Attribute Efficient Linear Regression with Distribution-Dependent Sampling

A. Algorithms
A.1. Two-Phased DDAERR

Algorithm 2 Two-Phased DDAERR

Parametersing, ms, 5, B,n > 0

Input: training setS' = {(x¢, 1)} e, +m,) @NAE > 0

Output: regressow with ||w||, < B

. Initialize wy # 0, ||w1 ||, < B arbitrarily

2: Initialize A, counts andsquare_sums - arrays of size
d with zeros

: fort =1tom, do

forr=1tok+1do
Picki, , € [d] uniformly at random
counts [ig ] < counts [iy ] + 1
square_sums [iy] <« square_sums [iy,] +
Xy [ie,r]

end for

: end for

10: for i = 1tod do .

11 A i) deeresunsll

12: endfor .

13: dlog =+
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A.2. GAELR

Algorithm 3 GAELR
ParametersB,n > 0 andg; for i € [d]
Input:  training setS' = {(x, y¢)} e,y @ndk > 0
Output: regressofw with ||w|; < B
1: Initialize z| «— 14,2] « 14
2: for t = 1tomdo
8 wi (2 —z ) B/ (2], + |z [],)

4. forr=1tokdo
5: Pick s, € [d] with probability ¢;, . and observe
X lit,r]
6: Xt,r < Qii,rXt [Z.tﬂ«] LT
7: end for
8: it — % Zle it,r .
9:  Choosej; € [d] with probability p;, = Ul and
observex; [j;]
10: (bt — u;]fj X¢ []t] — Yt
11 g ¢ Xt
12: fori=1toddo
13: 8t [i] = clip (g [i], 1/n)
14 ozl [i] 2 [i] - exp (—ng: [i])
15: zy, o [1] — 2y [i] - exp (+n8: [i])
16: end for
17: end for
18: w— L3 wy
A.3. Two-Phased DDAELR
Algorithm 4 Two-Phased DDAELR
Parametersing, ms, 5, B,n > 0
Input:  training setS' = {(x¢, Y1)}, +m,) @NdE >0

Output: regressow with ||w|| < B

1: Initialize w1 # 0, ||w1 ||, < B arbitrarily

2: Initialize A, counts andsquare_sums - arrays of size
d with zeros
for t =1tom, do

The GAELR algorithm is based in the EG algorithm with 3:

gradient estimates. The EG algorithm goes over the train-4:
ing set, and for each example builds an unbiased estimatoi5:
of the gradient and clips it (where tl&p operation is de-  6:
fined asclip(z, ¢) = max {min {z,c},—c}) to make the 7:

updates more robust. Afterwards, the algorithm updates

by performing multiplicative updates of size The result 8:
is projected over thé,; ball of size B, yieldingw;, ;. At 9:
10:

the end, the algorithm outputs the average ofsall

The gradient estimate is done here similarly to the GAERR'
12: end for

algorithm: we usé: attributes to estimate the data pait

and1 attribute to estimate the inner product. The only dif- 13:
14:

ference here is that here we yse = |w, ;,| / ||w¢||, when

estimating the inner product, insteadiof = w?; / [w: |5
as in the GAERR algorithm.

forr=1tok+1do
Picki, , € [d] uniformly at random
counts [y r] < counts [i¢ ] + 1
square_sums [iy,] «— square_sums[iz, ] +
Xy [it7r]2
end for
end for
fori=1toddo

. square_sums|i]
A [Z] - countsli]

dlog % 1)
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B. Additional Experiment - Covertype 1.2 ‘ ‘

+—+¢ DDAELR
In this experiment we used the Covertygglgckard & F-1 Two-Phased DDAELR
Dean 1999 data set which aims to predict the forest cover 5 1-1} Y- AELR 1
type i.e. the dominant species of tree, from cartographi(E # 4 Online Lasso
variables. This data set is designed for multi class classifig 1.0 1 +—t Offline Lasso ERM

cation, but we reduce it to binary classification by choosingg
one of the tree species and address the problem by regresS

ing the—1 and+1 labels. For both the Ridge and Lasso n§0.9—
scenarios, we used a budgettof- 1 = 5. For this dataset 2
we haved = 54, prigge = 0.49 andp| asso= 0.08. o os
< 0.
110 ‘ ‘ %40 1.0 2.0 3.0 4.0 5.0
+—4 DDAERR . . . 3. 4 .
Number of Attributes x10*
1.05¢ k-1 Two-Phased DDAERR || umber of ATibutes x
00 ; ; QE:{'R Rid Figure 6.Test error for the algorithms with+1 = 5 in the Lasso
niine Ridge scenario over the classification task in the Cover Type data set.
0.95" t—i Offline Ridge ERM

C. Proofs
C.1. Proof of Theorem3.1

o
®
1]

°
©
°

Average Squared Test Error
o
[}
=)

We follow the path of the proof of Theorem 3.3 iHgzan
& Koren, 2012 by using the standard analysis of the OGD

0.75}
algorithm. Its expected excess risk bound is stated in the
0785 1.0 2.0 3.0 2.0 5.0 following lemma.
Number of Attributes x10* Lemma C.1 (Zinkevich, 2003) For any |[w*|| < B, we
have

Figure 5.Test error for the algorithms with+ 1 = 5 in the Ridge m m
scenario over the classification task in the Cover Type data set. ET (Wy — w") 2 ﬂ IE; ”2 (4)
E t E 2
2

t=1

The results for the Ridge scenario appear in figere To use this lemma, first we need to prove that the GAERR
Again, our DDAERR algorithm performs considerably bet- algorithm actually corresponds to OGD with unbiased gra-
ter than the AERR algorithm. Also, the DDAERR algo- dient estimates, as implied by the following lemma:

rithm performs similarly to the online Ridge algorithm for | emma C.2. The vectoig; is an unbiased estimator of the
asmall number of examined attributes. The performance ofradientg, = (WI'x; — yi) %, thatisE4 [&/] = g

the Two-Phased DDAERR is between those of the AERR

algorithm and the DDAERR algorithm, and given a largerNow, we can take the expectation of equatidhwith re-
training set will probably converge towards the DDAERR spect to the randomization of the algorithm and the data
algorithm as the number of observed attributes grow. Thiglistribution, and using Lemm@.2we have

time, however, the full-information Ridge algorithms out- m

perform the attribute efficient ones. Z g/ (Wi —

The results for the Lasso scenario in figuseare sim- t=1

ilar: The DDAELR algorithm performs better than the On the other hand, the convexity of gives
AELR algorithm. Also, the performance of the Two- ¢, (w,) — ¢, (w*) < g7 (w, —w*). Together with
Phased DDAELR is between those of the AELR algorithmihe above we have

and the DDAELR algorithm and converges towards the
DDAELR algorithm, as the number of attributes grows. For 1 & 1 & .
D, lzft Wy ] <Ep.a [ th (w )‘|

282
< —+ gG’Zm

Ep,a
n

a small number of examined attributes, the DDAELR algo-

rithm performs similarly to the online Lasso algorithm but )

as the number of examined attributes grow, the algorithms + 2B~ + QG2,
drift apart.

t=1
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or

2B2
Ep.a < Lp(w) + — + 2¢g2,
nmm 2

1 m
—> Lp(wi)
t=1

Using the convexity of.p and Jensen’s inequality, the the-

orem follows.

Proof of LemmaC.2 First, it is straightforward to see
E4 [Xi,] = x, for all r thus alsoE 4 [x;] = x;. Also, a
simple calculation reveals that

bj

d
- we
Ea {(bt} =>_pj ( L [4] - yt) = Wi X; — Yr.
j=1

Sincex; andggt are independent givex;, we obtain that
Ea [8] = (Wi x; — y:)-x¢, Which is the requiredradient.
O

C.2. Proof of Lemma3.2

We will use two auxiliary lemmas. The first will help us
bound the 2-norm of the data point estimator.
Lemma C.3. For every distribution (¢1,..,q4) wWhere

¢ > 0and Y q = 1, we haveEp 4 |[%3] <

~ 2 — 2
LEp, (IR 3] + 552Ep [IxI3]

The second will help us bound the square of the estimator

of the inner product (minus the label).

Using the convexity of the 2-norm and Jensen’s inequality,
the lemma follavs. O

Proof of LemmaC.4. Recalling|y;| < B and using the in-
equality(a — b)* < 2 (a® + b?), by a straightforward cal-

culation we obtain
w 2
t,J .
(i)
by

2
Wt 5 .
(”Xt [ﬁ]) +y?
P

d
1
<2)° Ijjwf,jED [22] + 22

Jj=1

2 2
= 2|wil3Ep [IxI3] + 25

Ep,a [@2} =Ep,a

<2Ep 4

< 4B2.

C.3. Proof of Theorem3.3

The theorem follows directly from Theoren8.1,
Lemma 3.2, equation {) and the calculatedy;-s in
equation p).

C.4. Proof of Theorem3.4

The main goal of the proof is to bound the expected

Lemma C.4. Using our sampling method we have squared 2-norm of the gradient estimator from above. By

~2
Ep,a [cbt } < 4B2.
Now, the lemma follows directly from Lemmas.3 and
C.4, using the independence &f and ¢, given x; and
x|, < 1.

Proof of LemmaC.3. From the definition ok;,

k 2
> K
r=1

1 k
~ 2
= =5 Y Ep.a [[Re, 3]+
r=1

1 k k
3D B e )]

r=1 s#r

- 1
Ep.a [HXtH;} = E]ED,A

2

Sincex;, and x;, are independent of each other and

Ep a [X:r] = Ep [x], we finally have

~ 2] 1 - 2] K-k 2
Ep.a (%3] = 2Ep.a [I%er 3] + = IEo I3
1 k—

~ 2 1 2
= 2Ep.a [I%e, 3] + = IEp ]I

k

using Lemma3.2, all that remains is to upper bound
Ep, 4, [||§MH§} . In the next lemma we show two different

upper bounds oBp 4, {Hiwnﬂ. The first states that with

probability 1 over the first phas&p 4, [||§t,r||§} < 5d,
meaning that up to a constant factor the bound is the same
as in the AERR algorithm. The second bound decreases in
¢, and will help up to analyze the convergence rate of the
algorithm.

Lemma C.5. For all m; andt > mg, with probability 1
over the first phase, we have

Ep,a, |I%ell3] <54,

and with probability> 1 — § over the first phase, we have

~ 5
Ep, 4, [||Xt,rH§} <2|Ep [’ﬂH;”ﬁd IEp 2|1

The proof can be found in Append&.5.

We will treat each bound separately, and later join the re-
sults into a single lemma. First, we prove that with a proper
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choice ofy, the bound of our Two-Phased DDAERR algo- The proof can be found in Append&.8.
rithm is with probabilityl over the first phase equal to the
bound of the AERR algorithm, up to a constant factor.
Lemma C.6. Letw be the output of Two-Phased DDAERR We could always naively bounHi]ED [ ]H% from above

. by d, but then, even ifn; tends to infinity, the bound of the
when run withy = 6dm - Then with probabilityl over algorithm will not be better than the bound of the AERR

thehﬁHrSt Fﬁhase, we have for alh, and for anyw* € R?  gjgorithm. A better estimator is stated in the next lemma:
with ||[w*||, < B,

The last thing we require is an estimator ffp [x?]|, .
2

Lemma C.9. The estimatord = |[|2A + Y¢[,, sat-
_ 6d isfies, with probability> 1 — § over the first phase
. *) < 2 . 1 - ’
Ep.a, (Lo (W) = Lo (w") < 4By /22 15 (2], < B < 8[[Ep [, + Sae.
The proof can be found in Append&.6. The proof can be found in Append&.9.

Assume for simplicity that we have an estimator for Finally, the proof of the main theorem is straightforward,
|Ep [x2]| , that satisfies7 > |Ep [x ]H We can use using LemmaC.8, LemmaC.9and some algebraic manip-

it to calculate an appropriate step size and to bound the riskylations.
as shown in the next lemma.

Lemma C.7. Assume we have a valiiethat satisfies7 >  C.5. Proof of LemmacC.5
2 —
[Ep [x ]H% Letw be the output of Two-Phased DDAERR st e state a simple probabilistic lemma that will be

when run withp = 1 . Then with  used to bound our estimates for the second moment of the
\/mz (%H+%\/§d\/ﬁﬁ+1) attributes. The proof appears a bit later in the section.
probability > 1 — § over the first phase, we have for ail, Lemma C.10. Let Zy. Zs. ... Z, be i.i.d random vari-
.10. s 2y ey Ly A

* d \api * ~
and for anyw™ & R® with [|w*||, < B, ables. Z; € [0,1]. LetE[Z] = 13" | Z; be their av-
Ep 4, [Lp (W)] — Lp (w*) < erage. Then, with probabilityy 1 — §

2 [9 2 /5 E[Z]<2E[Z]+7log%
ZH+ fd\/Hﬁ+ 1. = 6n
vme \ k kV3

Also, with probability> 1 — §
The proof can be found in Appendx.7.

E[z] >

5log%

E[Z] - ™

DN | =

This lemma gives a non-trivial expected excess risk bound
only if e is small enough, but whem; is small, this is
not necessarily the case. Therefore, we would like to unité\e prefer to use this lemma rather than a direct application
these two lemmas to ensure that even in the worst case, wf the more standard Hoeffding or Bernstein inequality, be-
will not have a worse bound than the AERR algorithm.  cause we are interested in a fast convergence rajgeaxhd

Lemma C.8. Assume we have a valliethat satisfies7 >  are willing to pay the price of an additional constant factor
|Ep [x]]|.. Letw be the output of Two-Phased DDAERR in front of the expectation.
2

when run withy = max (n1,72) wheren; = \/; and
Ny = Ep. 4. |:H§t7‘|‘2:| =Epa |:§t,r [it,r]2:|
\/m2 <2H+2\[d\/7\/(il.:f)ml +k> ’ o 2

d
1 2
Then for allm; and for anyw* € R¢ with ||w*||, < B, = Z*ED [27]
with probability 1 over the first phase, we have

2 _ B\~ Epls]
Ep,a, [Lp (W)] — Lp (W) < \4/%\/? Z jl+ 6 EZ \/ﬁ

Also, with probability> 1 —§ over the first phase, we have For alli € [d] let T; be a random variable describing the

Ep a, [Lp (W)] — Lp (w*) < amount of times the algorithm sampled théh attribute
e _ during the first phase. For every realizatigrof T;, since
AB2 dlog 24 T; and the samples themselves are independent, we can use
N kH + = \/>dxf T +1. LemmaC.10and by the union bound have that with proba-
2 1

bility larger thanl — &, A [i] < 2Ep [2?] + ZEa, [e], and
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Alfi] > %]ED [xﬂ — %EAl [e;] wheree; = log Clearly, As this bound is independent afit holds with probability
Ea, [Ti] = 7(’”?"“ , and using the convexny of(z) =2 1 over the first phase.

T

we haveE 4, [e;] > dlog 5 Therefore, with proba- Forthe second part of the lemma, we have with probability

- = (etmy >1-46
bility > 1 — ¢ over the first phase, we have = '
Ai] < 2Ep [22] + Ze Ep,a, {Himllﬂ
221 9% ®)
A [’L] Z QED X — €.

3
<2 \/E =
Note that these equations also hold trivially for any 1 Z D EZ «/ED + €

as with probability 1 we have? < 1 for all i € [d].

Now we can continue and get that, <2 Z mz %12]
= =1 VED [#7]
Ep.a, (1. 13]
<23 \Joo ]
Z ol Z \/W
e+ e 5 Ep [z7]
6 +2 Z V geZ N

i=1 /5 (Ep [22] +€) <2|Ep [x +2\/7 IEp [x2]|| \[

d 2
E - .
=2 Z Ep [22] + ge Z Lxl]. which concludes the proof,

Proof of LemmaC.1Q Let us denote the variance 4f by
We shall bound this value in two ways. For the first part of > = E [Z2] — E [Z]?. By Bernstein's inequality, with

the lemma, we have probability> 1 — 4, we have

Ep, 4, [||>~<tr||§} 202 log .
. : A gs 2logs
4 ) E[Z] <E[Z]+ - + et

¢ Ep [a7]

Using Z; € [0,1], we obtaine® = E[7?] - E[Z]® <
E [2?] < E[Z]. Plugging back in the expression 8 Z],

. 2E [Z]logi 2log i

Using the fact that the geometric mean is smaller or equal
Continuing, we upper bound the above by to the arithmetic mean, we have

2E[Z] log} 2logs

d d ]ED xg ~
§2;./ED[I§];\/E£7[:C]Z] E[Z] <E[Z]+ —— + =+ o

or,

d 5 d Ep [xﬂ N 7log%
+2Z 5627 E[Z] <2RE[Z]+ — =,
j=1 =
which concludes the first part of the proof.
<2 HED [ + 2d\/72 ED ] Similarly, by Bernstein’s inequality again, with probability

= > 1 -6, we have
< 2|[Ep [<7]], +2/ 24

- 3 1 1

R 202log = 2log +

< 5d. BZ] 2E(z] - T8 - 255
n 3n
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Usingo? < E[Z], this turns to

210g%
3n

C.8. Proof of LemmaC.8

First, we state a simple lemma that will allow us to combine
two risk bounds, each is achieved by a different valug. of

Lemma C.11. Let f (n)

% + nBG? for some posi-

Again using the fact that the geometric mean is smaller of V€ constants4, B, G, whereG < min (G1,G). Let

equal to the arithmetic mean, we have
R E[Z] 2log: 2log+
iz >E[z - EZ_2les 2le;
2 2n 3n
or,
R 1 5log +
£(2) > SE[7] - 2553,
2 3n

which concludes thproof.

C.6. Proof of LemmaC.6

First, using Theorer3.1 on the second phase of the algo-
rithm, we have

Ep 4, [Lp (W)] — Lp (w

Now we use the first part of Lemm@.5, plug it into
Lemma3.2 and obtain that with probability, we have

G? < 4B? (32 +1) < 24B%*¢. Pluggingn = k

6dm2
into equation §) finishes the proof.
C.7. Proof of LemmacC.7
We use the second part of LemmaC.5
plug it into Lemma 3.2 and obtain that
with probability > 1 - 6, we have G2 <
AB? (2 1B (621, + 24/5d,/IED 2115 \/+1)
We denote G2 = 4B2(%H+E\/;d\/ﬁ\/€+l).
Since H > ||Ep [x?]|, we haveG? < G2, Plug-
2
gngn = 25— = L into
VGms mg(%HJr%\/%d\/ﬁﬁH)
equation ), we get
Ep,a, [Lp (W)] —Lp (W)
2
<28 e
nmg 2
282 —
<= +T’G
nms
<22 2B /%

i 2H+2\/€d\/ﬁ\f+1
T EVS e

-7

N =
min (f

Giffor i = 1,2. Then f (max (11,72)) <
(m), f(n2)).

By LemmaC.6, usingn = we have with proba-

12dm !

bility 1,
Ep. a, [Lp (W)] — Lp (w*) < 4B2 6d.
D, A, |[LD D S kg
Similarly, by Lemma C.7, using 7 =
L , we have with proba-
2d
\sz (%H+%\/§d\/ﬁ\/ %i’ij} +1>
bility > 1 — 9,
Ep,a, [Lp (W)] — Lp (W")
2 dlog 24
<ABT 122 \/7df Skt )
vma \ k (k+1)m,

Using Theoren8.1, the expected excess risk bound has the
form of the function in LemmaC.11, and the theorem fol-
lows directly.

Proof of LemmaC.11 Assume without loss of generality
thatG; > G, therefore we also havg > 7. Itis enough
to provef (n2) < f (n1) which follows directly by simple
algebraiomanipulations. O

C.9. Proof of LemmaC.9

First, using the second inequality in equatids) (ve

have with probability> 1 — 4, that |[Ep [x?]]|.

|2A + 12¢||,. Using the first inequality in equaiiorf:)(

and the iden2tity(\a + b||% <2 ||a||% +2 Hb||% we can see
that with probability> 1 — 9,

H2A+ B < H4IED [x*] + LLH L
3 1 6 3 1
" > ()
<8[Ep [’ + Fd%e.

C.10. Proof of Theorem4.1

Our analysis is based on the analysistitatan & Koren
2012 and brought here for completeness. First, we state
the second-order bound for the EG algorithm.
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Lemma C.12(simplified version of Lemma I.3 of§lark- ~ someG > 0. Then, for0 < n < % we have
son et al.2012). Letn > 0, and letcy, .., c; be an arbi-

trary sequence of vectors iR", with c; [i] > —% for all m

tand alli € [n]. Define a sequence,, .., .zp by letting Ep,a [Z g (wi— W*)] <

z1 = 1, andfort > 1, t=1

+ 4BnG*m.

zi41 [i] = 2 [i] - exp (—nc, [i]) i=1,.,n. Ep,a LZ; gl (we—w")

Then, for the vectorp; = —Z_ we have .
Pt =TT, Using these lemmas, we proceed to the proof of the theo-

. . . rem. First, from LemmaC.2, as the GAERR and GAELR
. . logn Igorithm build the gradient estimator using the same
Te < + + Te2. alg 9 9
;pt = i) ;Ct i n U;pt “t method, we havé 4 [g,] = g:. From this follows that
Ea [Yie 8 (we —w*)] = Ea [2o02, gf (we —w")].
. Combining this with Lemmag.14andC.16 for 5 < %
Now we examine the vectors = (z;,z;) € R** and e have

g = (8 —&) € R*, and setting; = 74— We have the
ti1
following lemma:

Lemma C.13(Lemma 3.5 of Hazan & Koren2012). Ep 4 i el (wy —w*)| < Blog2d + 5BnG2m.
t=1
" _ o, .. log2d N2
T T
Zpt g < e g [i] + " +szt (&) - Proceeding as in the proof of Theorednl finishes the
t=1 t=1 t=1

proof of Theoremt. 1

Using this lemma, we establish an expected excess risk qof of Lemmac.12 Using the fact that” < 1+ + 22

bound with respect to the clipped linear functigysw: for = < 1. we have
Lemma C.14(Lemma 3.6 of Hazan & Koren2012). As- "
sume thaf|Ep 4 [g7] | < G*for all ¢, for someG > 0. lzesa |, = Zzt ] - el
Then, for any|w*||, < B, we have f &

o ] <>zl (1= el + o i)
g W =1
P 2T 2),

log 94 = ||z, - (1 - UptTCt + 1N°Pt C}
+B ( 08 +17G2m) .
n

Ep,a lz gtTWt] <Ep.a
t=1

and sincee* > 1 4 z for z € R, this implies by induction

that
For the proof of Lemm&.16we will need a simple lemma, T
that allows us to bound the deviation of the expected valuelog ||zr.1 ||, =logn + » log (1 - np{c; +7°p{ c})
of a clipped random variable from that of the original vari- t=1
able, in terms of its variance. T T
T 2 T .2
Lemma C.15. Let X be a random variable withE [X]| < < logn —n ; P cttn Z; Pt €t
¢ for someC > 0. Then for the clipped variablél = = =
clip (X, C) = max {min {X, C}, —C} we have On the other hand, we have
- Var [X] n T _
|E[X] -E[X]| <2 o log |zr41[l, =log Y J] et
=1 t=1
The next step is to relate the risk generated by the linear 1o ﬁe”ct“*]
functionsg! w, to that generated by the clipped functions, - gt=1
g;fw. T
Lemma C.16 (A correction of Lemma 3.7 ofHazan & = —nZCt [i*] .
Koren 2012). Assume thafE [g?] || < G forall ¢, for t=1
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Combining these two and rearranging, we obtain Hence, denoting by: the probability measure ok, we
obtain
- " . logn
T *
Pic <) clif]+ +n) P c .
; ¢ ; n ; b |1E[X}—E[X]y§/ (x+0)du+/ (z—C)dp
< —C z>C
for anyi*, which completes thproof. O < / (x —C)dp
ac>C’
2
Proof of LemmaC.13 To see how LemmaC.13 follows <z />c = )" dp
from LemmacC.12 note that we can write the update rule Var

of the GAELR algorithm in the terms of the augmented < c
vectorsz; andg; as follows
. , Similarly one can prove thatE [X] — E[X]

ziy1 [i] = 2 [i] - exp (—n&; [i]) i=1..,2d —2Var [X] /C, and the result follas.

v

That s,z 1 is obtained frome,; by a multiplicative update
based on the vect@;. Noticing that||gi||.. = IIgtllc < Proof of LemmaC.16 Notice that|[Ep 4 [82] [-ye

1 i a
;» we see from Lemmg&.12that for any:*, implies||Ep, 4 (g, <G as
N N Jog2d IS IEp 4 & E Pl <|Ep.alg?]ll
dopig <) &+ " +n) pi (&) palgdle = [[Epalall] <o lell
t=1 t=1 t=1

Sinceg[i| = clip(g[i],1/n) and|Ep 4 [g: [i]]| < G <
wherep; = ¢, which gives thdemma. O 1/2nthe above lemma implies that

— - ~ - ~ 12 2
Proof of LemmaC.14 Notice that by our notation, [Ep.a (8 [l = Epa (& il]] < 21Ep,4 [gt ] } < MG

m m 1 i o, — O 2 -
_— (2,2, ) (&, — for all 1, yvhlch mea*nsﬂEaA g . gt]”o_o < 2nG*. To
Zpt g = Z Zwt gt gether with[|w, — w*||, < 2B, this implies,
t=1 t=1 £ H1 + ||z H1
and Epa |(& — &) (wi— W*)} < 4nG=.
B B I 1o Summing ovet = 1, .., m, and taking the expectations, we
— < — ) PR} ’ y
mm;gt Iwl 25 B ZW & =5 ZW &t obtain thelemma. O

for anyw* with [|w*||, < B. Plugging into the bound of ~C-11. Proof of Lemma4.2

LemmaC.13 we get We will use two auxiliary lemmas. The first will help us

bound the infinity norm of the data point estimator.
m 1 2d m - - .
Z )< B ( o8 +antT (g;)2> . Lemma C.17. For every distribution (g1, ..,q4) Where
=1 K @ > 0andi € [d, we have|Ep [X7]]
max; +Ep a [X7, [i]] + 52 Ep [|x] o)

Finally, taking the expectation with respect to the random-

?zatlon ofthe algo_rlltr;m and the data d~|§tr|butlon aznd notic- The second will help us bound the square of the estimator
ing thatHIE:D,A [(gt) }HOO < |[Ep,a [87]]|. < G* the  of the inner product (minus the label).
O

proofiscomplete. Lemma C.18. Using our sampling method we have

~2
Epoa[é0 | <4B%

Proof of LemmaC.15 As a first step, note that far > C

we haver — E [X] > C/2, so that Now, the lemma follows directly from these lemmas, using

the independence &f; andggt givenx; and the assumption
Clx—C)<2@—-E[X])(z—-C)<2(z-E[X])>.  of x| <1
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Proof of LemmaC.17. From the definition ok, we have  all C; are equal, yet they still yield the minimal value for
max; ~Ep [2?]. LetI = {i|C; = maxz;C;}, andiy be

~92 7
[Ep,a %] an index for whichC;, < max;C;, which exists, by our
1 E 2 assumption. FoA > 0, consider a new set af-s, such
= ||Ep.a (k Zit,r) thatq) = qi, — A, andg, = ¢; + % fori € I. For a
r=1 o small enoughy, still C} | < maijj'-. Note that this is still

1 IIE k a valid assignment of probabilities beca@}g:l g =1
= > Epa %] +> Epal.| . and allg > 0 for a small enough. However,maz;C;
r=1 r#s is smaller thannax;C;, in contradiction to the assump-

tion. Therefore, all’; are equal and the minimal value is
where we used the fact that . andx; ; are independent of  attained wheny; = %
each other. Now using the triangle inequality on the infinity j=1En 7]
norm and the fact thdip 4 [x; ] = Ep [x], we have

. %]l <

o0

C.13. Proof of Theorem4.4

If m > log2d, we haven < % and the theorem follows

1 —1 ; :
max ~Ep 4 [, [i] + k-1 HED [x]2H _ directly from Theorem.1, Lemma4.2, equation §) and
ik k = the calculated;-s in Lemma4.3.
Using the convexity of the infinity norm and Jensen’s in-
equality, the lemma folls. O C.14. Proof of Theorem4.5

. . The main goal of the proof is to bound the expected
Proof Of, Lemmecéls Reca2lllng2|yt| < B a”‘?' using the squared infinity-norm of the gradient estimator from above.
inequality (a —b)” < 2 (a” +b?), by a straightforward By using Lemma4.2, all that remains is to upper bound

calculation we obtain: |Ep.a [X7,]]| , as we do in the next lemma.
2
~2 Wy 5 ]
Ep, a [¢t } =Ep,a (pthXt [je] — yt) ] Lemma C.19. For all t > my, the following bound
J
9 holds with probabilityl if ¢ = 1 and with probability>
Wt 4 . H
<2Ep. 4 (mxt[]to +yt2 1-6,ife<1
pj
4
<2 —w? Ep [2?] +2B> <2 2 20
< ;pj i4Ep [7]] |Ep.a. (%], < 41[ED [<]|], + e
S ffwi|
<2)° ﬁw? ;+2B
j=1 17 The proof can be found in Appendx.15
d L -
< 2wy Z lwy ;| + 2B In the Lasso scenario it is sufficient to use one bound (com-

pare to LemmaC.5in the Ridge scenario) as we are able

to join the two regimes of by ensurings < 1 (Algorithm

4, line 4). Using this bound, the proof of the theorem is
0 straightforward. First, using Theorefml on the second

phase of the algorithm, we have

j=1
< 4B2.

C.12. Proof of Lemma4.3

The optimization problem is equivalent to log 2d

) ED,A2 [LD (W)] — Lp (W*) <B ( s + 577G2> .
minimize  max —Ep [27] 8
& dz 4 Now we use LemmaC.19 plug it into Lemma4.2 and
. . haveG? < 4B? (% ||Ep [x?]|, + 22de + 1) with prob-

;= i > 0. I - k Al 3k
subject to Z;qz L, Vig; 20 ability 1 if ¢ = 1 and with probability> 1 — 4,
1= —

if ¢ < 1. We continue by denotingG?2 =

if. and  4B% (1 [|2A + Y¢||, + 22de +1) and by using equa-

Let C; = Note thatq; = W
3 j=1 L&D |Z7 . . -5 . o
only if, all C; are equal. Assume by contradiction that nottion (5) we obtainG* < G2. Pluggingn = \/7;7%,2:2 =
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klog 2d : :
\/2032m2(8|A|1+20d6+k) into equation §), we have

D (W)
+5 G2>

Ep, 4, [Lp (W

o
<

og 2d

1og 2d

man

<B +507 )

5G2 log 2d
ma

<4Bgf> (4]]24 + ], +

kmg

<2B

Dde + k) log 2d

Using

14 10
2A + ?6 < H4ED [x2] + Fe + ?6

17
H1+§

H 10

1

)

<4|[Ep [x°] de,

we have
Ep,a, [Lp (W)] — Lp (W")
< 15? \/ 5 (16 | b)), +

< AB? 5(16 |Ep [x2]]]; + 88de + k) log 2d
- kma

Bde + Zde + k) log 2d
km2

If e =1, we have

432\/5 (16 |Ep [x2]|], + 2de + k) log 2d

ka

dlog2d
ma

< 61B2

with probability 1. Otherwise plugging ine =

dlog 22 ..
(S 1) finishes the proof.

min (

C.15. Proof of LemmacC.19

Using the definition ok; ,,

£, 2111, = maxEp,a, [%2, 1]

1

=> (4n+

j=1

13 > Ep [a7
—Q€ | max ——7— 75
6 i Al + 2

2

€

ol

Using equationsy), we have

Ep,a. 52,1l

If e = 1, as equations5) hold with probability 1, this
bound also holds with probability. If ¢ < 1, this bound
holds with probability> 1 — 4.



