetric approach, identical knowledge transfer mecha-
nisms are established between source and target tasks. A
successful representative of this approach is Duan et al.
(2012), which projects both source and target tasks onto a
shared space, augment the shared representations with na-
tive features, as originally proposed by Daumé III (2007),
and learn a model on this new representation. Gönen &
Margolin (2014) construct task-specific latent representa-
tions by taking multiple draws from a Relevance Vector
Machine (RVM) (Tipping, 2001). These representations
are then linearly mapped to the output by a unified model.

There exist GP based models for symmetric transfer learn-
ing. The pioneer work on this line has been by Bonilla et al.
(2008), which decomposes the covariance matrix of GP
into task-specific and shared components. Lázaro-Gredilla
& Titsias (2011) learn a weighted combination of multiple
kernels for each task, and transfer knowledge by placing
a common spike-and-slab prior over the kernel combina-
tion weights. Nguyen & Bonilla (2014) learn several task-
specific and task-independent sparse GPs for each task, and
combine them for a joint latent decision margin.

In the asymmetric transfer approach, a transfer mechanism
is constructed only from the source task to the target task.
Dai et al. (2008) make an analogy with transfer learning
and text translation, and call it translated learning. They
propose a Markov chain that translates the classes of the
source domain to a target domain. Hoffman et al. (2013a)
project only the target space onto the source space, where
both tasks are then learned by a unified model. Leen et al.
(2011) follow a late fusion strategy, and combine the latent
decision margins of multiple GPs operating on the source
tasks with the latent decision margin of the target task.

3. Our Contribution
Our approach differs from the existing approaches in the
following aspects:

• We use two-layer Deep GPs as base learners, and pro-
pose to use the output of the first layer for domain
adaptation.

• We assign separate learners for source and target
tasks, but bind these learners together by linearly
combining the projection of the target data onto both
source and target manifolds.

• The resultant model both projects input data onto a la-
tent manifold (first-layer GP) and maps this projection
to the output space (second-layer GP) non-linearly.

4. Notation
We denote a vector of variables by boldface lower case let-
ters v, and a matrix of variables by boldface upper case
letters M. The ith row and jth column of a matrix and
ith element of a vector are given by [M](ij) and [v](i), re-
spectively. The operands [M1; M2], and [M1,M2] denote
row-wise and column-wise concatenation of two matrices
or vectors, respectively. We denote nth row of a matrix M
by mn, and its cth column by mc. I is the identity matrix of
the size that is determined by the given context. Ep(·)[f(·)]
is the expectation of function f(·) with respect to density
p(·), and H[p(·)] is the Shannon entropy of the density p(·).
We use Ep[x] as a short hand notation for Ep(x)[x]. The op-
erator diag(M) returns a vector containing the diagonal el-
ements of matrix M. Lastly,N (x|µ,Σ) is the multivariate
normal density with mean µ and covariance Σ.

5. The Model
Let Xi be the Ni × D dimensional data matrix for task i
with Ni instances of D dimensions in its rows, and Yi be
the Ni × C matrix having the corresponding real valued
outputs. We consider the transfer learning setup, where
we have one source task {Xs,Ys} for which we have a
sufficient number of labeled instances, and one target task
{Xt,Yt} for which we have a scarce data regime. Our goal
is to learn a joint model, which transfers knowledge from
the source task to the target task. To this end, we propose a
Bayesian model with the generative process

p(Y|F) =
∏

i∈{s,t}

C∏
c=1

N (yci |f ci , β−1I),

p(F|D) =
∏

i∈{s,t}

C∏
c=1

N (f ci |0,KDiDi
),

p(Dt|Bt,Bs→t, π)

=

Nt∏
n=1

N (dtn|πbs→tn + (1− π)btn, α
−1I),

p(π)= Beta(π|e, f),

p(Bt|Xt) =

R∏
r=1

N (brt |0,KXtXt
),

p(Ds|Bs) =

R∏
r=1

N (drs|brs, λ−1I),

p([Bs; Bs→t]|Xs,Xt)=

R∏
r=1

N ([brs; b
r
t ]|0,K[Xs;Xt][Xs;Xt]),

where Y = {Ys,Yt}, F = {Fs,Ft} are decision mar-
gins, D = {Ds,Dt} are latent representations of input
data, KXX is a Gram matrix with [KX](ij) = k(xi,xj),
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and α, β, and λ are precisions of normal densities. Here,
Bi = [b1

i , · · · ,bRi ] is the representation of the task i in-
stances on the latent non-linear manifold in its native latent
space. This latent mapping is performed by a first-layer GP.
For the target task, we additionally have Bs→t, which is
the projection of the target instances onto the latent source
space. The two representations of the target instances, one
in the source and one in the target space are blended into
one single representation Dt = [d1

t , · · · ,dRt ] by weighted
averaging. The mixture weight π follows a Beta distribu-
tion hyperparameterized by e and f . For both tasks, the
second layer GP takes Di as input and maps it to the out-
put labels Yi. The parts of the process responsible for the
knowledge transfer are shown in blue. We call this model
Asymmetric Transfer Learning with Deep Gaussian Pro-
cesses, and abbreviate it as ATL-DGP.

C C

R R

Figure 2. The plate diagram of the proposed model. For clarity,
we use the same coloring conventions as Figure 1.

5.1. The sparse Gaussian process prior

While being effective non-linear models, GPs have the dis-
advantage of requiring the inversion of the N ×N covari-
ance matrix at every iteration to learn the kernel hyperpa-
rameters, N being the sample size. A workaround would
be to approximate this matrix with another lower rank ma-
trix. We also adopt this solution, and use Fully Independent
Training Conditional (FITC) approximation by Snelson &
Ghahramani (2006), due to its eligibility to variational in-
ference (Beal, 2003). Successful applications of variational
inference to FITC approximation include Deep GPs (Dami-
anou & Lawrence, 2013), GPs for large data masses (Hens-
man et al., 2013), and the Bayesian Gaussian process latent
variable model (GPLVM) (Titsias & Lawrence, 2010).

A FITC approximated sparse GP assumes a small set of
data points, called inducing points, as given, and predicts

the data from the inducing points, which results in

SGP(f ,u|X,Z) = N (u|0,KZZ)×
N (f |KXZK−1ZZu, diag(KXX −KXZK−1ZZKZX)),

where f is the vector of decision margins for all data points,
and Z = [z1; · · · ; zP ] has the inducing points in its rows.
We call u the inducing output vector, since it corresponds
to the output labels of the inducing points in the GP pre-
dictive mean formula. The inducing points can be chosen
by subsampling the data set, or can be treated as model pa-
rameters, hence pseudo inputs, and learned from data.

5.2. Asymmetric transfer learning by deep sparse
Gaussian processes

The posterior density of the model given above for ATL-
DGP is not tractable, hence approximate inference is
needed. The typical Laplace approximation would not be
practical, since the model has much more latent variables
than the standard GP, which would involve taking the in-
verse Hessian of a much larger matrix. It can easily be
seen that multiple dependencies between variables are non-
conjugate, such as the normal distributed Dt, which serves
as an input to a GP in the next stage, hence is passed
through a kernel function to construct a covariance matrix.
Due to these non-conjugacies, Gibbs sampling is also not
applicable in its naive form. Most Metropolis-like sam-
plers also suffer from large number of covariates. Hence,
we approximate the posterior by variational inference. We
convert the full GPs to sparse GPs, and attain

p(Y|F) =
∏

i∈{s,t}

C∏
c=1

N (yci |f ci , β−1I)

p(F,U|D,Z) =
∏

i∈{s,t}

C∏
c=1

SGP(f ci ,u
c
i |Di,Z

c
i )

p(B,V|X,W) =
∏

i∈{s,t}

R∏
r=1

SGP(bri ,v
r
i |Xi,W

r
i )

p(Dt|Bt,Bs→t, π) =

Nt∏
n=1

N (dtn|πbs→tn + (1− π)btn, α
−1I)

p(Bs→t|Xt,Ws,Vs) =

R∏
r=1

N (brs→t|KXtWs
K−1WsWs

vrs,

diag(KXtXt −KXtWsK
−1
WsWs

KWsXt))

p(π)= Beta(π|e, f)

p(Ds|Bs) =

R∏
r=1

N (drs|brs, λ−1I).
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Here, Wr
i and Zci are inducing pseudo data sets, and vci and

uci are the inducing outputs for the first and second layer
GPs, respectively. We highlight the densities responsible
for the knowledge transfer in blue. The dependencies of the
model variables are shown in the plate diagram in Figure 2.

For binary outputs, we add

p(tci |yci ) =

Ni∏
n=1

Bernoulli
(

[tci ](n)
∣∣∣Φ([tci ](n))

)
,

=

Ni∏
n=1

Φ
(

[yci ](n)
)[tci ](n)(

1− Φ
(

[yci ](n)
))1−[tci ](n)

to each output dimension of each task. Here, Φ(s) =
1√
2π

∫ s
−∞ e−

1
2 s

2

ds is the probit link function and tci is the
vector of output classes [tci ](n) ∈ {0, 1}. For multiclass
classification, each output dimension can be assigned to
one class, and 1-of-K coding can be used. The latent repre-
sentation layer binds these output tasks to each other, hence
they are learned jointly.

Variational inference. Using Jensen’s inequality, we ob-
tain a lower bound for the log-marginal density

log p(Y|Z,W,X) ≥
L = EQ[log p(Y,F,U,V,D,B, π|Z,W,X)]

where L is the variational lower bound. We define the vari-
ational density as

Q = p(Bs→t|Xt,Ws,Vs)q(Di)q(π)
∏

i∈{s,t}

Qi,

where

Qi = p(Fi|Ui,Di,Zi)q(Ui)p(Bi|Xi,Wi,Vi)q(Vi),

and

q(U) =
∏

i∈{s,t}

q(Ui) =
∏

i∈{s,t}

C∏
c=1

N (uci |mc
i ,S

c
i ),

q(Dt) =

Nt∏
n=1

N (dtn|htn, γ−1t I), q(π) = Beta(π|g, h)

q(Ds) =

R∏
r=1

N (drs|KXsXr
u
K−1Xr

uX
r
u
ers, γ

−1
s I),

q(V) =
∏

i∈{s,t}

q(Vi) =
∏

i∈{s,t}

R∏
r=1

N (vri |eri ,Gr
i ),

where Xr
u is a randomly chosen subset of data points from

the source data set. The essence of the above factorization
is that the factors corresponding to a GP predictive den-
sity, hence involving latent variables assigned to each data

point, are canceled out by keeping them identical inQ. The
inducing points Z and W can also be learned to maximize
L, as suggested by Titsias & Lawrence (2010).

For the target task, which is expected to have a small sam-
ple size, we use a factor density q(Dt), which consists of
fully parameterized multivariate normal densities per latent
dimension, identically to Damianou & Lawrence (2013)
(see Equation 11). As for the source task, which desirably
has a much larger sample size, we prefer a sparser parame-
terization. We assume q(drs) to follow a normal distribution
whose mean is a kernel linear regressor that maps Xr

u to the
latent manifold drs. The variational inducing output param-
eters eri are assumed to be pseudo outputs of Xr

u. This
fixes the number of variational parameters required per la-
tent dimension to the number of inducing points. This way,
overparameterization of the model is avoided, and it is pro-
tected against overfitting.

The variational lower bound. The variational lower
bound can be decomposed into three terms: L = Ls +
Lt + Lasy , where Ls and Lt include terms identical for
both tasks, and Lasy is the sum of the terms asymmetric
across tasks, which reads as

Lasy = EQasy
[log p(Dt|Bt,Bs→t, π)] + Eq[log p(Ds|Bs)]

+ Eq[log p(π)] + H[q(π)],

where Qasy = q(Dt)× p(Bs→t|Xt,Ws,Vs)× q(Vs)×
p(Bt|Xt,Wt,Vt)×q(Vt)×q(π). Taking the expectations
with respect to the variational densities, we get

Lasy = α

Nt∑
n=1

Eq[d
t
n]

T
(
Ep[b

s→t
n ]Eq[π] + Ep[b

t
n](1− Eq[π])

)
− α

2

N∑
n=1

Eq[(d
t
n)

T
dt
n]−

α

2

Nt∑
n=1

Ep[(b
s→t
n )

T
bs→t
n ]Eq[π

2]

− α
Nt∑
n=1

Ep[b
s→t
n ]TE[bt

n]
(
Eq[π]− Eq[π

2]
)

− α

2

Nt∑
n=1

Ep[(b
t
n)

T
bt
n]
(
1− 2Eq[π] + Eq[π

2]
)
+H[q(π)]

+

R∑
r=1

(
λEp[b

r
s]

TEq[d
r
s]−

λ

2
Ep[(b

r
s)

Tbr
s]−

λ

2
Eq[(d

r
s)

Tdr
s]
)

+ (e− 1)Eq[log π] + (f − 1)Eq[log(1− π)].

Here, Eq[π] = g
h and Eq[π2] =

(
g
h

)2
+ gh

(g+h)2(g+h+1) ,
and H[q(π)] = logB(g, h)− (g−1)ψ(g)− (h−1)ψ(h)+
(g+ h+ 2)ψ(g+ h) are given by the standard identities of
the Beta distribution, where ψ(·) is the digamma function.
The derivative of the Beta function B(·, ·) can simply be
approximated by finite difference.
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The task-specific lower bound term is

Li =

R∑
r=1

(
Eq(vr

i )
[log p(vr

i |Xi)] +H[q(vr
i )]

)
+H[q(Di)]

+

C∑
c=1

(
Eq(uc

i )
[log p(uc

i |Zc
i )] + EQi [log p(y

c
i |f ci )] +H[q(uc

i )]

)
.

Extending the terms and taking the expectations, we get

Li =

C∑
c=1

(
β(yc

i )
TEq(Di)[KZc

iDi ]
TK−1

Zc
iZ

c
i
mc

i +
N

2
log β

− β

2
tr
{
K−1

Zc
iZ

c
i
Eq(Di)[KZc

iDiK
T
Zc

iDi
]K−1

Zc
iZ

c
i
(mc

i (m
c
i )

T + Sc
i )
}

+
β

2
tr
{
K−1

Zc
iZ

c
i
Eq(Di)[KZc

iDiK
T
Zc

iDi
]
}

+
1

2
log |Sc

i | −
1

2
log |KZc

iZ
c
i
| − 1

2
(mc

i )
TK−1

Zc
iZ

c
i
mc

i

− β

2
tr{Eq(Di)[KDiDi ]} −

1

2
tr(K−1

Zc
iZ

c
i
Sc
i )

− β

2
(yc

i )
Tyc

i

)
+

1

2

R∑
r

log |Gr
i | −

NiR

2
log γi

− 1

2

R∑
r

tr
{
K−1

Wr
i W

r
i

(
er
i (e

r
i )

T +Gr
i

)}
.

We can calculate Eq(Di)[KZc
iDi

], Eq(Di)[KDiDi
], and

Eq(Di)[KZc
iDiK

T
Zc

iDi
] from the expectation of a ker-

nel response k(z,x) with respect to the normal density
p(x|µ,Σ) for some static z and random x. For Gaussian
kernel functions k(z,x) = exp{− 1

2 (z− x)TJ−1(z− x)},
such as RBF (J = γI), this integral is analytically tractable,
as discussed in Titsias & Lawrence (2010).

For classification, we add the Bernoulli-Probit likelihood,
and marginalize out yci , as suggested by Hensman et al.
(2013). After taking this integral, the lower bound becomes

Lclsfi = L−Yi +
C∑
c=1

Ni∑
n

tci [n] log

√
2π

β

C∑
c=1

Ni∑
n

(2tci [n]− 1) log Φ

(
(mc

i )
T
K−1KDiDi

E[KZc
id

i
n
]√

β−1 + 1

)
+

C∑
c=1

Ni∑
n

tci [n]
β

2

(
(mc

i )
T
K−1DiDi

E[KZc
id

i
n
]
)2
,

where L−Yi is Li with terms including yci discarded.

The joint lower boundL could be maximized by a gradient-
based approach using its derivatives with respect to the
variational parameters:
{∀i, c, r : mc

i ,S
c
i , e

r
i ,G

r
i ,Z

c
i ,W

c
i} ∪ {∀n : htn} ∪ {g, h}.

Generalization to multiple source tasks. ATL-DGP
can easily be generalized to the case where multiple source

tasks interact with the target task. For this, it suffices to
replace the cross-domain projection density with

p(Dt|Bt,Bs→t, π1, · · · , πk+1) =

Nt∏
n=1

N

(
dtn

∣∣∣∣∣
K∑
k=1

πkb
sk→t
n + πK+1b

t
n, α

−1I

)
,

p(π1, · · · , πk+1|a1, · · · , aK+1) =

Dir(π1, · · · , πk+1|a1, · · · , aK+1),

where Dir(· · · | · · · ) is a Dirichlet density. The related
lower bound term remains as a function consisting only of
tractable expectations of the same shape as in the single
source task case.

The symmetric architecture alternative. As a straight-
forward alternative to our approach, a symmetric trans-
fer across two deep GPs can easily be made by project-
ing the instances of both tasks onto each other’s man-
ifold, and augmenting their native latent representations
by these cross-task projections. In other words, we can
add p(Bt→s|Xs,Wt,vt) to the above generative process,
and replace the densities of Di’s with p(Dt|Bt,Bs→t) =∏R∗

r=1N (drt |[Bt,Bs→t]r, λ
−1I), and p(Ds|Bs,Bt→s) =∏R∗

r=1N (drs|[Bs,Bt→s]r, λ
−1I), where R∗ is the sum of

the number of task-specific and shared latent dimensions,
and [Bt,Bs→t]r and [Bs,Bt→s]r are rth columns of the
matrices in brackets. We call this architecture Symmetric
Transfer Learning with Deep Gaussian Processes, and ab-
breviate it as STL-DGP.

Prediction. A nice property of the FITC approximation
is that it converts the non-parametric standard GP into a
parametric model (i.e. a model that summarizes a data
set of arbitrary length by a fixed number of parameters).
Hence, it is no longer necessary to store the training set (or
the related Gram matrix) for prediction. Instead, it suffices
to store the inducing data set and the inducing outputs. The
predictive density for data point (x∗, y∗) and output dimen-
sion c is

p(y∗c |x∗,Xt,y
c
t ,Z

c
t) =

∫ (
p(y∗c |f∗c )p(f∗c |D∗,Zc

t ,u
c
t)q(u

c
t)

p(D∗|B∗)p(B∗|x∗,Wt,Vt)q(Vt)
)
df∗c du

c
tdB

∗dD∗dVt.

For a fully Bayesian treatment, all these tractable Gaus-
sian integrals have to be taken. A more practical alterna-
tive, which we also preferred in our implementation, is to
use the point estimates of the latent variables. For classi-
fication, the positive class probability can be approximated
by p(t∗c = +1|y∗c ) ≈ Φ

(
E[p(y∗c |x∗,Xt,y

c
t ,Z

c
t)]
)

.

6. Experiments
We evaluate ATL-DGP on one benchmark object catego-
rization application, and one novel cross-tissue tumor de-
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Table 1. Ten-class object categorization results on the benchmark computer vision database consisting of four data sets, each correspond-
ing to one domain. Our model ATL-DGP provides better average classification accuracy than the models in comparison. The results
for GFK, MMDT, and KBTL are taken from Gönen & Margolin (2014), Table 1. The highest accuracy of each domain is given in
boldface.

Source→Target NGP-S NGP-T STL-DGP GFK MMDT KBTL ATL-DGP
caltech→amazon 40.3± 2.6 52.1± 4.7 50.4± 5.2 44.7± 0.8 49.4± 0.8 52.9± 1.0 53.9± 3.8
dslr→amazon 35.5± 2.1 50.9± 4.2 48.5± 3.5 45.7± 0.6 46.9± 1.0 51.9± 0.9 50.8± 3.1
webcam→amazon 37.7± 2.8 52.5± 3.5 50.5± 3.2 44.1± 0.4 47.7± 0.9 53.4± 0.8 51.8± 2.9

amazon→caltech 40.1± 1.6 35.5± 3.8 33.9± 3.0 36.0± 0.5 36.4± 0.8 35.9± 0.7 40.1± 2.9
dslr→caltech 34.1± 1.7 35.9± 3.3 33.7± 2.7 32.9± 0.5 34.1± 0.8 35.9± 0.6 38.8± 2.8
webcam→caltech 33.1± 2.5 33.1± 4.8 30.6± 3.5 31.1± 0.6 32.2± 0.8 34.0± 0.9 37.9± 2.9

amazon→ dslr 37.6± 3.8 57.0± 5.8 54.2± 4.9 50.7± 0.8 56.7± 1.3 57.6± 1.1 58.4± 5.1
caltech→dslr 38.5± 3.9 56.9± 6.6 57.4± 4.6 57.7± 1.1 56.5± 0.9 58.8± 1.1 58.5± 4.0
webcam→dslr 62.2± 4.7 57.6± 3.1 54.9± 5.1 70.5± 0.7 67.0± 1.1 61.8± 1.3 66.7± 3.8

amazon→webcam 37.3± 4.6 67.0± 6.0 67.5± 5.6 58.6± 1.0 64.6± 1.2 69.8± 1.1 68.9± 5.4
caltech→webcam 35.2± 7.0 64.9± 8.9 64.5± 5.6 63.7± 0.8 63.8± 1.1 68.5± 1.2 65.9± 5.0
dslr→webcam 70.8± 3.4 66.4± 5.2 65.3± 4.4 76.5± 0.5 74.1± 0.8 70.0± 1.0 74.5± 2.6

Average Accuracy 41.8± 3.4 52.4± 5.3 51.0± 4.3 51.0± 0.7 52.5± 1.0 54.2± 0.9 55.5± 3.7

tection application. For all sparse GP components, we use
10 inducing points that are initialized to cluster centroids
found by k-means, as in Hensman et al. (2013). We set
the inducing points of the first layer GPs to instances cho-
sen from the training set at random, and learn them from
data for the second layer GPs. This is meant for avoiding
overparameterization of the model. We initialize eri and
mc
i to their least-squares fit to the predictive mean of the

GP they belong: û = argmin
u

||KXZK−1ZZu − y||22. We

observed that this computationally cheap initialization pro-
cedure provided significantly better performance than ran-
dom initialization for all sparse GP models.

We compare ATL-DGP to: i) NGP-S: A Deep GP trained
only on the source data set, hence performs no domain
transfer (i.e., ATL-DGP with π = 0), ii) NGP-T: A
Deep GP trained only on the target data set, iii) STL-
DGP: Two Deep GPs that perform symmetric transfer as
described in Section 5.2 (10 task-specific and 20 shared
manifold dimensions are used), iv) GFK: Geodesic Flow
Kernel (Gong et al., 2012), v) MMDT: Max-Margin Do-
main Transforms (Hoffman et al., 2013a), vi) KBTL: Ker-
nelized Bayesian Transfer Learning (Gönen & Margolin,
2014).

We choose KBTL, MMDT, and GFK as the three high-
est performing models on the benchmark computer vision
data base with respect to Table 1 from Gönen & Margolin
(2014), and STL-DGP as another deep GP based design
alternative. NGP-S and NGP-T are proof-of-concept base-
lines used to show the occurrence and benefit of cross-
domain knowledge transfer.

For all sparse GP models, we start the learning rate from

0.001, take a gradient step if it increases the lower bound,
or multiply the learning rate by 0.9 otherwise. For all mod-
els that learn latent data representations, such as all deep
GP variants and KBTL, we set the latent dimensionality
size to 20. For all kernel learners, we used an RBF kernel
with isotropic covariance. For GP variants, we also learned
the length scale by taking its gradient with respect to the
lower bound. For others, we set it to the mean euclidean
distance of all instance pairs in the training set, as sug-
gested by Gönen & Margolin (2014). All other design de-
cisions of competing models are made following the prin-
ciples suggested in the original papers.

6.1. Benchmark application: Real-world image
categorization

We use the benchmark data set constructed by Saenko et al.
(2010) for domain adaptation experiments, which consists
of images of 10 categories (backpack, bicycle, calculator,
headphones, keyboard, laptop, monitor, mouse, mug, and
projector) taken in four different conditions, corresponding
to the following four domains:

• amazon: images from http://www.amazon.
com, which are taken by merchants to sell their prod-
ucts in the online market,

• caltech: images chosen from the experimental Cal-
tech 256 data set (Griffin et al., 2007), which is con-
structed from images collected by web search engines,

• dslr: images taken with a high resolution (4288 ×
2848) digital SLR camera,

http://www.amazon.com
http://www.amazon.com
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Table 2. Tumor detection accuracies of the models in comparison. Our model ATL-DGP transfers useful knowledge across both tissue
types and reaches higher performance than the baselines.

Breast→ Esophagus Esophagus→ Breast Average Accuracy
NGP-S 63.4± 4.6 59.3± 2.1 61.3± 3.3
NGP-T 64.7± 5.5 59.4± 4.6 62.0± 5.1
STL-DGP 64.3± 5.2 55.4± 1.9 58.9± 3.8
FMTL 58.2± 2.3 59.6± 5.2 56.8± 2.1
GFK 56.1± 1.9 56.6± 1.3 56.4± 1.6
MMDT 65.0± 6.4 59.1± 5.4 62.1± 5.9
KBTL 57.8± 6.4 54.7± 4.9 56.3± 5.7
ATL-DGP 67.2± 3.9 61.1± 3.3 64.2± 3.6

• webcam: low resolution (640 × 480) images taken
with a webcam.

We use the 800-dimensional SURF-BoW features provided
by Gong et al. (2012), and the 20 train/test splits provided
by Hoffman et al. (2013a). Each train split consist of 20 im-
ages from the source domain for amazon and eight images
for the other three domains, and three images from the tar-
get domain. All the remaining points in the target domain
are left for the test split.

Prediction accuracies of the models trained and tested on
each 12 domain pairs and averaged over 20 splits are com-
pared in Figure 1. ATL-DGP provides the highest average
accuracy across the domains. The other modeling alterna-
tive STL-DGP suffers from negative transfer, and performs
worse even than the no transfer case NGP-T.

6.2. Novel application: cross-tissue tumor detection

We perform a feasibility study for domain transfer across
histopathology cancer diagnosis data sets, taken from two
different tissues: i) breast and ii) esophagus. We study
classification of patches taken from histopathology micro-
scopic tissue images stained by hematoxylin & eosin (H &
E) into two classes: i) tumor and ii) normal. Visual indi-
cators of cancer are known to differ drastically from one
tissue to another. For instance, in breast cancer, the glan-
dular formations of cells get distorted as cancer develops.
Contrarily, in Barrett’s cancer, which takes place in esoph-
agus, cells may mimic another tissue by forming glands.
Other sources of difference in input data distributions are
staining conventions, scanner types, and magnification lev-
els that vary from one laboratory to another. Cross-tissue
knowledge transfer would be useful in cases when the tar-
get tissue is taken from a rare cancer case, such as Barrett’s
cancer (Langer et al., 2011). For such cases, available data
from more widespread cancer types, such as breast cancer,
could facilitate tumor detection.

Figure 3 shows sample tumor and normal histopathology
images from breast and esophagus tissues, where the differ-

ences in the image characteristics of the tissues can clearly
be seen. While the glandular structures are in the tumor
class for esophagus (samples (b) and (d)), they are in the
normal class for breast (samples (b) and (e)). Cells in the
breast images are much larger than those in esophagus due
to higher magnification, and the texture is inclined more
towards pink due to higher dose of eosin.

The esophagus data set consists of 210 Tissue Micro Ar-
ray (TMA) images taken from the biopsy samples of 77
Barrett’s cancer patients. We split each TMA image into
a regular grid of 200 × 200 pixel patches, and treat each
patch as an instance. Consequently, we have a data set of
14353 instances, 6733 of which are tumors, and 7620 nor-
mal cases. The breast data set2 consists of 58 images of
896 × 768 pixels taken from 32 benign and 26 malignant
breast cancer patients. Splitting each image into an equal-
sized 7 × 7 grid, we get 2002 instances, 944 of which are
tumors, and 1058 normal cases.

We represent all image instances by a 657-dimensional fea-
ture vector consisting of their intensity histogram of 26
bins, 7 box counting features for grid sizes from 2 to 8,
mean of 20 × 20-pixel local binary pattern (LBP) his-
tograms of 58 bins, and mean of 128-dimensional dense
SIFT descriptors of 40 pixels step size. We reduce the data
dimensionality to 50 using principal component analysis
(PCA) to eliminate uninformative features.

For this application, we compare ATL-DGP also to Fo-
cused Multitask Gaussian Process (Leen et al., 2011)
(FMTL), which is an alternative approach for GP based
asymmetric transfer learning. We omitted FMTL from
comparison in the previous 10-class image categorization
application, since its available implementation is tailored
only for a single target task with binary labels.

We generate a training split by randomly choosing 200 in-
stances from the source domain, and five instances from the
target domain per class. We treat the remaining instances

2http://www.bioimage.ucsb.edu/research/
biosegmentation

http://www.bioimage.ucsb.edu/research/biosegmentation
http://www.bioimage.ucsb.edu/research/biosegmentation
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Esophagus tissue
(a) (b) (c) (d) (e)

Tumor

Normal

Breast tissue
(a) (b) (c) (d) (e)

Tumor

Normal

Figure 3. Sample histopathology images taken from two tissue types: Breast and Esophagus. The two image sets are acquired from
different tissues, using a different microscope and different magnification levels, resulting in different data distributions.

of the target domain as the test split. We repeat this proce-
dure 20 times and report the average prediction accuracies
in Table 2. In this application, NGP-S is more competitive
than in the previous benchmark due to the larger difference
between the input data distributions of the domains than
those of real-world tasks, which makes knowledge transfer
more difficult. Yet, ATL-DGP consistently improves on
both NGP-S and NGP-T, implying that it successfully per-
forms positive knowledge transfer. On this data set, ATL-
DGP improves statistically significantly on all baselines for
both source-target combinations (paired t-test, p < 0.05)
with two exceptions: STL-DGP and MMDT for Breast as
source and Esophagus as target.

7. Discussion
Experiments above showed that our asymmetric transfer
strategy ATL-DGP is more effective than the symmetric al-
ternative STL-DGP. A possible reason for this could be the
fact that the small sample size in the target domain makes
its manifold too noisy for the source domain. Hence, such
a noisy transfer could harm the overall learning procedure.
Another reason could be that transferring knowledge from
target to source task does not always leverage transfer in
the opposite direction. In such cases, this transfer only con-
sumes part of the expressive power of the model for a task,

which is not directly useful for the intended purpose, and
causes suboptimal performance.

The outcome of our feasibility study on cross-tissue type
tumor detection from histopathology tissue images encour-
ages further investigation of this application on a wider
variety of tissue types. Cross-tissue knowledge transfer
could be especially useful for automatic tissue scanners
to handle rare cancer types based on their knowledge on
widespread cancer types. Obviously, applicability of our
proposed model is beyond the limits of computer vision
and medical image analysis.

Our model outperforms FMTL, as it transfers knowledge
across input representations (early fusion), where the infor-
mation gain is expected to happen in a domain adaptation
setup, as opposed to FMTL’s late fusion strategy, which
is more suitable for multitask learning. ATL-DGP outper-
forms KBTL and MMDT in cross-tissue tumor detection
thanks to the non-linearity of the mapping it applies from
the latent representations to the outputs.

As future work, the variational scheme of our model can be
improved for handling large data masses using stochastic
variational Bayes (Hoffman et al., 2013b), which allows
the model to process the data points one (or few) at a time.
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