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We present, for completeness, proofs which were omitted from the paper.

1 Proof of Lemma 4

Lemma 4. If ψ : L2(S) → R is `ψ-strongly convex w.r.t. ‖ · ‖, then ψ∗ is 1
`ψ

smooth

w.r.t. ‖ · ‖∗, that is, for all x, y,

ψ∗(x)− ψ∗(y)− 〈∇ψ∗(y), x− y〉 ≤ 1

2`ψ
‖x− y‖2∗

Proof. First, we prove that ∇ψ∗ is 1
`ψ

-Lipschitz (see for example Nesterov [2009]).

Let y1, y2 ∈ E∗, and xi = ∇ψ∗(yi). Since xi is the minimizer of the convex function
x 7→ ψ(x)− 〈yi, x〉, we have, by first-order optimality,

〈∇ψ(xi)− yi, x− xi〉 ≥ 0 ∀x ∈ X

In particular, we have

〈∇ψ(x1)− y1, x2 − x1〉 ≥ 0

〈∇ψ(x2)− y2, x1 − x2〉 ≥ 0

and summing both inequalities,

〈y2 − y1, x2 − x1〉 ≥ 〈∇ψ(x2)−∇ψ(x1), x2 − x1〉

By strong convexity, we have

〈y2 − y1, x2 − x1〉 = 〈∇ψ(x2)−∇ψ(x1), x2 − x1〉 ≥ `ψ‖x2 − x1‖2

and by definition of the dual norm, we have 〈y2 − y1, x2 − x1〉 ≤ ‖y2 − y1‖∗‖x2 − x1‖.
Therefore,

‖y2 − y1‖∗‖x2 − x1‖ ≥ `ψ‖x2 − x1‖2

rearranging, we have ‖x2 − x1‖ ≤ 1
`ψ
‖y2 − y1‖∗, i.e.

‖∇ψ∗(y2)−∇ψ∗(y1)‖ ≤ 1

`ψ
‖y2 − y1‖∗ (1)

Finally,

ψ∗(x)− ψ∗(y)− 〈∇ψ∗(y), x− y〉

=

∫ 1

0

〈∇ψ∗(y + t(x− y))−∇ψ∗(y), x− y〉 dt

≤ ‖y − x‖∗
∫ 1

0

‖∇ψ∗(y + t(x− y))−∇ψ∗(y)‖dt

≤ ‖y − x‖∗
∫ 1

0

1

`ψ
‖y + t(x− y)− y‖∗dt by (1)

≤ 1

`ψ
‖x− y‖2∗

∫ 1

0

tdt

=
1

`ψ
‖x− y‖2∗

1

2
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2 Equivalence of Regret with respect to elements of
S and elements of X

In what follows, let X = {f ∈ L2(S) : f ≥ 0 a.e. and
∫
S
f(s)ds = 1}. Observe that

X is closed: We have X = X1 ∩ X2, where X1 = {f ∈ L2(S) : f ≥ 0 a.e.} and
X2 = {f ∈ L2(S) :

∫
S
f(s)ds = 1}. X1 is clearly closed, and so is X2, being the inverse

image of the closed set {1} under the continuous mapping f 7→
∫
S
f(s)ds.

We show the equivalence between the regret with respect to elements of the set S
and regret with respect to the set of Lebesgue continuous distributions on S, as stated
formally in the following:

Suppose that the `(τ) are L-Lipschitz, uniformly in time, and that S is v-uniformly
fat with respect to the Lebesgue uniform measure. Then

R(t) =

t∑
τ=1

〈
`(τ), x(τ)

〉
−min

s∈S

t∑
τ=1

`(τ)(s)

=
t∑

τ=1

〈
`(τ), x(τ)

〉
− inf
x∈X

〈
t∑

τ=1

`(τ)(s), x

〉

Proof. Let s?t be a minimizer of
∑t
τ=1 `

(τ)(s). Then it suffices to show that for all ε > 0,
there exists x ∈ X such that〈

t∑
τ=1

`(τ), x

〉
≤

t∑
τ=1

`(τ)(s?t ) + ε

Fix ε > 0. Since S is v-uniformly fat, there exists a convex set Kt ⊂ S containing s?t ,
with λ(Kt) ≥ v. Let St be the homothetic transform of Kt as given in Lemma 3, of
center s?t and ratio dt yet to be determined. Then we have

D(St) = dtD(Kt) ≤ dtD(S)

λ(St) = dnt λ(Kt) > 0

Now consider x = 1
λ(St)

1St . We have x ∈ X , and since the `(τ) are uniformly L-Lipschitz,〈
t∑

τ=1

`(τ), x

〉
=

t∑
τ=1

∫
St

1

λ(St)
`(τ)(s)ds

≤
t∑

τ=1

∫
St

1

λ(St)
(`(τ)(s?t ) + LdtD(S))ds

= tLdtD(S) +

t∑
τ=1

`(τ)(s?t )

In particular, if we choose dt = ε
tLD(S) , we have

〈∑t
τ=1 `

(τ), x
〉
≤
∑t
τ=1 `

(τ)(s?t ) + ε,

which proves the claim.
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3 Proof of Proposition 1

Next, we consider the dual averaging method when the regularization functional ψ is
taken to be the negative entropy

ψ(x) =

∫
S

x(s) lnx(s)ds+ λ(S)

We prove Proposition 1, which show that the solution to the dual averaging iteration is
given by the Hedge update rule:

Proposition 1. Let L(t) ∈ E∗, and consider the dual averaging iteration

x(t+1) ∈ arg min
x∈X

〈
L(t), x

〉
+

1

ηt+1
ψ(x) (2)

where ψ is the negative entropy. Then the solution x(t+1) is given by the Hedge update
rule:

x(t+1)(s) =
1

Z̄(t)
e−ηt+1L

(t)(s)

where Z̄(t) is the normalization constant Z̄(t) =
∫
S
e−ηt+1L

(t)(s)ds.

Proof. Let K be the cone K = {x ∈ L2(S) : x ≥ 0}, and let

f(x) =
〈
L(t), x

〉
+

1

ηt+1
ψ(x) + iK(x)

where iK is the indicator function of the cone K, i.e. iK(s) = +∞ if s ∈ K and 0
otherwise. The dual averaging iteration is equivalent to the following problem:

minimizex∈L2(S) f(x)

subject to 〈1, x〉 = 1

where 1 : S → R is identically equal to 1. Using the fact that the subdifferential of the
indicator iK is the normal cone NK given by1

∀x ∈ K, ∂iK(x) = NK(x) =
{
g ∈ L2(S) : sup

y∈K
〈g, y − x〉 ≤ 0

}
,

the subdifferential of the objective function is

∂f(x) = L(t) +
1

ηt+1
(1 + lnx) +NK(x)

First, we show that, for all x and all g ∈ NK(x), gx = 0 almost everywhere. Indeed,
fixing x ∈ K, we have 〈g, y − x〉 ≤ 0 for all y ∈ K. In particular, if we consider
y = x

(
1 + 1

21g>0 − 1
21g<0

)
, we have

〈g, y − x〉 =

〈
g, x

(
1

2
1g>0 −

1

2
1g<0

)〉
=

1

2
〈|g|, x〉 =

1

2

∫
S

|g(s)|x(s)ds

therefore 1
2

∫
S
|g(s)|x(s)ds ≤ 0, which implies that |g|x = 0 a.e..

Now, consider the Lagrangian L : E × R→ R

L(x, ν) =
〈
L(t), x

〉
+

1

ηt+1
ψ(x) + iK(x) + ν(〈1, x〉 − 1)

Then (x?, ν?) is an optimal pair only if

0 ∈ L(t) +
1

ηt+1
(1 + lnx?) +NK(x?) + ν1

〈1, x?〉 = 1

1See for example Chapter 16 in Bauschke and Combettes [2011]
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see for example Bauschke and Combettes [2011] Section 19.3. We can rewrite the sta-
tionarity condition in the following way:

∃ g? ∈ NK(x?) such that L(t) +
1

ηt+1
(1 + lnx?) + ν1 + g? = 0.

Therefore,

x?(s) = e−ηt+1L
(t)(s)/e1+ηt+1(ν

?+g?(s)) a.e.

g? ∈ NK(x?)

〈1, x?〉 = 1

In particular, x? > 0 a.e., thus by the observation that g?x? = 0 a.e., we must have
g? = 0 a.e. Therefore, the necessary conditions become

x?(s) =
e−ηt+1L

(t)(s)

Z̄(t)

Z̄(t) = e1+ηt+1ν
?∫

e−ηt+1L
(t)(s)ds

Z̄(t)
= 1

which proves the claim.
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