The Hedge Algorithm on a Continuum Supplementary material, ICML 2015

Walid Krichene
Maximilian Balandat
Alexandre Bayen

We present, for completeness, proofs which were omitted from the paper.

1 Proof of Lemma 4

Lemma 4. If $\psi: L^{2}(S) \rightarrow \mathbb{R}$ is ℓ_{ψ}-strongly convex w.r.t. $\|\cdot\|$, then ψ^{*} is $\frac{1}{\ell_{\psi}}$ smooth w.r.t. $\|\cdot\|_{*}$, that is, for all x, y,

$$
\psi^{*}(x)-\psi^{*}(y)-\left\langle\nabla \psi^{*}(y), x-y\right\rangle \leq \frac{1}{2 \ell_{\psi}}\|x-y\|_{*}^{2}
$$

Proof. First, we prove that $\nabla \psi^{*}$ is $\frac{1}{\ell_{\psi}}$-Lipschitz (see for example Nesterov 2009]).
Let $y_{1}, y_{2} \in E^{*}$, and $x_{i}=\nabla \psi^{*}\left(y_{i}\right)$. Since x_{i} is the minimizer of the convex function $x \mapsto \psi(x)-\left\langle y_{i}, x\right\rangle$, we have, by first-order optimality,

$$
\left\langle\nabla \psi\left(x_{i}\right)-y_{i}, x-x_{i}\right\rangle \geq 0 \forall x \in \mathcal{X}
$$

In particular, we have

$$
\begin{aligned}
& \left\langle\nabla \psi\left(x_{1}\right)-y_{1}, x_{2}-x_{1}\right\rangle \geq 0 \\
& \left\langle\nabla \psi\left(x_{2}\right)-y_{2}, x_{1}-x_{2}\right\rangle \geq 0
\end{aligned}
$$

and summing both inequalities,

$$
\left\langle y_{2}-y_{1}, x_{2}-x_{1}\right\rangle \geq\left\langle\nabla \psi\left(x_{2}\right)-\nabla \psi\left(x_{1}\right), x_{2}-x_{1}\right\rangle
$$

By strong convexity, we have

$$
\left\langle y_{2}-y_{1}, x_{2}-x_{1}\right\rangle=\left\langle\nabla \psi\left(x_{2}\right)-\nabla \psi\left(x_{1}\right), x_{2}-x_{1}\right\rangle \geq \ell_{\psi}\left\|x_{2}-x_{1}\right\|^{2}
$$

and by definition of the dual norm, we have $\left\langle y_{2}-y_{1}, x_{2}-x_{1}\right\rangle \leq\left\|y_{2}-y_{1}\right\|_{*}\left\|x_{2}-x_{1}\right\|$. Therefore,

$$
\left\|y_{2}-y_{1}\right\|_{*}\left\|x_{2}-x_{1}\right\| \geq \ell_{\psi}\left\|x_{2}-x_{1}\right\|^{2}
$$

rearranging, we have $\left\|x_{2}-x_{1}\right\| \leq \frac{1}{\ell_{\psi}}\left\|y_{2}-y_{1}\right\|_{*}$, i.e.

$$
\begin{equation*}
\left\|\nabla \psi^{*}\left(y_{2}\right)-\nabla \psi^{*}\left(y_{1}\right)\right\| \leq \frac{1}{\ell_{\psi}}\left\|y_{2}-y_{1}\right\|_{*} \tag{1}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
\psi^{*}(x) & -\psi^{*}(y)-\left\langle\nabla \psi^{*}(y), x-y\right\rangle \\
& =\int_{0}^{1}\left\langle\nabla \psi^{*}(y+t(x-y))-\nabla \psi^{*}(y), x-y\right\rangle d t \\
& \leq\|y-x\|_{*} \int_{0}^{1}\left\|\nabla \psi^{*}(y+t(x-y))-\nabla \psi^{*}(y)\right\| d t \\
& \leq\|y-x\|_{*} \int_{0}^{1} \frac{1}{\ell_{\psi}}\|y+t(x-y)-y\|_{*} d t \\
& \leq \frac{1}{\ell_{\psi}}\|x-y\|_{*}^{2} \int_{0}^{1} t d t \\
& =\frac{1}{\ell_{\psi}}\|x-y\|_{*}^{2} \frac{1}{2}
\end{aligned}
$$

2 Equivalence of Regret with respect to elements of S and elements of \mathcal{X}

In what follows, let $\mathcal{X}=\left\{f \in L^{2}(S): f \geq 0\right.$ a.e. and $\left.\int_{S} f(s) d s=1\right\}$. Observe that \mathcal{X} is closed: We have $\mathcal{X}=\mathcal{X}_{1} \cap \mathcal{X}_{2}$, where $\mathcal{X}_{1}=\left\{f \in L^{2}(S): f \geq 0\right.$ a.e. $\}$ and $\mathcal{X}_{2}=\left\{f \in L^{2}(S): \int_{S} f(s) d s=1\right\}$. \mathcal{X}_{1} is clearly closed, and so is \mathcal{X}_{2}, being the inverse image of the closed set $\{1\}$ under the continuous mapping $f \mapsto \int_{S} f(s) d s$.

We show the equivalence between the regret with respect to elements of the set S and regret with respect to the set of Lebesgue continuous distributions on S, as stated formally in the following:

Suppose that the $\ell^{(\tau)}$ are L-Lipschitz, uniformly in time, and that S is v-uniformly fat with respect to the Lebesgue uniform measure. Then

$$
\begin{aligned}
R^{(t)} & =\sum_{\tau=1}^{t}\left\langle\ell^{(\tau)}, x^{(\tau)}\right\rangle-\min _{s \in S} \sum_{\tau=1}^{t} \ell^{(\tau)}(s) \\
& =\sum_{\tau=1}^{t}\left\langle\ell^{(\tau)}, x^{(\tau)}\right\rangle-\inf _{x \in \mathcal{X}}\left\langle\sum_{\tau=1}^{t} \ell^{(\tau)}(s), x\right\rangle
\end{aligned}
$$

Proof. Let s_{t}^{\star} be a minimizer of $\sum_{\tau=1}^{t} \ell^{(\tau)}(s)$. Then it suffices to show that for all $\epsilon>0$, there exists $x \in \mathcal{X}$ such that

$$
\left\langle\sum_{\tau=1}^{t} \ell^{(\tau)}, x\right\rangle \leq \sum_{\tau=1}^{t} \ell^{(\tau)}\left(s_{t}^{\star}\right)+\epsilon
$$

Fix $\epsilon>0$. Since S is v-uniformly fat, there exists a convex set $K_{t} \subset S$ containing s_{t}^{\star}, with $\lambda\left(K_{t}\right) \geq v$. Let S_{t} be the homothetic transform of K_{t} as given in Lemma 3, of center s_{t}^{\star} and ratio d_{t} yet to be determined. Then we have

$$
\begin{aligned}
& D\left(S_{t}\right)=d_{t} D\left(K_{t}\right) \leq d_{t} D(S) \\
& \lambda\left(S_{t}\right)=d_{t}^{n} \lambda\left(K_{t}\right)>0
\end{aligned}
$$

Now consider $x=\frac{1}{\lambda\left(S_{t}\right)} 1_{S_{t}}$. We have $x \in \mathcal{X}$, and since the $\ell(\tau)$ are uniformly L-Lipschitz,

$$
\begin{aligned}
\left\langle\sum_{\tau=1}^{t} \ell^{(\tau)}, x\right\rangle & =\sum_{\tau=1}^{t} \int_{S_{t}} \frac{1}{\lambda\left(S_{t}\right)} \ell^{(\tau)}(s) d s \\
& \leq \sum_{\tau=1}^{t} \int_{S_{t}} \frac{1}{\lambda\left(S_{t}\right)}\left(\ell^{(\tau)}\left(s_{t}^{\star}\right)+\mathrm{L} d_{t} D(S)\right) d s \\
& =t \mathrm{~L} d_{t} D(S)+\sum_{\tau=1}^{t} \ell^{(\tau)}\left(s_{t}^{\star}\right)
\end{aligned}
$$

In particular, if we choose $d_{t}=\frac{\epsilon}{t \mathrm{~L} D(S)}$, we have $\left\langle\sum_{\tau=1}^{t} \ell^{(\tau)}, x\right\rangle \leq \sum_{\tau=1}^{t} \ell^{(\tau)}\left(s_{t}^{\star}\right)+\epsilon$, which proves the claim.

3 Proof of Proposition 1

Next, we consider the dual averaging method when the regularization functional ψ is taken to be the negative entropy

$$
\psi(x)=\int_{S} x(s) \ln x(s) d s+\lambda(S)
$$

We prove Proposition 1, which show that the solution to the dual averaging iteration is given by the Hedge update rule:

Proposition 1. Let $L^{(t)} \in E^{*}$, and consider the dual averaging iteration

$$
\begin{equation*}
x^{(t+1)} \in \underset{x \in \mathcal{X}}{\arg \min }\left\langle L^{(t)}, x\right\rangle+\frac{1}{\eta_{t+1}} \psi(x) \tag{2}
\end{equation*}
$$

where ψ is the negative entropy. Then the solution $x^{(t+1)}$ is given by the Hedge update rule:

$$
x^{(t+1)}(s)=\frac{1}{\bar{Z}^{(t)}} e^{-\eta_{t+1} L^{(t)}(s)}
$$

where $\bar{Z}^{(t)}$ is the normalization constant $\bar{Z}^{(t)}=\int_{S} e^{-\eta_{t+1} L^{(t)}(s)} d s$.

Proof. Let K be the cone $K=\left\{x \in L^{2}(S): x \geq 0\right\}$, and let

$$
f(x)=\left\langle L^{(t)}, x\right\rangle+\frac{1}{\eta_{t+1}} \psi(x)+i_{K}(x)
$$

where i_{K} is the indicator function of the cone K, i.e. $i_{K}(s)=+\infty$ if $s \in K$ and 0 otherwise. The dual averaging iteration is equivalent to the following problem:

$$
\begin{array}{ll}
\operatorname{minimize}_{x \in L^{2}(S)} & f(x) \\
\text { subject to } & \langle\mathbf{1}, x\rangle=1
\end{array}
$$

where $1: S \rightarrow \mathbb{R}$ is identically equal to 1 . Using the fact that the subdifferential of the indicator i_{K} is the normal cone N_{K} given by ${ }^{1}$

$$
\forall x \in K, \partial i_{K}(x)=N_{K}(x)=\left\{g \in L^{2}(S): \sup _{y \in K}\langle g, y-x\rangle \leq 0\right\},
$$

the subdifferential of the objective function is

$$
\partial f(x)=L^{(t)}+\frac{1}{\eta_{t+1}}(1+\ln x)+N_{K}(x)
$$

First, we show that, for all x and all $g \in N_{K}(x), g x=0$ almost everywhere. Indeed, fixing $x \in K$, we have $\langle g, y-x\rangle \leq 0$ for all $y \in K$. In particular, if we consider $y=x\left(1+\frac{1}{2} 1_{g>0}-\frac{1}{2} 1_{g<0}\right)$, we have

$$
\langle g, y-x\rangle=\left\langle g, x\left(\frac{1}{2} 1_{g>0}-\frac{1}{2} 1_{g<0}\right)\right\rangle=\frac{1}{2}\langle | g|, x\rangle=\frac{1}{2} \int_{S}|g(s)| x(s) d s
$$

therefore $\frac{1}{2} \int_{S}|g(s)| x(s) d s \leq 0$, which implies that $|g| x=0$ a.e..
Now, consider the Lagrangian $\mathcal{L}: E \times \mathbb{R} \rightarrow \mathbb{R}$

$$
\mathcal{L}(x, \nu)=\left\langle L^{(t)}, x\right\rangle+\frac{1}{\eta_{t+1}} \psi(x)+i_{K}(x)+\nu(\langle\mathbf{1}, x\rangle-1)
$$

Then $\left(x^{\star}, \nu^{\star}\right)$ is an optimal pair only if

$$
\begin{aligned}
& 0 \in L^{(t)}+\frac{1}{\eta_{t+1}}\left(1+\ln x^{\star}\right)+N_{K}\left(x^{\star}\right)+\nu \mathbf{1} \\
& \left\langle\mathbf{1}, x^{\star}\right\rangle=1
\end{aligned}
$$

[^0]see for example Bauschke and Combettes 2011 Section 19.3. We can rewrite the stationarity condition in the following way:
$$
\exists g^{\star} \in N_{K}\left(x^{\star}\right) \text { such that } L^{(t)}+\frac{1}{\eta_{t+1}}\left(1+\ln x^{\star}\right)+\nu \mathbf{1}+g^{\star}=0 .
$$

Therefore,

$$
\begin{aligned}
& x^{\star}(s)=e^{-\eta_{t+1} L^{(t)}(s)} / e^{1+\eta_{t+1}\left(\nu^{\star}+g^{\star}(s)\right)} \text { a.e. } \\
& g^{\star} \in N_{K}\left(x^{\star}\right) \\
& \left\langle\mathbf{1}, x^{\star}\right\rangle=1
\end{aligned}
$$

In particular, $x^{\star}>0$ a.e., thus by the observation that $g^{\star} x^{\star}=0$ a.e., we must have $g^{\star}=0$ a.e. Therefore, the necessary conditions become

$$
\begin{aligned}
& x^{\star}(s)=\frac{e^{-\eta_{t+1} L^{(t)}(s)}}{\bar{Z}^{(t)}} \\
& \bar{Z}^{(t)}=e^{1+\eta_{t+1} \nu^{\star}} \\
& \frac{\int e^{-\eta_{t+1} L^{(t)}(s)} d s}{\bar{Z}^{(t)}}=1
\end{aligned}
$$

which proves the claim.

References

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, 2011.

Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.

[^0]: ${ }^{1}$ See for example Chapter 16 in Bauschke and Combettes

