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Abstract

We consider the problem of undiscounted rein-
forcement learning in continuous state space. Re-
gret bounds in this setting usually hold under
various assumptions on the structure of the re-
ward and transition function. Under the assump-
tion that the rewards and transition probabilities
are Lipschitz, for 1-dimensional state space a re-
gret bound of Õ(T

3
4 ) after any T steps has been

given by Ortner and Ryabko (2012). Here we
improve upon this result by using non-parametric
kernel density estimation for estimating the tran-
sition probability distributions, and obtain regret
bounds that depend on the smoothness of the
transition probability distributions. In particular,
under the assumption that the transition probabil-
ity functions are smoothly differentiable, the re-
gret bound is shown to be Õ(T

2
3 ) asymptotically

for reinforcement learning in 1-dimensional state
space. Finally, we also derive improved regret
bounds for higher dimensional state space.

1. Introduction
Reinforcement learning (RL) in continuous domains is still
a big challenge, from the practical as well as from the the-
oretical point of view. The setting theoretically best under-
stood is the continuous multi-armed bandit problem. Under
Hölder conditions on the reward function, regret bounds
have been given by Kleinberg (2005), Auer et al. (2007),
Kleinberg et al. (2008), and Bubeck et al. (2010).
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In more general RL settings, often strong assumptions on
the transition structure are made. Thus, there are theoretical
results for RL with deterministic transitions in the dis-
counted setting (Bernstein and Shimkin, 2010), as well as
for RL with transition functions that are linear in state and
action (Strehl and Littman, 2008; Brunskill et al., 2009;
Abbasi-Yadkori and Szepesvári, 2011; Ibrahmi et al.,
2012). More generally, the work of Kakade et al. (2003)
considers PAC-learning for continuous RL in metric
state spaces. Recently, Osband and Van Roy (2014)
have derived bounds on the expected regret under the
assumption that the reward and the transition probability
function belong to a given class of functions. The bounds
then depend on particular parameters of these function
classes, called the Kolmogorov dimension and the eluder
dimension. Unlike that, here we try to assume the most
general setting making only smoothness assumptions on
rewards and transition probabilities.

Our research is based on the work of Ortner and Ryabko
(2012), which has given the most general regret bounds in
a continuous state RL setting so far. Under the assump-
tion that reward and transition functions are Hölder con-
tinuous, sublinear regret bounds depending on the Hölder
parameters have been shown. The suggested algorithm dis-
cretizes the state space and employs the UCRL algorithm
of Jaksch et al. (2010) on the discretized MDP. We improve
upon this algorithm and the respective regret bound by us-
ing kernel density estimation instead of histograms for es-
timating the probability density functions. Kernel-based
methods have been employed in RL before, starting with
(Ormoneit and Sen, 2002). Here we provide the first regret
bounds for a kernel-based algorithm for RL in continuous
state space. In order to derive our regret bounds we need
concentration bounds for the employed kernel density esti-
mator. Such bounds can be found e.g. in (Devroye, 1987).
However, for our particular case, we extend results of
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Ibragimov and Hasminskii (1981) and Vogel and Schettler
(2013) to the case where the samples are assumed to be
only independent but not necessarily i.i.d.

The regret bounds we obtain improve over known bounds
for the UCCRL algorithm (Ortner and Ryabko, 2012), pro-
vided that the transition probability functions are suf-
ficiently smooth. While the UCCRL algorithm gives
Õ(T

2+α
2+2α ) regret for MDPs with 1-dimensional state space

and Hölder-continuous rewards and transition probabili-
ties with parameter α, the proposed UCCRL-KD algorithm
has regret of order Õ(T

β+αβ+2α
β+2αβ+2α ), where the transition

function is assumed to be κ-times smoothly differentiable
and β := κ + α. Thus, we obtain improved bounds if
α < κ. For the simple case of Lipschitz continuous den-
sities, i.e. α = 1, the regret is Õ(T

3
4 ) for UCCRL, while

for UCCRL-KD it asymptotically approaches Õ(T
2
3 ), pro-

vided that the transition probability functions are infinitely
often smoothly differentiable. For general d-dimensional
state space we show that the regret for UCCRL-KD is
Õ(T

1+dα+α
1+dα+2α ), improving over the bound of Õ(T

2d+α
2d+2α ) for

UCCRL.

2. Setting
For the sake of simplicity, we concentrate on the 1-
dimensional case. Details for the general d-dimensional
setting are given in Section 4.1 below. Thus, consider a
Markov decision process (MDP) with state space [0, 1] and
finite action space of size A. We assume that the random
reward in any state s under any action a is bounded in [0, 1]
with mean r(s, a). The transition probability distribution at
state s under action a is denoted by p(·|s, a). We make the
following assumptions on the reward and transition proba-
bility functions.
Assumption 1. There are L, α > 0 such that for any two
states s, s′ and all actions a,∣∣r(s, a)− r(s′, a)

∣∣ ≤ L|s− s′|α.

Assumption 2. There are L, α > 0 such that for any two
states s, s′ and all actions a,∥∥p(·|s, a)− p(·|s′, a)

∥∥
1
≤ L|s− s′|α.

These two assumptions are the same as in
(Ortner and Ryabko, 2012). They guarantee that re-
wards and transition probabilities are close in close states,
but do not make any assumption on the shape of the
transition probability densities. Here, we additionally
assume that the transition functions are smooth, which
allows us to obtain improved regret bounds.
Assumption 3. The transition functions p(·|s, a) are κ-
times smoothly differentiable for all states s and all ac-
tions a. That is, there are L, α > 0 such that for any

state s and all actions a,∣∣p(κ)(s′|s, a)− p(κ)(s′′|s, a)
∣∣ ≤ L|s′ − s′′|α.

For the sake of simplicity, in the following we assume that
L and α ≤ 1 in Assumptions 1–3 are the same. Note that
for α > 1 the transition functions would be constant and
learning hence trivial.

We assume (for the following assumptions and technical
details see Section 2 of Ortner and Ryabko, 2012) the ex-
istence of an optimal policy π∗ with optimal average re-
ward ρ∗ independent of the initial state. Further, we assume
that for each measurable policy π the Poisson equation1

ρπ + λ(π, s) = r(s, π(s)) +

∫
p(ds′|s, π(s))λ(π, s′)

holds, where ρπ is the average reward of π and λ(π, s)
is the bias of policy π in state s. Note that for
any policy π the Poisson equation is satisfied under
modest assumptions such as geometric convergence to
an invariant probability measure µπ , cf. Chapter 10 of
(Hernández-Lerma and Lasserre, 1999).

We recall from (Ortner and Ryabko, 2012) that under As-
sumptions 1 and 2 the bias of the optimal policy is bounded.
The performance of an algorithm is measured by the regret
it receives after T time steps, defined as

∆T = Tρ∗ −
T∑

t=1

rt,

where rt is the (random) reward obtained by the al-
gorithm at time step t. Note that (cf. Chapter 10 of
Hernández-Lerma and Lasserre, 1999) no policy can ob-
tain higher accumulated reward than Tρ∗ + H after any
T steps, where

H := sup
s

λ(π∗, s)− inf
s
λ(π∗, s)

is the bias span of the optimal policy.

3. Algorithm
As already indicated, our algorithm is based on the UCCRL
algorithm of Ortner and Ryabko (2012). In the UCCRL al-
gorithm, in the first step the state space [0, 1] is discretized
into n intervals Ij of equal size. Thus, the estimates for
rewards and transition probabilities are aggregated corre-
spondingly, that is, states contained in the same interval Ij
are clubbed together and considered as coming from a sin-
gle (discrete) state. This gives a discrete-state MDP, to

1In the following, we usually skip the range of integration
when it is clear from context.
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which the UCRL algorithm of (Jaksch et al., 2010) can be
applied. The algorithm UCCRL-KD that we propose uses
the same aggregation technique for the rewards. However,
concerning the estimated transition probability functions,
we only aggregate inasmuch as states contained in the same
interval Ij will obtain the same estimated transition func-
tion and that for computing this estimate we use all sam-
ples of states in the same interval. The estimation of this
function will be done by a kernel density estimate, that is,
without using any kind of discretization.

For the sake of completeness, our UCCRL-KD algorithm
is depicted as Algorithm 1. Proceeding in episodes k =
1, 2, . . . in which the chosen policy π̃k remains the same, in
each episode k a set of plausible MDPs Mk, determined by
confidence intervals for rewards and transition probabili-
ties, is considered (cf. line 7 of the algorithm). From this set
the algorithm chooses the (so-called optimistic) MDP M̃k

whose optimal policy π̃k promises the highest possible av-
erage reward ρ∗(M̃k) (line 8). This policy is then employed
in episode k, which is terminated if some action in some in-
terval Ij has been played as often in the episode as before
the episode (line 10), so that recomputation of estimates
and policy is justified.

Basically, UCCRL-KD looks the same as UCCRL, only
that the estimates and confidence intervals for the transi-
tion probabilities are different. For these we do not use a
histogram based estimator as for UCCRL, but (results for)
a kernel density estimator. The confidence intervals em-
ployed in line 7 of the algorithm are given by

confr(s, a, n,A, δ, t) := Ln−α +

√
7 log(2nAt/δ)

2Nt(I(s), a)
, (1)

confp(s, a, n,A, δ, t) := C0Ln
−α +

Nt(I(s), a)
−β

2β+2C ′
1 log

(√
14 log

(
2nAt

δ

))
. (2)

Here Nt(Ij , a) is the maximum of 1 and the number of
times action a has been played in a state contained in in-
terval Ij at step t. Further, I(s) denotes the interval Ij
that contains the state s. The constants C0 and C ′

1 :=
C1L + C2 + C3

2π depend on the employed kernel density
estimator, cf. Assumption 4 and Section 5.2.3 below. Fi-
nally, β := κ + α depends on the smoothness of the tran-
sition functions. The confidence intervals for the transition
probabilities come from the tail bounds that we derive in
Section 5.1. In the following, we describe the kernel den-
sity estimator in detail.

3.1. Kernel Density Estimation

While the estimates r̂(s, a) for the mean rewards are com-
puted as for UCCRL (that is, one takes the average of the
rewards observed in all states in I(s)), for the estimates
p̂(·|s, a) we use a suitable kernel density estimator.

Algorithm 1 UCCRL-Kernel Density Algorithm
1: Input: State space [0, 1], number of actions A, con-

fidence parameter δ, discretization parameter n ∈ N,
upper bound H on the bias span, Lipschitz parameters
L, α, smoothness parameter κ.

2: Initialization: Let I1 :=
[
0, 1

n

]
, Ij :=

(
j−1
n , j

n

]
for

j = 2, 3, . . . , n. Set t := 1, and observe the initial
state s1.

3: for k = 1, 2, . . . do
4: Let Nk(Ij , a) be the maximum of 1 and the number

of times action a has been chosen in a state ∈ Ij
prior to episode k. Further, let vk(Ij , a) be the re-
spective counts in episode k.
Initialize episode k:

5: Set the start time of episode k, tk := t.
6: Compute the estimates r̂k(s, a) for rewards and

the kernel density estimates p̂k(·|s, a) for transition
probabilities (cf. Section 3.1) using all samples from
states in the same interval Ij as s.
Compute policy π̃k :

7: Let Mk be the set of plausible MDPs M̃ with
H(M̃) ≤ H and rewards r̃(s, a) and transition
probabilities p̃(·|s, a) satisfying (cf. (1) and (2))

|r̃(s, a)− r̂k(s, a)| ≤ confr(s, a, n,A, δ, tk),∥∥p̃(·|s, a)− p̂k(·|s, a)
∥∥
1
≤ confp(s, a, n,A, δ, tk).

8: Choose policy π̃k and M̃k such that

ρπ̃k
(M̃k) = argmax{ρ∗(M)|M ∈ Mk}.

9: Execute policy π̃k:
10: while vk(I(st), π̃k(st)) < Nk(I(st), π̃k(st)) do
11: Choose action at = π̃k(st), obtain reward rt, and

observe st+1. Set t := t+ 1.
12: end for

In general, given i.i.d. samples X1, . . . , XN from a
common density f , the generalized density (or Parzen-
Rosenblatt) estimator f̂N is given by (cf. Section 1.2 of
Tsybakov, 2009)

f̂N (x) =
1

Nh

N∑
i=1

K

(
x−Xi

h

)
, (3)

where K : R → R is an integrable kernel function satisfy-
ing ∫ ∞

−∞
K(u)du = 1, (4)

and h is the bandwidth of the estimator.

In our case we want to estimate the transition probability
distribution in each state s. Since in general it may be the
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case that we visit a state s not more than once (or not at
all), we compute the estimate p̂(·|s, a) using all samples
from states that are contained in I(s), the interval Ij con-
taining s. Note that therefore our samples will in general
only be independent but not i.i.d. Still, we will show in
Theorem 1 below that due to Assumptions 2 and 3 on the
probability distributions the density estimator in (3) will
give a sufficiently good estimation.

Assumptions on the kernel To guarantee that our con-
fidence intervals for the estimated transition functions
p̂(·|s, a) hold with high probability (cf. Theorem 1 below),
additionally to (4) we need the following assumptions on
the employed kernel function K.

Assumption 4. Let κ be the smoothness parameter defined
in Assumption 3. Then the kernel function K satisfies∫ ∞

−∞
xjK(x) dx = 0 for j = 1, 2, . . . , κ, (5)∫ ∞

−∞
|K(x)| dx = C0 < ∞, (6)∫ ∞

−∞
|xκK(x)| dx = C1 < ∞, (7)

sup
x∈R

|K(x)| = C2 < ∞. (8)

Finally, for k(x) :=
∫∞
−∞ eix

T yK(y)dy, it holds that∫ ∞

−∞
|k(x)| dx = C3 < ∞. (9)

Thus, we have to use a kernel that depends on the smooth-
ness of the transition probabilities. While kernels of infi-
nite order and compact support do not exist (see p.101 of
Devroye, 1987), there are ways to generate higher order
kernels from lower order kernels (Abdous, 1995), which
guarantees that for each κ there is a suitable kernel avail-
able. In particular, polynomial kernels of arbitrary finite or-
der and compact support exist (Gasser et al., 1985), which
by definition satisfy equation (5). It can be easily verified
that polynomial kernels with compact support also satisfy
equations (6)–(9).

4. Results
In order to establish our improved bounds on the regret,
we need high probability bounds for the new confidence
intervals (1) and (2). Note that, for the densities p(·|s, a)
we are interested in, the observed transitions in general are
from different states in I(s) with close but different densi-
ties. Thus, these observations are in general not i.i.d., but
only independent. Still, the following tail bound for the re-
spective kernel density estimator f̂N computed from these
independent observations can be established.

Theorem 1. Let f := p(·|s, a) be a transition prob-
ability distribution satisfying Assumptions 2 and 3, and
let f̂N be a kernel density estimate of f for which As-
sumption 4 holds and which is computed from sam-
ples X1, . . . , Xn of the transition probability distributions
f1 := p(·|s1, a), . . . , fN := p(·|sN , a) in states s1, . . . , sN
that are contained in the same interval Ij as s. Then for all
N ∈ N and all u > 0

Pr
{
sup
x

|f̂N (x)− f(x)| ≥

u√
Nh

+ C3

2π
√
Nh

+ C0Ln
−α + C1Lh

β
}
≤ 2e

−u2

2C2
2 .

Theorem 1 allows us to derive the following regret bound.

Theorem 2. Consider an MDP with state space [0, 1],
A actions, rewards and transition probabilities satisfying
Assumptions 1–3, and bias span (upper bounded by) H .
Then with probability 1−δ, the regret of UCCRL-KD (with
input parameters n ≤ T and δ) after T steps is upper
bounded by

c ·C ′
1H

√
14A log

(
2nAT

δ

)
n

β
2β+2T

β+2
2β+2 +c′ ·C0HLn−αT,

(10)
where C0, C ′

1 := C1L+C2 +
C3

2π are constants depending
on Assumption 4, and c, c′ are independent constants.

Setting n = T
β

β+2αβ+2α gives an upper bound of

c′′H(C0L+ C ′
1)

√
14A log

(
2AT 2

δ

)
T

β+αβ+2α
β+2αβ+2α

for an independent constant c′′.

Equation (10) gives a bound on the regret that resembles
that for UCCRL: The second term corresponds to the dis-
cretization error (and is the same as for UCCRL), while the
first term corresponds to the error in the discrete MDP (and
is improved compared to the respective regret of UCCRL).

Remark 1. Compared to the regret bound of Õ(HL
√
A ·

T
2+α
2+2α ) for UCCRL (Ortner and Ryabko, 2012), the bound

for UCCRL-KD has improved dependence on T for all α
as soon as κ > α. For the Lipschitz case α = 1 the bound
for UCCRL-KD approaches Õ(T

2
3 ) when κ → ∞, while

the respective bound for UCCRL is Õ(T
3
4 ).

Remark 2. As for the UCCRL algorithm, if the horizon T
is unknown then the doubling trick can be used to give the
same bound with slightly worse constants.

4.1. d-dimensional State Space

Under the following additional assumptions UCCRL-KD
(with modified confidence intervals) gives also improved
regret bounds in MDPs with state space of dimension d.
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Assumption 5. The transition probability functions are in
C2(R) and their partial derivatives of order 1 and 2 are
bounded by a constant C4.

Assumption 6.
∫
|x|2K(x) dx = C5 < ∞.

Under Assumptions 5 and 6 one can replace Theorem 1 by
the following result.

Theorem 3. Let f := p(·|s, a) be a transition probability
distribution satisfying Assumptions 2, 3, and 5, and let f̂N
be a kernel density estimate of f as in Theorem 1 that ad-
ditionally satisfies Assumption 6. Then for all N ∈ N and
all u > 0

Pr
{
sup
x

|f̂N (x)− f(x)| ≥

u√
Nh

+ C3

2π
√
Nh

+ C0Ln
−α + 1

2C4C5 · h
2
d

}
≤ 2e

−u2

2C2
2 .

Choosing h = N
−d

2(2+d) , one can use Theorem 3 to obtain
confidence intervals that allow us to derive the following
regret bound for UCCRL-KD in d-dimensional state space.

Theorem 4. Consider an MDP with state space [0, 1]d,
A actions, rewards and transition probabilities satisfying
Assumptions 1, 2, 3 and 5, and bias span ≤ H . Then with
probability 1− δ, the regret of UCCRL-KD (with modified
confidence intervals according to Theorem 3 and input pa-
rameters n ≤ T and δ) after T steps is upper bounded by

c · C ′
2H

√
14A log

(
2nAT

δ

)
n

1
d+2T

d+1
d+2 + c′ · C0HLn−αT

for independent constants c, c′ and C0, C ′
2 := C2 +

C3

2π +
C4C5

2 depending on Assumptions 4 and 5.

Setting n = T
1

1+dα+2α gives a bound of order
Õ(T

1+dα+α
1+dα+2α ).

Remark 3. This bound is an improvement over the bound
of Õ(T

2d+α
2d+2α ) of Ortner and Ryabko (2012) for all α and

all dimensions d except for the Lipschitz case (α = 1) in
dimension d = 1, where the two bounds coincide. In par-
ticular, also for d = 1 and α < 1 the bound of Theorem 4
improves over the 1-dimensional bound for UCCRL. How-
ever, when β > 2 Theorem 2 provides a better bound for
d = 1 than Theorem 4.

5. Proofs
In the following, we give detailed proofs only of Theo-
rems 1 and 2. The proof of Theorem 3 is similar to that of
Theorem 1, only that Lemma 1 is replaced by an analogue
based on the Lemma on p.7 of Vogel and Schettler (2013).
Theorem 4 is then shown as Theorem 2 with Theorem 1
replaced by Theorem 3.

5.1. Proof of Theorem 1

Lemma 1. Let f , f̂N , and f1, . . . , fN be as given in The-
orem 1. Then for all x ∈ [0, 1]∣∣E[f̂N (x)]− f(x)

∣∣ ≤ C0Ln
−α + C1Lh

β .

Proof. Using that, by Assumption 2,

|fi(y)− f(y)| ≤ Ln−α,

and that due to
∫
K(u)du = 1 we have∫

K
(x− y

h

)
dy = h

∫
K(u) du = h, (11)

we can rewrite∣∣E[f̂N (x)]− f(x)
∣∣

=

∣∣∣∣E[ 1

Nh

N∑
i=1

K
(x−Xi

h

)]
− f(x)

∣∣∣∣
=

∣∣∣∣ 1

Nh

N∑
i=1

E
[
K
(x−Xi

h

)]
− f(x)

∣∣∣∣
=

∣∣∣∣ 1

Nh

N∑
i=1

∫
K
(x− y

h

)
fi(y) dy − f(x)

∣∣∣∣
≤

∣∣∣∣ 1

Nh

N∑
i=1

∫
K
(x− y

h

)(
fi(y)− f(y)

)
dy

∣∣∣∣
+

∣∣∣∣ 1

Nh

N∑
i=1

∫
K
(x− y

h

)
f(y) dy − f(x)

∣∣∣∣
≤ Ln−α

h

∫ ∣∣∣∣K(x− y

h

)∣∣∣∣ dy
+

∣∣∣∣ 1h
∫

K
(x− y

h

)(
f(y)− f(x)

)
dy

∣∣∣∣. (12)

By (6) and an analogue of (11) we can bound the first term
of (12) as

Ln−α

h

∫ ∣∣∣∣K(x− y

h

)∣∣∣∣dy ≤ C0Ln
−α. (13)

Concerning the second term of (12), we substitute x−y
h = u

and note that |z| = | − z| to get∣∣∣∣ 1h
∫

K
(x− y

h

)(
f(y)− f(x)

)
dy

∣∣∣∣
=

∣∣∣∣ ∫ K(u)
(
f(x)− f(x− hu)

)
du

∣∣∣∣. (14)

Now Taylor’s theorem applied to f shows that there is a
ξ ∈ (x− hu, x) such that

f(x)=f(x−hu)+

κ−1∑
j=1

f (j)(x−hu)

j!
(hu)j+

f (κ)(ξ)

κ!
(hu)κ.
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Plugging this into (14), by (5) all terms in the Taylor series
except the last one vanish, and we get using (5) once more
(in the third line) and by Assumption 3 and (7) that∣∣∣∣ 1h

∫
K
(x− y

h

)(
f(y)− f(x)

)
dy

∣∣∣∣
=

hκ

κ!

∣∣∣∣ ∫ uκK(u)f (κ)(ξ)du

∣∣∣∣
=

hκ

κ!

∣∣∣∣ ∫ uκK(u)
(
f (κ)(ξ)− f (κ)(x)

)
du

∣∣∣∣
≤ hκ

κ!

∣∣f (κ)(ξ)− f (κ)(x)
∣∣ · ∫ ∣∣uκK(u)du

∣∣
<

hκ

κ!
L|ξ − x|α C1 ≤ C1Lh

β . (15)

This latter argument is similar to the one in Theorem 4.1 of
Ibragimov and Hasminskii (1981). Combining (12), (13),
and (15) proves the lemma.

Proof of Theorem 1. We first split

sup
x

|f̂N (x)− f(x)| ≤ E
[
sup
x

∣∣f̂N (x)− f(x)
∣∣]

+
∣∣∣ sup

x

∣∣f̂N (x)− f(x)
∣∣− E

[
sup
x

∣∣f̂N (x)− f(x)
∣∣]∣∣∣. (16)

Concerning the first term in (16), we first bound it by

E
[
sup
x

∣∣f̂N (x)− f(x)
∣∣] ≤ sup

x

∣∣E[f̂N (x)]− f(x)
∣∣

+ E
[
sup
x

∣∣f̂N (x)− E[f̂N (x)]
∣∣]. (17)

The second term of (17) can be bounded by

E
[
sup
x

∣∣f̂N (x)− E[f̂N (x)]
∣∣] ≤ C3

2π
√
Nh

(18)

as shown in the Lemma on p.6 of Vogel and Schettler
(2013). It is straightforward to check that the given proof
works also for independent samples and actually does not
make use of the i.i.d. assumption. For the first term of (17)
we can use Lemma 1, so that we obtain

E
[
sup
x

∣∣f̂N (x)−f(x)
∣∣] ≤ C3

2π
√
Nh

+C0Ln
−α+C1Lh

β .

(19)
The second term of (16) can be bounded as in Theorem 1
of Vogel and Schettler (2013). In particular, the i.i.d. as-
sumption is not used in the arguments and independence is
sufficient to obtain

Pr

{∣∣∣ sup
x

∣∣f̂N (x)− f(x)
∣∣− E

[
sup
x

∣∣f̂N (x)− f(x)
∣∣]∣∣∣

≥ u√
Nh

}
≤ 2e

−u2

2C12 . (20)

From (16), (19), and (20), we finally get the claim of the
theorem.

5.2. Proof of Theorem 2

The proof structure follows that of Ortner and Ryabko
(2012) so that we can take some equations directly from
there. However, some arguments have to be changed and
adapted.

5.2.1. A LEMMA

The main regret term in the discretized MDP comes from a
sum over all confidence intervals in the visited state-action
pairs. In order to bound this term we use the following
lemma. This lemma is a generalization of Lemma 19 of
Jaksch et al. (2010), which showed the result for the case
α = 1

2 .
Lemma 2. For any sequence of positive numbers
z1, . . . , zn with 0 ≤ zk ≤ Zk−1 := max

{
1,
∑k−1

i=1 zi
}

and any α ∈ [0, 1],
n∑

k=1

zk

Z1−α
k−1

≤ Zα
n

2α − 1
.

Proof. For n = 1 the lemma is easy to verify. Proceeding
by induction on n, note that for x ∈ [0, 1] and α ∈ [0, 1]
it holds that 1 + (2α − 1)x ≤ (1 + x)α. Thus, choosing
x = zn

Zn−1
and multiplying with Zα

n−1

2α−1 yields

Zα
n−1

2α − 1
+

zn

Z1−α
n−1

≤ 1

2α − 1

(
Zn−1 + zn

)α
.

Using this and the induction assumption, we get

n∑
k=1

zk

Z1−α
k−1

=
n−1∑
k=1

zk

Z1−α
k−1

+
zn

Z1−α
n−1

≤
Zα
n−1

2α − 1
+

zn

Z1−α
n−1

≤ (Zn−1 + zn)
α

2α − 1
=

Zα
n

2α − 1
.

5.2.2. SPLITTING INTO EPISODES

Let vk(s, a) be the number of times action a has been cho-
sen in episode k when being in state s. Define the regret in
episode k to be

∆k :=
∑
s,a

vk(s, a)
(
ρ∗ − r(s, a)

)
. (21)

Then, as in Section 5.1 of Ortner and Ryabko (2012) (cf.
also Section 4.1 of Jaksch et al., 2010), with probability at
least 1− δ

12T 5/4 the regret of UCCRL-KD is upper bounded
by √

5
8T log

(
8T
δ

)
+
∑
k

∆k. (22)

5.2.3. FAILING CONFIDENCE INTERVALS

We continue by considering the regret when the true MDP
is not contained in the set of plausible MDPs.
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Rewards For the rewards we have the same Assump-
tion 1 as Ortner and Ryabko (2012), so this case can be
handled in the same way. Thus, the estimated rewards
r̂(s, a) are computed from the observed rewards in states
si that are in the same interval as state s. Assume that at
step t there have been N > 0 samples of action a in such
states. Then we obtain as in (Ortner and Ryabko, 2012)
from Hoeffding inequality that

Pr

{∣∣∣r̂(s, a)− E[r̂(s, a)]
∣∣∣ ≥√

7
2N log

(
2nAt

δ

)}
≤ δ

60nAt7
.

Further, we have E[r̂(s, a)] = 1
N

∑N
i=1 r(si, a). Since the

si are assumed to be in the same interval I(s) as s, it fol-
lows that |E[r̂(s, a)]− r(s, a)| < Ln−α.

A union bound over all actions, all n intervals Ij and all t
possible values of N then shows that with probability at
least 1− δ

15t6 it holds that

∣∣r̂(s, a)− r(s, a)
∣∣ < Ln−α +

√
7 log(2nAt/δ)

2Nt(I(s), a)
. (23)

Transition Probabilities Now for the estimates of the
transition probabilities we apply Theorem 1 to obtain con-
fidence intervals that hold with high probability. At step t,
for each state s in which we want to estimate p(·|s, a) the
samples will only come from nearby states s1, . . . , sN that
are in the interval I(s) also containing s. Thus, the samples
will be independent and, according to Assumption 2, from
close (but not necessarily identical) distributions.

We apply Theorem 1 to obtain confidence intervals for the
transition probability estimates. Choosing h = N

−1
2β+2 in

Theorem 1 gives

Pr
{∥∥p̂N (·|s, a)− p(·|s, a)

∥∥
1
≥

N
−β

2β+2 · (u+ C ′) + C0Ln
−α

}
< 2e

−u2

2C2
2 ,

where p̂N (·|s, a) is the kernel density estimate for p(·|s, a)
computed from N samples, and C ′ := C3

2π + C1L. Hence,
with probability at least 1− δ

15nAt7∥∥p̂N (·|s, a)− p(·|s, a)
∥∥
1

≤ C0Ln
−α +N

−β
2β+2

(
C2

√
2 log

(
30nAt7

δ

)
+ C ′

)
.

A union bound over all n intervals, all actions, and all t
possible values for N then shows that with probability at
least 1− δ

15t6∥∥p̂(·|s, a)− p(·|s, a)
∥∥
1

≤C0Ln
−α+Nt(I(s), a)

−β
2β+2C ′

1

√
14 log

(
2nAt

δ

)
(24)

for the actual value Nt(I(s), a) and all state-action pairs
(s, a), where we choose C ′

1 := C2 + C ′.

Regret when Confidence Intervals Fail In (23) and (24)
we have shown that the confidence intervals confr and
confp for rewards and transition probabilities as given in
(1) and (2) hold with error probability δ

15t6 each. These
error probabilities are the same as in (Ortner and Ryabko,
2012). Therefore, we obtain (cf. also Section 4.2 of
Jaksch et al., 2010) the same regret bound for the case
when the true MDP is not contained in the set of plausi-
ble MDPs, that is, with probability at least 1− δ

12T 5/4 ,∑
k

∆kIM/∈Mk
≤

√
T . (25)

5.2.4. REGRET IN EPISODES WITH M ∈ Mk

Now let us finally turn to the regret in episodes where
the true MDP M is contained in the set of plausible
MDPs Mk. Note that in this case by the optimistic choice
of π̃k it holds that ρ̃∗k := ρ∗(M̃k) ≥ ρ∗. Therefore,

ρ∗ − r(s, a) ≤ (ρ̃∗k − r̃k(s, a)) + (r̃k(s, a)− r(s, a)),

and we can bound the regret ∆k of episode k as defined
in (21) by (23) and the definition (1) of the confidence in-
tervals confr as

∆k ≤
∑
s

vk(s, π̃k(s))
(
ρ̃∗k − r̃k(s, π̃k(s))

)
+ 2Ln−ατk +

√
14 log

(
2nAt

δ

) n∑
j=1

∑
a∈A

vk(Ij , a)√
Nk(Ij , a)

, (26)

where τk := tk+1 − tk denotes the length of episode k.

Dealing with the Transition Functions The remaining
term

∑
s vk(s, π̃k(s))

(
ρ̃∗k − r̃k(s, π̃k(s))

)
can be analysed

similar to Section 5.4 of Ortner and Ryabko (2012). That
is, let λ̃k := λ(π̃k, ·) be the bias function of policy π̃k in
the optimistic MDP M̃k. Then by the Poisson equation,

ρ̃∗k − r̃k(s, π̃k(s))

=

∫
p̃k(ds

′|s, π̃k(s)) · λ̃k(s
′)− λ̃k(s)

=

∫
p(ds′|s, π̃k(s)) · λ̃k(s

′)− λ̃k(s)

+

∫ (
p̃k(ds

′|s, π̃k(s))− p(ds′|s, π̃k(s))
)
· λ̃k(s

′). (27)

The last term in (27) can be bounded by splitting up

p̃k(·|s, a)− p(·|s, a) =(
p̃k(·|s, a)− p̂k(·|s, a)

)
+
(
p̂k(·|s, a)− p(·|s, a)

)
and applying (24) and the definition (2) of the confidence
intervals confp. Noting that by definition of the algorithm
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∥λ̃k∥∞ ≤ H , this gives∑
s

vk(s, π̃k(s))

∫ (
p̃k(ds

′|s, π̃k(s))−p(ds′|s, π̃k(s))
)
λ̃k(s

′)

≤ 2H
n∑

j=1

∑
a∈A

vk(Ij , a)Nk(Ij , a)
−β

2β+2C ′
1

√
14 log

(
2nAT

δ

)
+ 2HC0Ln

−ατk. (28)

For the first term in (27), the same martingale argument as
given in (Ortner and Ryabko, 2012) yields that with proba-
bility at least 1− δ

12T 5/4∑
k

∑
s

vk(s, π̃k(s))
(∫

p(ds′|s, π̃k(s))·λ̃k(s
′)−λ̃k(s)

)
≤ H

√
5
2T log

(
8T
δ

)
+HnA log2

(
8T
nA

)
. (29)

5.2.5. TOTAL REGRET

Summing ∆k over all episodes with M ∈ Mk we obtain
from (26), (27), (28), and (29) that with probability at least
1− δ

12T 5/4∑
k

∆kIM∈Mk
≤ 2HC0Ln

−αT

+ 2H
∑
k

n∑
j=1

∑
a∈A

vk(Ij , a)Nk(Ij , a)
−β

2β+2

× C ′
1

√
14 log

(
2nAT

δ

)
+H

√
5
2T log

(
8T
δ

)
+HnA log2

(
8T
nA

)
+ 2Ln−αT

+
√
14 log

(
2nAT

δ

)∑
k

n∑
j=1

∑
a∈A

vk(Ij , a)√
Nk(Ij , a)

. (30)

Writing N(Ij , a) for the total number of times a has
been played in a state in Ij after T steps, we have∑

j

∑
a N(Ij , a) = T , and application of Lemma 2 and

Jensen’s inequality yields∑
k

n∑
j=1

∑
a∈A

vk(Ij , a)Nk(Ij , a)
−β

2β+2

≤ 1

21−
β

2β+1 − 1

n∑
j=1

∑
a∈A

N(Ij , a)
1− β

2β+2

≤ 1

2
β+1
2β+1 − 1

(nA)
β

2β+2T
β+2
2β+2 . (31)

As for UCCRL (cf. also Appendix C.3 of Jaksch et al.,
2010) we also have that (provided that n ≤ T )∑

k

n∑
j=1

∑
a∈A

vk(Ij , a)√
Nk(Ij , a)

≤ (
√
2 + 1)

√
nAT

≤ (
√
2 + 1)

√
A · n

β
2β+2T

β+2
2β+2 . (32)

From equations (30), (31), and (32) we obtain in combina-
tion with (22) and (25) that the regret with probability at
least 1− δ

4T 5/4 is upper bounded as√
5
8 log

(
8T
δ

)
+
∑
k

∆kIM/∈Mk
+
∑
k

∆kIM∈Mk

≤
√

5
8 log

(
8T
δ

)
+

√
T +H

√
5
2 log

(
8T
δ

)
+HnA log2

(
8T
nA

)
+ 2(HC0 + 1)Ln−αT

+

(
2HC ′

1

2
β+1
2β+1 −1

+
√
2+1

)
n

β
2β+2T

β+2
2β+2

√
14A log

(
2nAT

δ

)
.

A final union bound over all possible values of T shows af-
ter a few simplifications (cf. Appendix C.4 of Jaksch et al.,
2010) that with probability at least 1−δ the regret after any
T steps is bounded by

c ·C ′
1H

√
14A log

(
2nAT

δ

)
n

β
2β+2T

β+2
2β+2 +c′ ·C0HLn−αT.

6. Open Questions
The main missing link is respective lower bounds. Some
preliminary bounds have been given by Ortner and Ryabko
(2012), but they appear to be not optimal. On the other
hand, the construction of lower bounds in our setting (tak-
ing into account the assumptions on the transition proba-
bilities) seems not easy. In general, we believe that getting
improved lower bounds in the continuous state setting is
closely related to the still open problem of closing the gap
between known upper and lower bound for the regret in fi-
nite state MDPs, cf. (Jaksch et al., 2010).

Concerning computational issues, already for UCCRL it
is not clear whether there is an efficient method to com-
pute the optimistic plausible MDP and the respective op-
timal policy in line 8 of the algorithm. This issue has not
been resolved for UCCRL-KD and remains an open ques-
tion. Also, the necessary input of an upper bound on the
bias deteriorates the bounds (by a big additive constant) for
UCCRL-KD just like for UCCRL when this bound has to
be guessed.

With respect to the need of knowledge of the smoothness
parameters, as suggested by Ortner and Ryabko (2012),
one can use the model-selection technique introduced in
(Maillard et al., 2012) and refined by Maillard et al. (2013)
to obtain regret bounds also without explicit knowledge of
κ, L, and α. However, these bounds have worse depen-
dence on T . Still, as our bounds are an improvement over
the bounds of Ortner and Ryabko (2012), we expect to get
an improvement in this case as well. However, the respec-
tive technical details still have to be worked out.
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