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Abstract
We provide non-asymptotic bounds for the
well-known temporal difference learning algo-
rithm TD(0) with linear function approximators.
These include high-probability bounds as well
as bounds in expectation. Our analysis suggests
that a step-size inversely proportional to the num-
ber of iterations cannot guarantee optimal rate of
convergence unless we assume (partial) knowl-
edge of the stationary distribution for the Markov
chain underlying the policy considered. We also
provide bounds for the iterate averaged TD(0)
variant, which gets rid of the step-size depen-
dency while exhibiting the optimal rate of con-
vergence. Furthermore, we propose a variant of
TD(0) with linear approximators that incorpo-
rates a centering sequence, and establish that it
exhibits an exponential rate of convergence in ex-
pectation. We demonstrate the usefulness of our
bounds on two synthetic experimental settings.

1. Introduction
Many stochastic control problems can be cast within the
framework of Markov decision processes (MDP). Rein-
forcement learning (RL) is a popular approach to solve
MDPs, when the underlying transition mechanism is un-
known. An important problem in RL is to estimate the
value function V π for a given stationary policy π. We focus
on discounted reward MDPs with a high-dimensional state
space S. In this setting, one can only hope to estimate the
value function approximately and this constitutes the pol-
icy evaluation step in several approximate policy iteration
methods, e.g. actor-critic algorithms (Konda & Tsitsiklis,
2003), (Bhatnagar et al., 2009).
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Temporal difference learning is a well-known policy
evaluation algorithm that is both online and works with a
single sample path obtained by simulating the underlying
MDP. However, the classic TD(0) algorithm uses full-state
representations (i.e. it stores an entry for each state s ∈ S)
and hence, suffers from the curse of dimensionality. A
standard trick to alleviate this problem is to approximate
the value function within a linearly parameterized space of
functions, i.e., V π(s) ≈ θTφ(s). Here θ is a tunable pa-
rameter and φ(s) is a column feature vector with dimen-
sion d << |S|. This approximation allows for efficient
implementation of TD(0) even on large state spaces.

The update rule for TD(0) that incorporates linear function
approximators is as follows: Starting with an arbitrary θ0,

θn+1 = θn + γn
(
r(sn, π(sn)) + βθT

nφ(sn+1) (1)

−θT

nφ(sn)
)
φ(sn).

In the above, the quantities γn are step sizes, chosen in
advance ,and satisfying standard stochastic approximation
conditions (see assumption (A5)). Further, r(s, a) is the re-
ward recieved in state s on choosing action a, β ∈ (0, 1) is
a discount factor, and sn is the state of the MDP at time n.

Asymptotic convergence of TD(0). In (Tsitsiklis &
Van Roy, 1997), the authors establish that θn governed by
(1) converges almost surely to the fixed point, θ∗, of the
projected Bellman equation given by

Φθ∗ = ΠT π(Φθ∗). (2)

In the above, T π is the Bellman operator, Π is the or-
thogonal projection onto the linearly parameterized space
within which we approximate the value function, and Φ is
the feature matrix with rows φ(s)T,∀s ∈ S denoting the
features corresponding to state s ∈ S (see Section 2 for
more details). Let P denote the transition probability ma-
trix with components p(s, π(s), s′) that denote the proba-
bility of transitioning from state s to s′ under the action
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π(s). Let r be a vector with components r(s, π(s)), and Ψ
be a diagonal matrix whose diagonal forms the stationary
distribution (assuming it exists) of the Markov chain for the
underlying policy π. Then, θ∗ can be written as the solu-
tion to the following system of equations (see Section 6.3
of (Bertsekas, 2011))

Aθ∗ = b, where A = ΦTΨ(I − βP )Φ and b = ΦTΨr. (3)

Our work. We derive non-asymptotic bounds on
‖θn − θ∗‖2, both in high-probability and in expectation, to
quantify the rate of convergence of TD(0) with linear func-
tion approximators. To the best of our knowledge, there
are no non-asymptotic bounds for TD(0) with function ap-
proximation, while there are asymptotic convergence and
rate results available.

Finite time analysis is challenging because:
(1) The asymptotic limit θ∗ is the fixed point of the Bell-
man operator, which assumes that the underlying MDP is
begun from the stationary distribution Ψ (whose influence
is evident in (3)). However, the samples provided to the
algorithm come from simulations of the MDP that are not
begun from Ψ. This is a problem for a finite time anal-
ysis, since we do not know exactly the number of steps
after which mixing of the underlying Markov chain has oc-
curred, and the distribution of the samples that TD(0) sees
has become the stationary distribution. Moreover, an as-
sumption on this mixing rate amounts to assuming (partial)
knowledge of the transition dynamics of the Markov chain
underlying the policy π.
(2) Standard results from stochastic approximation theory
suggest that in order to obtain the optimal rate of conver-
gence for a step size choice of γn = c/(c + n), one has
to chose the constant c carefully. In the case of TD(0), we
derive this condition and point out the optimal choice for
c requires knowledge of the mixing rate of the underlying
Markov chain for policy π.
We handle the first problem by establishing that under
a mixing assumption (the same as that used to estab-
lish asymptotic convergence for TD(0) in (Tsitsiklis &
Van Roy, 1997)), the mixing error can be handled in the
non-asymptotic bound. This assumption is broad enough
to encompass a reasonable range of MDP problems. We
alleviate the second problem by using iterate averaging.

Variance reduction. One inherent problem with iterative
schemes that use a single sample to update the iterate at
each time step, is that of variance. This is the reason why
it is necessary to carefully choose the step-size sequence:
too large and the variance will force divergence; too small
and the algorithm will converge, but not to the solution in-
tended. Indeed, iterate averaging is a technique that aims to
allow for larger step-sizes, while producing the same over-
all rate of convergence (and we show that it succeeds in

eliminating the necessity to know properties of the station-
ary distribution of the underlying Markov chain). A more
direct approach is to center the updates, and this was pi-
oneered recently for solving batch problems via stochastic
gradient descent in convex optimization (Johnson & Zhang,
2013). We propose a variant of TD(0) that uses this ap-
proach, though our setting is considerably more compli-
cated as samples arrive online and the function being opti-
mized is not accessible directly.

Our contributions can be summarized as follows:
(1) Concentration bounds. Under assumptions similar to
(Tsitsiklis & Van Roy, 1997), we provide non-asymptotic
bounds, both in high probability as well as in expectation
and these quantify the convergence rate of TD(0) with func-
tion approximation.
(2) Centered TD. We propose a variant of TD(0) that incor-
porates a centering sequence and we show that it converges
faster than the regular TD(0) algorithm in expectation.

The key insights from our finite-time analysis are:
(1) Choosing γn = c0c

(c+n) , with c0 < µ(1−β)/(2(1+β)2)

and c such that µ(1 − β)c0c > 1, we obtain the optimal
rate of convergence of the order O (1/

√
n), both in high-

probability as well as in expectation. Here µ is the smallest
eigenvalue of the matrix ΦTΨΦ (see Theorem 1). How-
ever, obtaining this rate is problematic as it implies (partial)
knowledge (via µ) of the transition dynamics of the MDP.
(2) With iterate averaging, one can get rid of the step-
size dependency and still obtain the optimal rate of con-
vergence, both in high probability as well as in expectation
(see Theorem 2).
(3) For the centered variant of TD(0), we obtain an ex-
ponential convergence rate when the underlying Markov
chain mixes fast (see Theorem 3).
(4) We illustrate the usefulness of our bounds on two simple
synthetic experimental setups. In particular, using the step-
sizes suggested by our bounds in Theorems 1–3, we are
able to establish convergence empirically for TD(0), and
both its averaging, as well as centered variants.

Related work. Concentration bounds for general
stochastic approximation schemes have been derived in
(Frikha & Menozzi, 2012) and later expanded to include
iterate averaging in (Fathi & Frikha, 2013). Unlike the
aforementioned reference, deriving convergence rate
results for TD(0), especially of non-asymptotic nature, re-
quires sophisticated machinery as it involves Markov noise
that impacts the mixing rate of the underlying Markov
chain. An asymptotic normality result for TD(λ) is
available in (Konda, 2002). The authors establish there that
TD(λ) converges asymptotically to a multi-variate Gaus-
sian distribution with a covariance matrix that depends on
A (see (3)). This rate result holds true for TD(λ) when



Concentration bounds for TD(0) with function approximation

combined with iterate averaging, while the non-averaged
case does not result in the optimal rate of convergence. Our
results are consistent with this observation, as we establish
from a finite time analysis that the non-averaged TD(0) can
result in optimal convergence only if the step-size constant
c in γn = c/(c + n) is set carefully (as a function of a
certain quantity that depends on the stationary distribution
- see (A3) below), while one can get rid of this dependency
and still obtain the optimal rate with iterate averaging.
Least squares temporal difference methods are popular
alternatives to the classic TD(λ). Asymptotic convergence
rate results for LSTD(λ) and LSPE(λ), two popular least
squares methods, are available in (Konda, 2002) and (Yu
& Bertsekas, 2009), respectively. However, to the best
of our knowledge, there are no concentration bounds that
quantify the rate of convergence through a finite time
analysis. A related work in this direction is the finite time
bounds for LSTD in (Lazaric et al., 2010). However, the
analysis there is under a fast mixing rate assumption, while
we provide non-asymptotic rate results without making
any such assumption. We note here that assuming a mixing
rate implies partial knowledge of the transition dynamics
of the MDP under a stationary policy and in typical RL
settings, this information is not available.

2. TD(0) with Linear Approximation
We consider an MDP with state space S and action space
A. The aim is to estimate the value function V π for any
given stationary policy π : S → A, where

V π(s) := E

[ ∞∑
t=0

βtr(st, π(st)) | s0 = s

]
. (4)

Recall that β ∈ (0, 1) is the discount factor, st denotes the
state of the MDP at time t, and r(s, a) denotes the reward
obtained in state s under action a. The expectation in (4) is
taken with respect to the transition dynamics P . It is well-
known that V π is the solution to the fixed point relation
V = T π(V ), where the Bellman operator T π is defined as

T π(V )(s) := r(s, π(s)) + β
∑
s′

p(s, π(s), s′)V (s′), (5)

TD(0) (Sutton & Barto, 1998) performs a fixed point-
iteration using stochastic approximation: Starting with an
arbitrary V0, update

Vn(sn) := Vn−1(sn) + γn
(
r(sn, π(sn))

+ βVn−1(sn+1)− Vn−1(sn)
)
, (6)

where γn are step-sizes that satisfy standard stochastic ap-
proximation conditions.

As discussed in the introduction, while TD(0) algorithm is
simple and provably convergent to the fixed point of T π

for any policy, it suffers from the curse of dimensionality
associated with high-dimensional state spaces, and popu-
lar method to allieviate this is to parameterize the value
function using a linear function approximator, i.e. for ev-
ery s ∈ S, approximate V π(s) ≈ φ(s)Tθ. Here φ(s) is
a d-dimensional feature vector with d << |S|, and θ is a
tunable parameter. Incorporating function approximation,
an update rule for TD(0) analogous to (6) is given in (1).

3. Concentration bounds for TD(0)
3.1. Assumptions

(A1) Ergodicity: The Markov chain induced by the policy
π is irreducible and aperiodic. Moreover, there exists a sta-
tionary distribution Ψ(= Ψπ) for this Markov chain. Let
EΨ denote the expectation w.r.t. this distribution.
(A2) Bounded rewards: |r(s, π(s))| ≤ 1, for all s ∈ S.
(A3) Linear independence: The feature matrix Φ has full
column rank. This assumption implies that the matrix
ΦTΨΦ has smallest eigenvalue µ > 0.
(A4) Bounded features: ‖φ(s)‖2 ≤ 1, for all s ∈ S.
(A5) The step sizes satisfy

∑
n γn =∞, and

∑
n γ

2
n <∞.

(A6) Combined step size and mixing assumption: There
exists a non-negative function B′(·) such that: For all
s ∈ S and m ≥ 0,

∞∑
τ=0

e3(1+β)
∑τ−1
j=1 γτ ‖E(r(sτ , π(sτ ))φ(sτ ) | s0 = s)

−EΨ(r(sτ , π(sτ ))φ(sτ ))‖ ≤ B′(s),
∞∑
τ=0

e3(1+β)
∑τ−1
j=1 γτ ‖E(φ(sτ )φ(sτ+m)T | s0 = s)

−EΨ(φ(sτ )φ(sτ+m)T)‖ ≤ B′(s),

(A6’) Uniform mixing bound: (A6) holds, and there exists
a constant B′ that is an uniformly bound on B(s),∀s ∈ S.

In comparison to the assumptions in (Tsitsiklis & Van Roy,
1997), (A1), (A3), (A5) have exact counterparts in (Tsit-
siklis & Van Roy, 1997), while (A2), (A4) and (A6) are
simplified versions of the corresponding boundedness as-
sumptions in (Tsitsiklis & Van Roy, 1997).

Remark 1. (Geometric ergodicity) A Markov chain is mix-
ing at a geometric rate if

P (st = s | s0)− ψ(s)| ≤ Cρt. (7)

For finite state space settings, the above condition holds
and hence (A7) is easily satisfied. Moreover, B′ =
Θ
(
1/(1− (1− ρ)1−ε), for any ε > 0. Here ρ is an un-

known quantity that relates to the second eigenvalue of the
transition probability matrix. See Chapters 15 and 16 of
(Meyn & Tweedie, 2009) for a detailed treatment of the
subject matter.



Concentration bounds for TD(0) with function approximation

3.2. Non-averaged case

Theorem 1. Under (A1)-(A6), choosing γn = c0c
(c+n) , with

c0 < µ(1−β)/(2(1+β)2) and c such that µ(1−β)c0c > 1,
we have,

E ‖θn − θ∗‖2 ≤
K1(n)√
n+ c

.

In addition, assuming (A6’), we have. for any δ > 0,

P
(
‖θn − θ∗‖2 ≤

K2(n)√
n+ c

)
≥ 1− δ,

where

K1(n) :=
(

c(‖θ0−θ∗‖2+C)

(n+c)µ(1−β)c0c−1 +
(1+‖θ∗‖2)c20c

2+Cc0c

µ(1−β)c0c−1

) 1
2

,

K2(n) := c0cB
′(2[2+c0c][1+β(3−β)] ln(1/δ))

1
2

(µ(1−β)c0c−1)
1
2

+K1(n),

and C := 6dB(s0)
(
‖θ0‖2+d+‖θ∗‖2

1−β

)2

.

Proof. See Section 5.1.

Remark 2. K1(n) and K2(n) above are O(1), i.e., they
can be upper bounded by a constant. Thus, one can indeed
get the optimal rate of convergence of the order O (1/

√
n)

with a step-size γn = c
(c+n) . However, this rate is contin-

gent upon on the constant c in the step-size being chosen
correctly. This is problematic because the right choice of
c requires the knowledge of eigenvalue µ for expectation
bound and and knowing µ would imply knowledge about
the transition probability matrix of the underlying Markov
chain. The latter information is unavailable in a typical
RL setting. The next section derives bounds for the iterate
averaged variant that overcomes this problematic step-size
dependency.

3.3. Iterate Averaging

The idea here is to employ larger step-sizes and combine it
with averaging of the iterates, i.e., θ̄n+1 := (θ1 + . . . +
θn)/n. This principle was introduced independently by
Ruppert (Ruppert, 1991) and Polyak (Polyak & Juditsky,
1992), for accelerating stochastic approximation schemes.
The following theorem establishes that iterate averaging re-
sults in the optimal rate of convergence without any step-
size dependency:

Theorem 2. Under (A1)-(A6), choosing γn = c0

(
c

c+n

)α
,

with α ∈ (1/2, 1) and c ∈ (0,∞), we have, for all n >
n0 := (cµ(1− β)/(2c0(1 + β)2))−1/α,

E
∥∥θ̄n − θ∗∥∥2

≤ KIA
1 (n)

(n+ c)α/2
.

In addition, assuming (A6)’, we have, for any δ > 0,

P
(∥∥θ̄n − θ∗∥∥2

≤ KIA
2 (n)

(n+ c)α/2

)
≥ 1− δ,

whereKIA
1 (n) :=

((1+dc0c
α(c+n0)1−α)e(1+β)c0c

α(c+n0)1−α)+‖θ∗‖+C)C′′

(n+c)(1−α)/2

+
n0

[
(1+dc0c

α(c+n0)1−α)e(1+β)c0c
α(c+n0)1−α)+‖θ∗‖

]
n1−α/2

+ cαc0

[
1 + ‖θ∗‖

1
2
2 +

(
C
cαc0

) 1
2

](
µ(1−β)c0c

α

1−α

)− α+2α2

2(1−α)

,

KIA
2 (n) :=

4
√

(1+C′)B′

µ(1−β)
C′′′

n(1−α)/2 + KIA
1 (n− n0),

C ′ :=

(
3α +

[
4α

µ(1−β)c0cα
+ 2α

α

]2) 1
2

, C ′′ :=
∞∑
k=1

k−2α,

and C ′′′ :=
∞∑
k=1

e−
µcα(1−β)c0

2(1−α)
((n+c)1−α−((c+n0)1−α).

Proof. See Section 5.2.

Remark 3. The step-size exponent α can be chosen arbi-
trarily close to 1, resulting in a convergence rate of the or-
der O (1/

√
n). However although the constants KIA

1 (n)
and KIA

2 (n) remain O(1), there is a minor tradeoff here
since a choice of α close to 1 would result in their bound-
ing constants blowing up. One cannot choose c too large
or too small for the same reasons.

4. TD(0) with Centering (CTD)
CTD is a control variate solution to reduce the variance of
the updates of normal TD(0). This is achieved by adding a
zero-mean, centering term to the TD(0) update.

Let Xn = (sn, sn+1). Then, the TD(0) algorithm can be
seen to perform the following fixed-point iteration:

θn = θn−1 + γnfXn(θn). (8)

where fXn(θ) := (r(sn, π(sn)) + βθTφ(sn+1) −
θTφ(sn))φ(sn). The limit of (8) is the solution, θ∗, of
F (θ) = 0, where F (θ) := ΠTπ(Φθ) − Φθ. The idea
behind the CTD algorithm is to reduce the variance of the
increments fXn(θn), in order that larger step sizes can be
used. This is achieved by choosing an extra iterate θ̄n, cen-
tred over the previous θn, and using an increment approxi-
mating fXn(θn)−fXn(θ̄n)+F (θ̄n). The intuitive motiva-
tion for this choice is that when the CTD algorithm arrives
close to θ∗, the centering term alone ensures the updates
become small, while with regular TD(0), one has to rely on
a decaying step size to keep the iterates close to θ∗.

The approach is inspired by the SVRG algorithm, proposed
in (Johnson & Zhang, 2013), for a optimising a strongly-
convex function. However, the setting for TD(0) with func-
tion approximation that we have is considerably more com-
plicated owing to the following reasons:
(i) Unlike (Johnson & Zhang, 2013), we are not optimis-
ing a function that is a finite-sum of smooth functions in a
batch setting. Instead, we are estimating a value function
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θn
Take action

π(sn)

Simulation

Update θn
using (9)

Fixed point iteration

θn+1

Epoch Run

θ̄(m), F̂ (m)(θ̄(m))

Centering

θ̄(m+1), F̂ (m+1)(θ̄(m+1))

Centering

Figure 1. Illustration of centering principle in CTD algorithm.

which is an infinite (discounted) sum, with the individual
functions making up the sum being made available in an
online fashion (i.e. as new samples are generated from the
simulation of the underlying MDP for policy π).
(ii) The centering term in SVRG directly uses F (·), which
in our case is a limit function that is neither directly acces-
sible nor can be simulated for any given θ.
(iii) Obtaining the exponential convergence rate is also dif-
ficult owing to the fact that TD(0) does not initially see
samples from the stationary distribution and there is an un-
derlying mixing term that affects the rate.
(iv) Finally, there are extra difficulties owing to the fact that
we have a fixed point iteration, while the corresponding al-
gorithm in (Johnson & Zhang, 2013) is stochastic gradient
descent (SGD).

The CTD algorithm that we propose overcomes the dif-
ficulties mentioned above and the overall scheme of this
epoch-based algorithm is presented in Figure 1. At the start
of the mth epoch, a random iterate is picked from the pre-
vious epoch, i.e. θ̄(m) = θin , where in is drawn uniformly
at random in {(m − 1)M, . . . ,mM}. Thereafter, for the
epoch lengthM , CTD performs the following iteration: Set
θmM = θ̄(m) and for n = mM, . . . , (m+ 1)M − 1 update

θn+1 =Υ

(
θn + γ

(
fXin (θn)− fXin (θ̄(m))

+ F̂ (m)(θ̄(m))
))

, (9)

where F̂ (m)(θ) := M−1
∑mM
i=(m−1)M fXi(θ) and Υ is a

projection operator that ensures that the iterates stay within
a H-ball. Unlike TD(0), one can choose a large (constant)
stepsize γ in (9). This choice in conjunction with iterate
averaging via the choice of θ̄(m) results in an exponential
convergence rate for CTD (see Remark 4 below).

4.1. Finite time bound

Theorem 3 below presents a finite time bound in expecta-
tion for CTD under the following mixing assumption:
(A6”) There exists a non-negative function B′(·) such that:

For all s ∈ S and m ≥ 0,
∞∑
τ=0

‖E(r(sτ , π(sτ ))φ(sτ ) | s0 = s)

−EΨ(r(sτ , π(sτ ))φ(sτ ))‖ ≤ B′(s),
∞∑
τ=0

‖E[φ(sτ )φ(sτ+m)T | s0 = s]

−EΨ[φ(sτ )φ(sτ+m)T]‖ ≤ B′(s),

The above is weaker than assumption (A6) used earlier for
regular TD(0), and this is facilitated by the fact that we
project the CTD iterates onto a H-ball.

Theorem 3. Assume (A1)-(A4) and (A6”) and let θ∗ denote
the solution of F (θ) = 0. Let the epoch length M of the
CTD algorithm (9) be chosen such that C1 < 1, where

C1 := ((2µγM)−1 + γd2/2)/((1− β)− d2γ/2))

(i) Geometrically ergodic chains: Here the Markov chain
underlying policy π mixes fast (see (7)) and we obtain1

‖Φ(θ̄(m) − θ∗)‖2Ψ ≤ Cm1
(
‖Φ(θ̄(0) − θ∗)‖2Ψ

)
+ CMC2H(5γ + 4) max{C1, ρ

M}(m−1), (10)

where C2 = γ/(M((1− β)− d2γ/2)).

(ii) General Markov chains:

‖Φ(θ̄(m) − θ∗)‖2Ψ ≤ Cm1
(
‖Φ(θ̄(0) − θ∗)‖2Ψ

)
(11)

+ C2H(5γ + 4)

m−1∑
k=1

C
(m−2)−k
1 BkM(k−1)M (s0),

where BkM(k−1)M is an upper bound on the partial

sums
∑kM
i=(k−1)M (E(φ(si) | s0) − EΨ(φ(si))) and∑kM

i=(k−1)M (E(φ(si)φ(si+l) | s0) − EΨ(φ(si)φ(si+l)
T)),

for l = 0, 1.

Proof. See Section 5.3.

1For any v ∈ Rd, we take ‖v‖Ψ :=
√
vTΨv.
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For finite state space settings, we obtain exponential con-
vergence rate (10) since they are geometrically ergodic,
while for MDPs that do not mix exponentially fast, the sec-
ond (mixing) term in (11) will dominate and decide the rate
of the CTD algorithm.

Remark 4. Combining the result in (10) with the bound in
statement (4) of Theorem 1 in (Tsitsiklis & Van Roy, 1997),
we obtain

‖Φθ̄(m) − V π‖Ψ ≤
1

1− β
‖ΠV π − V π‖Ψ +

C
m/2
1

(
‖Φ(θ̄(0) − θ∗)‖Ψ

)
+
√
CC2 max{C1, ρ}(m−1)/2.

The first term on the RHS above is an artifact of function
approximation, while the second and third terms reflect the
convergence rate of the CTD algorithm.

Remark 5. As a consequence of the fact that (θ̄(m) −
θ∗)T I(θ̄(m) − θ∗) ≤ 1

µ
(θ̄(m) − θ∗)TΦTΨΦ(θ̄(m) − θ∗),

one can obtain the following bound on the parameter error
for CTD:

‖θ̄(m) − θ∗‖2 ≤ (1/µ)

(
Cm1

(
‖Φ(θ̄(0) − θ∗)‖2Ψ

)
+ C2H(5γ + 4)

m−1∑
k=1

C
(m−2)−k
1 BkM(k−1)M (s0)

)
.

Comparing the above bound with those in Theorems 1–2,
we can infer that CTD exhibits an exponential convergence
rate of order O(Cm1 ), while TD(0) with/without averaging
can converge only at a sublinear rate of order O(n−1/2).

5. Analysis
5.1. Non-averaged case: Proof of Theorem 1

We split the analysis in two, first considering the bound
in high probability, and second the bound in expectation.
Both bounds involve a martingale decomposition, the for-
mer of the centered error, and the latter of the iteration (1).

High probability bound We first state a theorem bound-
ing the error with high probability for general step-sizes:

Theorem 4. Under (A1)-(A5) and (A6’), we have,

P (‖θn − θ∗‖2 − E ‖θn − θ∗‖2 ≥ ε) ≤ e
−ε2(2

∑n
i=1 L

2
i )
−1

,

where Li := γi[e
−µ(1−β)

∑n
k=i γk(1 + [γi +

∑n−1
k=i [γk −

γk+1]eµ(1−β)
∑k+1
j=i γj ][1 + β(3− β)]B′)]

1
2 .

Proof Sketch of Theorem 4. Recall that zn := θn − θ∗.
Step 1: We rewrite ‖zn‖22 −E ‖zn‖

2
2 as a telescoping sum

of martingale differences as follows:

‖zn‖2 − E ‖zn‖2 =

n∑
i=1

gi − E[gi |Fi−1 ] =

n∑
i=1

Di,

where Di := gi − E[gi |Fi−1 ], gi := E[‖zn‖2 |θi ].
Step 2: We establish that the functions gi, conditioned on
Fi−1, are Lipschitz continuous in fXi(θi−1) with constants
Li.
Step 3: We invoke a standard martingale concentration
bound using the Li-Lipschitz property of the gi functions
and the assumption (A3) to obtain:

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ exp

(
αλ2

2

n∑
i=1

L2
i − λε

)
.

The result follows by optimizing over λ. The detailed proof
is provided in (Korda & Prashanth, 2014).

Bound in expectation Now we state a theorem bounding
the expected error for general step-size sequences:
Theorem 5. Under (A1)-(A6) and assuming that γn ≤
µ(1− β)/(2(1 + β)2) for all n, we have,

E(‖θn+1 − θ∗‖2 ‖s0 ) ≤

[
e−µ(1−β)

∑n
k=1 γk(‖z0‖2 + C)

+ (1 + ‖θ∗‖2)

n∑
k=1

γ2
ke
−µ(1−β)

∑n
j=k γj

+ C

n−1∑
k=1

(γk+1 − γk)e−µ(1−β)
∑n
j=k+1 γj

] 1
2

(12)

where C = 2(2 + β)(d+ 4)B(s0)
(
‖θ0‖2+d+‖θ∗‖2

1−β

)2

.

Proof sketch of Theorem 5. First we define some nota-
tion. Let an := βφ(sn)φ(sn+1)T − φ(sn)φ(sn)T, εn :=
E(an | Fn) − EΨ(an) and ∆Mn := an − E(an | Fn)).
Then, we can rewrite TD(0) update as follows:

zn+1 = [I − γn(A+ εn + ∆Mn)] zn + γnε
′
n.

where ε′n = fXn(θ∗) − EΨ (fXn(θ∗)). εn, ε′n are the mix-
ing error components that arise due to the fact that TD(0)
does not see samples from the stationary distribution of the
underlying Markov chain has not mixed, while the martin-
gale difference ∆Mn arises out of a sampling error.

Squaring the error zn and taking the expectation, we obtain

E
(
‖zn+1‖22 |Fn

)
≤[1− 2γn(µ(1− β)− 2γn(1 + β)2)] ‖zn‖22

+ γnz
T

nE (εn | Fn) zn + γ2
n(1 + (1 + β) ‖θ∗‖2)2

+ 2γnE
(
(ε′n)

T
[I − γn(A+ εn + ∆Mn)] zn | Fn

)
.
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The remaining proof amounts to bounding each of the
quantities on the RHS above. Bounding the error terms
(both mixing and martingale errors) is tricky because it re-
quires the iterate θn to be bounded as well and we do not
project the iterates to artificially keep it bounded. Using
(A6) coupled with technical arguments we show that the
error terms stay bounded after unrolling the TD recursion.
The reader is referred to (Korda & Prashanth, 2014) for the
detailed proof.

Rates For the expectation bound, the rate derivation in-
volves bounding each term on the RHS in (12) after choos-
ing step-sizes γn = c0c

(c+n) . We sketch the derivation for the
second RHS term below:

n∑
k=1

γ2
ke
−µ(1−β)Γnk ≤

n∑
k=1

c20c

(c+ k)2
e−µ(1−β)c0c

∑n
i=k

1
c+i

≤ c20c
2

(µ(1− β)c0c− 1)

1

c+ n

where, in the last inequality, we have compared the sum
with an integral and used assumption that µ(1−β)c0c > 1.
The other terms can be bounded in a similar fashion and the
result in Theorem 1 follows.

For the bound in high probability, a calculation (see (Korda
& Prashanth, 2014)) shows that choosing the step-size as
before, we obtain

n∑
i=1

L2
i ≤

4(2 + c0c)B
′

(c+ n)µ(1−β)c0c

n∑
i=1

c20c
2

(c+ i)2−µ(1−β)c0c

and the result in Theorem 1 follows after comparing the
summation above with an integral.

5.2. Iterate Averaging: Proof of Theorem 2

In order to prove the results in Theorem 2 we again con-
sider the case of a general step sequence. Recall that
θ̄n+1 := (θ1 + . . . + θn)/n and let zn = θ̄n+1 − θ∗. We
directly give a bound on the error in high probability for the
averaged iterates (the bound in expectation can be obtained
directly from the bound in Theorem 5):

Theorem 6. Suppose that ∀n > n0, γn ≤ µ(1−β)/(2(1+
β)2). Then, under (A1)-(A5) and (A6’), and we have, ∀ε ≥
0 and ∀n > n0,

P (‖zn‖2 − E ‖zn‖2 ≥ ε) ≤ e
−ε2(2

∑n
i=1 L

2
i )
−1

,

where Li := γi
n

(
1 +

∑n−1
l=i+1

[
e−µ(1−β)

∑n
k=i γk(1 + [γi +∑n−1

k=i [γk − γk+1]][1 + β(3− β)]B′)
] 1

2

)
.

Rates To bound the expected error we average the errors
of the non-averaged iterates. However, this averaging this
is not straightforward as the bound in Theorem 5 holds only
if n > n0 (which ensures that γn is sufficiently small).
Note that n0 can be easily derived from the specific form
of the step sequece. Hence we analyse the initial phase
(n < n0) and later phase n ≥ n0 separately as follows:

E ‖zn‖2 ≤
∑n0

k=1 E ‖θk − θ∗‖2
n

+

∑n
k=n0+1 E ‖θk − θ∗‖2

n

The last term on RHS above is bounded using Theorem
1, while the first term is bounded by unrolling TD(0) recur-
sion for the first n0 steps and bounding the individual terms
that arise using (A6).

For the rate of the bound in high probability, one has to
again separately bound the influence of the first n0 steps,
and then use the expectation bound together with 6. The
reader is referred to (Korda & Prashanth, 2014) for detailed
proofs.

5.3. TD(0) with centering: Proof of Theorem 3

Step 1: Let f̄Xin (θn) := fXin (θn) − fXin (θ̄(m)) +

E(fXin (θ̄(m)) | Fn).. An one-step expansion of the re-
cursion (9) gives

‖θn+1 − θ∗‖22 ≤ ‖θn − θ∗‖22 (13)

+ 2γ(θn − θ∗)Tf̄Xin (θn) + γ2
∥∥f̄Xin (θn)

∥∥2

2
.

Step 2: We bound the variance of centered updates:

E
(∥∥f̄Xin (θn)

∥∥2

2

∣∣∣Fn) ≤ E
(
‖en(θ∗)‖22 | Fn

)
+ εn(θ̄(m))

+ εn(θn) + d2

(
‖Φ(θn − θ∗)‖2Ψ + ‖Φ(θ̄(m) − θ∗)‖2Ψ

)
,

where εn(θ) = E
(∥∥fXin (θ)− fXin (θ∗)

∥∥2

2

∣∣∣Fn) −
EΨ,θn(

∥∥fXin (θ)− fXin (θ∗)
∥∥2

2
) and en(θ) :=

E
[
fXin (θ)

∣∣Fn]− EΨ,θn

[
fXin (θ)

]
. .

Step 3: From (13) we obtain the following recursion
within an epoch

2γM((1− β)− d2γ

2
)E
(
‖Φ(θ̄(m+1) − θ∗)‖2Ψ

∣∣∣FmM)
≤

(
1

µ
+Mγ2d2

)
‖θ̄(m) − θ∗‖22

+ γ2

(m+1)M−2∑
n=mM

E
(
εn(θn) + εn(θ̄(m)) + ‖en(θ∗)‖22

∣∣∣FmM)

+ E

2γ

(m+1)M−1∑
n=mM

(θn − θ∗)Ten(θn)

∣∣∣∣∣∣FmM
 (14)
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Figure 2. Empirical illustration of TD(0), TD(0) with averaging
and CTD algorithms. The normalised value difference is defined
to be ‖Φ(θn − θ∗)‖Ψ/‖Φ(θ∗)‖Ψ.

where we have first simplified (13) before using the bound
on the variance of the centered term (from Step 2), and also
the fact that

(θ̄(m) − θ∗)TI(θ̄(m) − θ∗)
≤ µ−1(θ̄(m) − θ∗)TΦTΨΦ(θ̄(m) − θ∗)

Step 4: Finally, we obtain (11) by unrolling (across
epochs) (14), and bounding the individual error terms in-
volving ε(·) and en(·). For the latter, we use (A6”) and the
fact that we project the CTD iterates to a H-ball.

6. Numerical Experiments
We test the performance of TD(0), TD(0) with averaging
and CTD algorithms.

Example 1. This is a two-state toy example, which is bor-
rowed from (Yu & Bertsekas, 2009). The setting has the
transition structure P = [0.2, 0.8; 0.3, 0.7] and the rewards
given by r(1, j) = 1, r(2, j) = 2, for j = 1, 2. The fea-
tures are one-dimensional, i.e., Φ = (1 2)T.

Fig. 2(a) presents the results obtained on this example. For
setting the step-sizes of TD(0), we used the guideline from
Theorem 1. Note that this results in convergence for TD(0),
with the caveat that setting the step-size constant c requires
knowledge of underlying transition structure through µ. It
is evident that TD(0) with averaging gives performance on
par with TD(0) and unlike TD(0), the setting of c is not con-
strained here. Given that convergence is rapid for TD(0) on
this example, we do not plot CTD in Fig 2(a) as the epoch
length suggested by Theorem 3 is 100 and this is already
enough for TD(0) itself to converge. CTD resulted in a
normalized value difference of about 0.03 on this example,
but the effect of averaging across epochs for CTD will be
seen better in the next example.

Example 2. Here the number of states are 100, the tran-
sitions are governed by a random stochastic matrix and the
rewards are random and bounded between 0 and 1. Fea-
tures are 3-dimensional and are picked randomly in (0, 1).
The results obtained for the three algorithms are presented
in Fig. 2(b). It is evident that all algorithms converge, with
CTD showing the lowest variance. As in example 1, the
setting parameters for TD(0) was dictated by Theorem 1,
while for CTD, the step-size and epoch length were set such
that the constant C1 in Theorem 3 is less than 1.

7. Conclusions
TD(0) with linear function approximators is a well-known
policy evaluation algorithm. While asymptotic conver-
gence rate results are available for this algorithm, there are
no finite-time bounds that quantify the rate of convergence.
In this paper, we derived non-asymptotic bounds, both in
high-probability as well as in expectation. From our re-
sults, we observed that iterate averaging is necessary to ob-
tain the optimal O (1/

√
n) rate of convergence. This is

because, to obtain the optimal rate with the classic step-
size choice ∝ 1/n, it is necessary to know properties of
the stationary distribution of the underlying Markov chain.
We also proposed a fast variant of TD(0) that incorporates
a centering sequence and established that the rate of con-
vergence of this algorithm is exponential. We established
the practicality of our bounds by using them to guide the
step-size choices in two synthetic experimental setups.
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