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A. More Details on Convergence Analysis
In this section, we will establish a detailed convergence
analysis for our methods. The main idea follows from the
framework of Tseng & Yun (2009) and substitutes the local
error bound with the global error bound given in Wang &
Lin (2014). Note that the result in Yun (2014) does not di-
rectly apply here because H = I is assumed in that work,
but their analysis can also be modified for other symmet-
ric, positive definite H by applying lemmas in Section 3 of
Tseng & Yun (2009) to get the same result as ours.

For any matrix A, let λmin(A) denotes the smallest eigen-
value of A and λmax(A) denotes the largest eigenvalue of
A.

A.1. L2-SVM

For L2-SVM, we have that λmin(Q̄) ≥ 1/2C, so clearly f
is 1/2C strongly convex. In other words, ∀α1,α2 ≥ 0,

1

2C
‖α1 −α2‖2 ≤ (α1 −α2)T Q̄(α1 −α2)

=(∇f(α1)−∇f(α2))T (α1 −α2).

Also the gradient of f is λmax(Q̄) Lipschitz continuous

‖∇f(α1)−∇f(α2)‖ =
√

(α1 −α2)T Q̄2(α1 −α2)

≤ λmax(Q̄)‖α1 −α2‖. (A.1)

Thus by Theorem 3.1 in Pang (1987), we have

‖α−α∗‖ ≤ 2C(1 + λmax(Q̄))‖∇+f(α)‖,

where

∇+f(α) ≡ α− [α−∇f(α)]+P(0),

[α]+P(0) ≡ arg min
β∈P(0)

‖α− β‖.

Note that in our case, the definition of ∇+f(α) is equiv-
alent to that of dI(α) in Assumption 2(a) in Tseng &
Yun (2009). Thus this assumption is satisfied with τ =
2C(1 + λmax(Q̄)), ε = ∞ for any ξ. Also note that As-
sumption 2(b) of Tseng & Yun (2009) always holds in con-
vex optimization problems. Therefore, k̄ = 0, τ ′ = τ in

Equation (36), and k̂ = 0 in Equation (37) of Tseng & Yun
(2009). Following their analysis and their Lemma 5(b), we
then have

f(αt+1)−f(α∗) ≤ C2

1 + C2
(f(αt)−f(α∗)),∀t ∈ N∪{0},

(A.2)
where

C2 = C1/(σβmin{1, 1− σ + σγ

Cλmax(Q̄)
}), (A.3)

and C1 is a constant that only depends on
λmax(Q̄), λmin(Q̄), λmax(H), λmin(H), and C.

A.2. L1-SVM

For the case of L1-SVM, we see that the problem is of the
form

min
α∈Rl

f(α) = g((Y X)Tα)− eTα

subject to α ∈ P(0),

where
g(·) =

1

2
‖ · ‖2

is 1 strongly convex. From (A.1), we know that the
gradient of f is λmax(Q̄) Lipschitz continuous. In ad-
dition, it is clear that P(0) is a polyhedral set. Thus,
according to Theorem 4.6 in Wang & Lin (2014), As-
sumption 2(a) of Tseng & Yun (2009) is also satisfied
with a τ that depends on C, λmax(Q̄), λmax(H̄), f(α0) −
f(α∗), ‖∇f(α∗)‖, (α∗)TQα∗ and τ̃ in (6). We can then
substitute this result into (A.3) to get a similar result to
(A.2). Since the rates are related to the eigenvalues of H , it
will be interesting to consider this property to construct H
that has a better convergence rate upper bound. We leave
this as a future research direction.

A.3. Discussion

Our analysis indicates that the convergence speed of our
method in (A.2) is independent of both l and n. Thus the it-
eration complexity depends on l only via the optimal func-
tion value, which is upper bounded by fP (0) = Cl. If we



Distributed Block Coordinate Descent for Linear Support Vector Machine

consider the scaled problem fp(w)/Cl and f(α)/Cl used
in other works including Yang (2013); Ma et al. (2015),
then the iteration complexity of our method is totally inde-
pendent of l and n.

This result is not surprising, because we are considering
the rounds of communication and outer iteration, while the
overall training time might still be dependent on l and n.
Note that the data dimension n does not affect the number
of variables being optimized, and thus does not contribute
to the iteration complexity. However, note that n affects the
training time for solving the local-sub-problems at each it-
eration, and the communication cost is linear to n as long as
a method synchronizesw. Also, in the analysis of Wang &
Lin (2014) for using cyclic coordinate descent method to
train linear SVM, the training time depends on l because
in this method, the definition of one iteration is passing
through all instances once and thus the running time will
be at least l times the iteration complexity. But since our
framework can use any sub-problem solver, this is might
be avoided by considering a solver whose training time is
independent of l.

B. Additional Experiment Results
In this section, we provide more experimental results.

B.1. Results Appeared Partially in Section 4

We present more results under the same setting of Section
4. Figure (I) presents the dual objective values and accu-
racies of epsilon. Figure (II) shows the primal objective
values of all data sets.

B.2. Training Time Profile

To better understand the bottleneck of the training time, we
investigate the fraction of the total training time taken by
computation, synchronization and communication. The re-
sult is presented in Figure (III). By synchronization cost,
we mean the time amount spent when one machine fin-
ished solving its corresponding sub-problem (7) but has not
started communication because it is idle to wait for other
machines to finish solving (7). Note that since in our ex-
perimental setting, each solver conducts one round of size-
n communication every time it goes through the whole data
once, the behaviors in communication and synchronization
of all solvers should be similar. Therefore, we only report
the result of BQO-E. We can see that for sparse data sets
url and webspam, the proportion of computation time is
rather low and synchronization time is larger. This means
that each machine spent a different amount of time to solve
the local sub-problem. Thus, one might consider setting
the number of instances being examined at each iteration
to be identical for all machines to reduce the synchroniza-

tion time. This will be another advantage over primal batch
solvers that require exactly one pass through all instances
at each round of communication.

B.3. Speedup On Primal Objective Value

In Section 4, the training time of the speedup experiments is
obtained by the following. We reported the time for TRON
to reach wt satisfying

|f
P (wt)− fP (w∗)

fP (w∗)
| ≤ 0.01, (B.1)

where w∗ is the optimal solution of (1). For DSVM-AVE
and BQO-E that minimize (2), we report the time for them
to obtain αt such that

|f(αt)− f(α∗)

f(α∗)
| ≤ 0.01.

Here we report the result of considering (B.1) for
DSVM-AVE and BQO-E in Figures (IV)-(V). In this set-
ting, both DSVM-AVE and BQO-E have better speedups.
Also, DSVM-AVE and BQO-E have similar training time
in epsilon, but BQO-E is significantly better in webspam
in terms of both training time and speedup.

B.4. Experiments on Different Values of C

We also conduct additional experiments using different val-
ues of C. For the data sets we considered, C = 1 is
already large enough because the number of instances is
large and the loss term is summation instead of average
over all instances. Thus we consider smaller C. Tables (I)-
(II) present the result of C = 1e−2 while Tables (III)-(IV)
present the result of C = 1e− 4. We can see that when the
problems are easier to solve, i.e., when the training time of
all methods is short, DisDCA is usually the fastest, while
our method is still faster than DSVM-AVE and TRON in
most cases. However, in these situations, the training time
does not affect the total running time too much, because
in this case the data loading time is the bottleneck. More-
over, note that our line search methods are also applicable
to DisDCA to further improve the training time in this sit-
uation.
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L1-SVM L2-SVM

(a) Relative dual objective value

(b) Relative accuracy

Figure (I). Experiment results on epsilon. Top: time versus relative dual objective value. Bottom: time versus relative accuracy.

(a) L1-SVM: url (b) L2-SVM: url (c) L1-SVM: webspam

(d) L2-SVM: webspam (e) L1-SVM: epsilon (f) L2-SVM: epsilon

Figure (II). Time versus relative primal objective value. Time is in seconds. Top: L1-SVM, bottom: L2-SVM. Note that in webspam,
the function values of TRON for L2-SVM are too large to appear in the figure.
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Figure (III). Percentage of computation, synchronization, and communication in the total training time.

Training Time

(a) epsilon (b) webspam

Training Time + IO Time

(c) epsilon (d) webspam

Figure (IV). Speedup of different methods training L2-SVM. All algorithms use (B.1) to decide training time. Top: speedup of training
time. Bottom: speedup of the total running time including training and data loading time.

(a) epsilon (b) webspam

Figure (V). Training time of L2-SVM using different numbers of machines. All algorithms use (B.1) to decide training time.
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Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE TRON

url 0.01 21.4 21.4 70.5 79.3 42.7 146.8 98.3 115.5 46.9
epsilon 0.01 2.1 1.2 0.4 2.2 1.6 3.3 0.4 1.6 3.1
webspam 0.01 17.1 14.1 1.8 15.2 6.6 9.0 1.8 12.0 35.9

Table (I). Training time required for a solver to reach (fP (wt)− fP (w∗)) ≤ εfP (w∗). We present results of C = 0.01.

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE

url 0.01 10.8 11.3 36.4 41.3 296.6 593.1 1,025.6 1,203.0
epsilon 0.01 2.0 1.6 0.5 12.2 1.8 2.5 0.6 6.4
webspam 0.01 11.3 16.4 2.4 56.2 8.4 10.7 2.6 28.6

Table (II). Training time required for a solver to reach (f(α∗)− f(αt)) ≤ εf(α∗). We present results of C = 0.01.

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE TRON

url 0.01 3.3 5.9 1.1 3.1 1.3 9.1 0.8 2.7 9.2
epsilon 0.01 0.3 0.3 0.3 0.9 0.3 0.3 0.3 2.1 0.9
webspam 0.01 5.9 7.5 1.9 19.4 10.1 8.1 2.1 15.3 13.4

Table (III). Training time required for a solver to reach (fP (wt)− fP (w∗)) ≤ εfP (w∗). We present results of C = 0.0001.

Data set L1-SVM solvers L2-SVM solvers
ε BQO-E BQO-A DisDCA DSVM-AVE BQO-E BQO-A DisDCA DSVM-AVE

url 0.01 2.7 6.1 0.8 11.9 2.2 3.6 5.2 8.9
epsilon 0.01 0.3 0.3 0.3 12.3 0.3 0.4 0.3 6.0
webspam 0.01 6.7 7.5 1.9 65.7 10.1 7.1 2.1 30.1

Table (IV). Training time required for a solver to reach (f(α∗)− f(αt)) ≤ εf(α∗). We present results of C = 0.0001.
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