
Cascading Bandits: Learning to Rank in the Cascade Model

A. Proofs of Main Theorems
A.1. Proof of Theorem 2

Let Rt = R(At,wt) be the regret of the learning algorithm at time t, where At is the recommended list at time t and wt

are the weights of items at time t. Let Et =
�9e 2 E s.t.
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be the event that w̄(e) is
not in the high-probability confidence interval around ˆwTt�1(e)(e) for some e at time t; and let Et be the complement of
Et, w̄(e) is in the high-probability confidence interval around ˆwTt�1(e)(e) for all e at time t. Then we can decompose the
regret of CascadeUCB1 as:
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Now we bound both terms in the above regret decomposition.

The first term in (10) is small because all of our confidence intervals hold with high probability. In particular, Hoeffding’s
inequality (Boucheron et al., 2013, Theorem 2.8) yields that for any e, s, and t:

P (|w̄(e)� ˆws(e)| � ct,s)  2 exp[�3 log t] ,

and therefore:
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Since Rt  1, E [

Pn
t=1

1{Et}Rt]  ⇡2

3

L.

Recall that Et [·] = E [· |Ht], where Ht is the history of the learning agent up to choosing At, the first t� 1 observations
and t actions (4). Based on this definition, we rewrite the second term in (10) as:
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where equality (a) is due to the tower rule and that 1
�Et

 

is only a function of Ht, and inequality (b) is due to the upper
bound in Theorem 1.
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for any suboptimal item e. Select any optimal item e⇤. When event Et

happens,
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) by Theorem 1.

Therefore, when both Ge,e⇤,t and Et happen:
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Let:
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be the inner sum in (11). Now note that (i) the counter Tt�1

(e) of item e increases by one when the event Ge,e⇤,t happens
for any optimal item e⇤, (ii) the event Ge,e⇤,t happens for at most one optimal e⇤ at any time t; and (iii) ⌧e,1  . . .  ⌧e,K .



Cascading Bandits: Learning to Rank in the Cascade Model

Based on these facts, it follows that Me,e⇤  ⌧e,e⇤ , and moreover
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(11) can be bounded from above by:
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Since the gaps are decreasing, �e,1 � . . . � �e,K , the solution to the above problem is m⇤
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By Lemma 3 of Kveton et al. (2014a), the above term is bounded by 12

�e,K
log n. Finally, we chain all inequalities and sum

over all suboptimal items e.

A.2. Proof of Theorem 3

Let Rt = R(At,wt) be the regret of the learning algorithm at time t, where At is the recommended list at time t and wt

are the weights of items at time t. Let Et = {91  e  K s.t. w̄(e) > Ut(e)} be the event that the attraction probability
of at least one optimal item is above its upper confidence bound at time t. Let Et be the complement of event Et. Then we
can decompose the regret of CascadeKL-UCB as:
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By Theorems 2 and 10 of Garivier & Cappe (2011), thanks to the choice of the upper confidence bound Ut, the first term
in (12) is bounded as E [
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1{Et}Rt]  7K log log n. As in the proof of Theorem 2, we rewrite the second term as:
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Now note that for any suboptimal item e and ⌧e,e⇤ > 0:
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Let:

⌧e,e⇤ =
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D
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(w̄(e) k w̄(e⇤)) (log n+ 3 log log n) .

Then by the same argument as in Theorem 2 and Lemma 8 of Garivier & Cappe (2011):
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holds for any suboptimal e and optimal e⇤. So the second term in (13) is bounded from above by K C2(")
n�(") . Now we bound

the first term in (13). By the same argument as in the proof of Theorem 2:
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holds for any suboptimal item e. By Lemma 2, the leading constant is bounded as:

�e,1

D
KL

(w̄(e) k w̄(1)) +
K
X

e⇤=2

�e,e⇤

✓

1

D
KL

(w̄(e) k w̄(e⇤)) �
1

D
KL

(w̄(e) k w̄(e⇤ � 1))

◆

 �e,K(1 + log(1/�e,K))

D
KL

(w̄(e) k w̄(K))

.

Finally, we chain all inequalities and sum over all suboptimal items e.

B. Technical Lemmas
Lemma 1. Let A = (a
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, . . . , aK) and B = (b
1

, . . . , bK) be any two lists of K items from ⇧K(E) such that ai = bj only
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Proof. First, we prove that:

K
Y

k=1

w(ak)�
K
Y

k=1

w(bk) =

K
X

k=1

 

k�1

Y

i=1

w(ai)

!

(w(ak)� w(bk))

0

@

K
Y

j=k+1

w(bj)

1

A

holds for any w 2 {0, 1}L. The proof is by induction on K. The claim holds obviously for K = 1. Now suppose that the
claim holds for any A,B 2 ⇧K�1
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The third equality is by our induction hypothesis. Finally, note that w is drawn from a factored distribution. Therefore, we
can decompose the expectation of the product as a product of expectations, and our claim follows.
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Proof. First, we note that:
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The summation over k can be bounded from above by a definite integral:
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where the first inequality follows from the fact that 1/D
KL

(p k p+ x) decreases on x � 0. To the best of our knowledge,
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Finally, we chain all inequalities and get the final result.


