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A. Proof of Theorem 3
For clarity, we here provide a detailed and complete proof. Throughout this proof we will write Pk (resp. P∗) for the
transition kernel Pπk (resp. Pπ∗ ) induced by the stationary policy πk (resp. π∗). We will write Tk (resp. T∗) for the
associated Bellman operator. Similarly, we will write Pk,` for the transition kernel associated with the non-stationary
policy πk,` and Tk,` for its associated Bellman operator.

For k ≥ 0 we define the following quantities:

• bk = Tk+1vk − Tk+1,`Tk+1vk. This quantity which we will call the residual may be viewed as a non-stationary
analogue of the Bellman residual vk − Tk+1vk.

• sk = vk − vπk,` − εk. We will call it shift, as it measures the shift between the value vπk,` and the estimate vk before
incurring the error.

• dk = v∗ − vk + εk. This quantity, called distance thereafter, provides the distance between the kth value function
(before the error is added) and the optimal value function.

• lk = v∗ − vπk,` . This is the loss of the policy vπk,` . The loss is always non-negative since no policy can have a value
greater than or equal to v∗.

The proof is outlined as follows. We first provide a bound on bk which will be used to express both the bounds on sk and
dk. Then, observing that lk = sk + dk will allow to express the bound of ‖lk‖∞ stated by Theorem 3. Our arguments
extend those made by Scherrer et al. (2012) in the specific case ` = 1.

We will repeatedly use the fact that since policy πk+1 is greedy with respect to vk, we have

∀π′, Tk+1vk ≥ Tπ′vk. (5)

For a non-stationary policy πk,`, the induced `-step transition kernel is

Pk,` = PkPk−1 · · ·Pk−`+1.

As a consequence, for any function f : S → R, the operator Tk,` may be expressed as:

Tk,`f = rk + γPk,1rk−1 + γ2Pk,2rk−2 + · · ·+ γ`−1Pk,`−1rk−`+1 + γ`Pk,`f

then, for any function g : S → R, we have

Tk,`f − Tk,`g = γ`Pk,`(f − g) (6)

and
Tk,`(f + g) = Tk,`f + γ`Pk,`(g). (7)

The following notation will be useful.

Definition 1 (Scherrer et al. (2012)). For a positive integer n, we define Pn as the set of discounted transition kernels that
are defined as follows:

1. for any set of n policies {π1, . . . , πn}, (γPπ1
)(γPπ2

) · · · (γPπn) ∈ Pn,

2. for any α ∈ (0, 1) and P1, P2 ∈ Pn, αP1 + (1− α)P2 ∈ Pn

With some abuse of notation, we write Γn for denoting any element of Pn.
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Example 1 (Γn notation). If we write a transition kernel P as P = α1Γi + α2ΓjΓk = α1Γi + α2Γj+k, it should be read
as: “There exists P1 ∈ Pi,P2 ∈ Pj ,P3 ∈ Pk and P4 ∈ Pj+k such that P = α1P1 + α2P2P3 = α1P1 + α2P4.”.

We first provide three lemmas bounding the residual, the shift and the distance, respectively.

Lemma 2 (residual bound). The residual bk satisfies the following bound:

bk ≤
k∑
i=1

Γ(`m+1)(k−i)xi + Γ(`m+1)kb0

where

xk = (I − Γ`)Γεk.

Proof. We have:

bk = Tk+1vk − Tk+1,`Tk+1vk

≤ Tk+1vk − Tk+1,`Tk−`+1vk {Tk+1vk ≥ Tk−`+1vk (5)}
= Tk+1vk − Tk+1Tk,`vk

= γPk+1 (vk − Tk,`vk)

= γPk+1 ((Tk,`)
mTkvk−1 + εk − Tk,` ((Tk,`)

mTkvk−1 + εk))

= γPk+1

(
(Tk,`)

mTkvk−1 − (Tk,`)
m+1Tkvk−1 + (I − γ`Pk,`)εk

)
{(7)}

= γPk+1

(
(γ`Pk,`)

m (Tkvk−1 − Tk,`Tkvk−1) + (I − γ`Pk,`)εk
)

{(6)}
= γPk+1

(
(γ`Pk,`)

mbk−1 + (I − γ`Pk,`)εk
)
.

Which can be written as

bk ≤ Γ(Γ`mbk−1 + (I − Γ`)εk) = Γ`m+1bk−1 + xk.

Then, by induction:

bk ≤
k−1∑
i=0

Γ(`m+1)ixk−i + Γ(`m+1)kb0 =

k∑
i=1

Γ(`m+1)(k−i)xi + Γ(`m+1)kb0.

Lemma 3 (distance bound). The distance dk satisfies the following bound:

dk ≤
k∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + zk,

where

yk = −Γεk

and

zk =

mk−1∑
i=0

Γk−1+`ib0 + Γkd0.
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Proof. First expand dk:

dk = v∗ − vk + εk

= v∗ − (Tk,`)
mTkvk−1

= v∗ − Tkvk−1 + Tkvk−1 − Tk,`Tkvk−1 + Tk,`Tkvk−1 − (Tk,`)
2Tkvk−1

+ (Tk,`)
2Tkvk−1 − · · · − (Tk,`)

m−1Tkvk−1 + (Tk,`)
m−1Tkvk−1 − (Tk,`)

mTkvk−1

= v∗ − Tkvk−1 +

m−1∑
i=0

(Tk,`)
iTkvk−1 − (Tk,`)

i+1Tkvk−1

= T∗v∗ − Tkvk−1 +

m−1∑
i=0

(γ`Pk,`)
i (Tkvk−1 − Tk,`Tkvk−1) {(6)}

≤ T∗v∗ − T∗vk−1 +

m−1∑
i=0

(γ`Pk,`)
ibk−1 {Tkvk−1 ≥ T∗vk−1 (5)}

= γP∗(v∗ − vk−1) +

m−1∑
i=0

(γ`Pk,`)
ibk−1 {(6)}

= γP∗dk−1 − γP∗εk−1 +

m−1∑
i=0

(γ`Pk,`)
ibk−1 {dk = v∗ − vk + εk}

= Γdk−1 + yk−1 +

m−1∑
i=0

Γ`ibk−1.

Then, by induction

dk ≤
k−1∑
j=0

Γk−1−j

(
yj +

m−1∑
p=0

Γ`pbj

)
+ Γkd0.

Using the bound on bk from Lemma 2 we get:

dk ≤
k−1∑
j=0

Γk−1−j

(
yj +

m−1∑
p=0

Γ`p

(
j∑
i=1

Γ(`m+1)(j−i)xi + Γ(`m+1)jb0

))
+ Γkd0

=

k−1∑
j=0

m−1∑
p=0

j∑
i=1

Γk−1−j+`p+(`m+1)(j−i)xi +

k−1∑
j=0

m−1∑
p=0

Γk−1−j+`p+(`m+1)jb0 + Γkd0 +

k∑
i=1

Γi−1yk−i.

First we have:

k−1∑
j=0

m−1∑
p=0

j∑
i=1

Γk−1−j+`p+(`m+1)(j−i)xi =

k−1∑
i=1

k−1∑
j=i

m−1∑
p=0

Γk−1+`(p+mj)−i(`m+1)xi

=

k−1∑
i=1

m(k−i)−1∑
j=0

Γk−1+`(j+mi)−i(`m+1)xi

=

k−1∑
i=1

m(k−i)−1∑
j=0

Γ`j+k−i−1xi

=

k−1∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i.
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Second we have:

k−1∑
j=0

m−1∑
p=0

Γk−1−j+`p+(`m+1)jb0 =

k−1∑
j=0

m−1∑
p=0

Γk−1+`(p+mj)b0 =

mk−1∑
i=0

Γk−1+`ib0 = zk − Γkd0.

Hence

dk ≤
k∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + zk.

Lemma 4 (shift bound). The shift sk is bounded by:

sk ≤
k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i + wk,

where

wk =

∞∑
j=mk

Γ`j+k−1b0.

Proof. Expanding sk we obtain:

sk = vk − vπk,` − εk
= (Tk,`)

mTkvk−1 − vπk,`
= (Tk,`)

mTkvk−1 − (Tk,`)
∞Tk,`Tkvk−1 {∀f : vπk,` = (Tk,`)

∞f}

= (γ`Pk,`)
m
∞∑
j=0

(γ`Pk,`)
j (Tkvk−1 − Tk,`Tkvk−1)

= Γ`m
∞∑
j=0

Γ`jbk−1

=

∞∑
j=0

Γ`m+`jbk−1.

Plugging the bound on bk of Lemma 2 we get:

sk ≤
∞∑
j=0

Γ`m+`j

(
k−1∑
i=1

Γ(`m+1)(k−1−i)xi + Γ(`m+1)(k−1)b0

)

=

∞∑
j=0

k−1∑
i=1

Γ`m+`j+(`m+1)(k−1−i)xi +

∞∑
j=0

Γ`m+`j+(`m+1)(k−1)b0

=

∞∑
j=0

k−1∑
i=1

Γ`(j+mi)+i−1xk−i +

∞∑
j=0

Γ`(j+mk)+k−1b0

=

k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i +

∞∑
j=mk

Γ`j+k−1b0

=

k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i + wk.
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Lemma 5 (loss bound). The loss lk is bounded by:

lk ≤
k−1∑
i=1

Γi

 ∞∑
j=0

Γ`j(I − Γ`)− I

 εk−i + ηk,

where

ηk = zk + wk =

mk−1∑
i=0

Γk−1+`ib0 + Γkd0 +

∞∑
j=mk

Γ`j+k−1b0 =

∞∑
i=0

Γ`i+k−1b0 + Γkd0.

Proof. Using Lemmas 3 and 4, we have:

lk = sk + dk

≤
k−1∑
i=1

∞∑
j=mi

Γ`j+i−1xk−i +

k−1∑
i=1

mi−1∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + zk + wk

=

k−1∑
i=1

∞∑
j=0

Γ`j+i−1xk−i +

k∑
i=1

Γi−1yk−i + ηk.

Plugging back the values of xk and yk and using the fact that ε0 = 0 we obtain:

lk ≤
k−1∑
i=1

∞∑
j=0

Γ`j+i−1(I − Γ`)Γεk−i +

k−1∑
i=1

Γi−1(−Γ)εk−i − Γkε0 + ηk

=

k−1∑
i=1

 ∞∑
j=0

Γ`j+i(I − Γ`)εk−i − Γiεk−i

+ ηk

=

k−1∑
i=1

Γi

 ∞∑
j=0

Γ`j(I − Γ`)− I

 εk−i + ηk.

We now provide a bound of ηk in terms of d0:

Lemma 6.

ηk ≤ Γk

( ∞∑
i=0

Γi(Γ− I) + I

)
d0.

Proof. First recall that

ηk =

∞∑
i=0

Γ`i+k−1b0 + Γkd0.
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In order to bound ηk in terms of d0 only, we express b0 in terms of d0:

b0 = T1v0 − (T1)`T1v0

= T1v0 − (T1)2v0 + (T1)2v0 − · · · − (T1)`v0 + (T1)`v0 − (T1)`+1v0

=
∑̀
i=1

(γP1)i(v0 − T1v0)

=
∑̀
i=1

(γP1)i(v0 − v∗ + T∗v∗ − T∗v0 + T∗v0 − T1v0)

≤
∑̀
i=1

(γP1)i(v0 − v∗ + T∗v∗ − T∗v0) {T1v0 ≥ T∗v0 (5)}

=
∑̀
i=1

(γP1)i(γP∗ − I)d0.

Consequently, we have:

ηk ≤
∞∑
i=0

Γ`i+k−1
∑̀
j=1

(γP1)j(γP∗ − I)d0 + Γkd0

=

∞∑
i=0

Γ`i+k
`−1∑
j=0

(γP1)j(γP∗ − I)d0 + Γkd0

= Γk

 ∞∑
i=0

Γ`i
`−1∑
j=0

Γj(Γ− I) + I

 d0

= Γk

( ∞∑
i=0

Γi(Γ− I) + I

)
d0.

We now conclude the proof of Theorem 3. Taking the absolute value in Lemma 6 we obtain:

|ηk| ≤ Γk

( ∞∑
i=0

Γi(Γ + I) + I

)
|d0| = 2

∞∑
i=k

Γi|d0|

Since lk is non-negative, from Lemma 5 we have:

|lk| ≤
k−1∑
i=1

Γi

 ∞∑
j=0

Γ`j(I + Γ`) + I

 |εk−i|+ |ηk| = 2

k−1∑
i=1

Γi
∞∑
j=0

Γ`j |εk−i|+ 2

∞∑
i=k

Γi|d0|. (8)

Since ‖v‖∞ = max |v|, d0 = v∗ − v0 and lk = v∗ − vπk,` , we can take the maximum in (8) and conclude that:

∥∥v∗ − vπk,`∥∥∞ ≤ 2(γ − γk)

(1− γ)(1− γ`)
2ε+

γk

1− γ
‖v∗ − v0‖∞.
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B. Proof of Theorem 4
We shall prove the following result.

Lemma 7. Consider NS-AMPI with parameters m ≥ 0 and ` ≥ 1 applied on the problem of Figure 1, starting from
v0 = 0 and all initial policies π0, π−1, . . . , π−`+2 equal to π∗. Assume that at each iteration k, the following error terms
are applied, for some ε ≥ 0:

∀i, εk(i) =

 −ε if i = k
ε if i = k + `
0 otherwise

.

Then NS-AMPI can8 generate a sequence of value-policy pairs that is described below.

For all iterations k ≥ 1, the policy πk takes the optimal action in all states but k, that is

∀i ≥ 2, πk(i) =

{
→ if i = k
← otherwise (9)

For all iterations k ≥ 1, the value function vk satisfies the following equations:

• For all i < k:
vk(i) = −γ(k−1)(`m+1)ε (10.a)

• For all i such that k ≤ i ≤ k + ((k − 1)m+ 1)`:

– For i = k + (qm+ p+ 1)` with q ≥ 0 and 0 ≤ p < m (i.e. i = k + n`, n ≥ 1):

vk(i) = γq(`m+1)

γ`(p+1) − γ`(m+1)

1− γ`
rk−q + 1[p=0]ε+

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
(10.b)

– For i = k:
vk(k) = vk(k + `) + rk − 2ε (10.c)

– For i = k + q`+ p with 0 ≤ q ≤ (k − 1)m− 1 and 1 ≤ p < `:

vk(i) = −γ(k−1)(`m+1)ε (10.d)

– Otherwise, i.e. when i = k + (k − 1)m`+ p with 1 ≤ p < `:

vk(i) = 0 (10.e)

• For all i > k + ((k − 1)m+ 1)`
vk(i) = 0 (10.f)

The relative complexity of the different expressions of vk in Lemma 7 is due to the presence of nested periodic patterns in
the shape of the value function along the state space and the horizon. Figures 4 and 5 give the shape of the value function
for different values of ` and m, exhibiting the periodic patterns. The proof of Lemma 7 is done by recurrence on k.

B.1. Base case k = 1

Since v0 = 0, π1 is the optimal policy that takes ← in all states as desired. Hence, (T1,`)
mT1v0 = 0 in all states.

Accounting for the errors ε1 we have v1 = (T1,`)
mT1v0 + ε1 = ε1. As can be seen on Figures 4 and 5, when k = 1 we

only need to consider equations (10.b), (10.c), (10.e) and (10.f) since the others apply to an empty set of states.

First, we have
v1(1 + `) = ε1(1 + `) = ε

8We write here “can” since at each iteration, several policies will be greedy with respect to the current value.
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Figure 4. Shape of the value function with ` = 2 and m = 3.
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Figure 5. Shape of the value function with ` = 3 and m = 2.
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which is (10.b) when q = (k − 1) = 0 and p = 0.

Second, we have
v1(1) = ε1(1) = −ε = ε+ 0− 2ε = v1(1 + `) + r1 − 2ε

which corresponds to (10.c).

Third, for 1 ≤ p < ` we have
v1(1 + p) = ε1(1 + p) = 0

corresponding to (10.e).

Finally, for all the remaining states i > 1 + `, we have

v1(i) = ε1(i) = 0

corresponding to (10.f).

The base case is now proved.

B.2. Induction Step

We assume that Lemma 7 holds for some fixed k ≥ 1, we now show that it also holds for k + 1.

B.2.1. THE POLICY πk+1

We begin by showing that the policy πk+1 is greedy with respect to vk. Since there is no choice in state 1 is→, we turn
our attention to the other states. There are many cases to consider, each one of them corresponding to one or more states.
These cases, labelled from A through F, are summarized as follows, depending on the state i:

(A) 1 < i < k + 1

(B) i = k + 1

(C) i = k + 1 + q`+ p with 1 ≤ p < ` and 0 ≤ q ≤ (k − 1)m

(D) i = k + 1 + (qm+ p+ 1)` with 0 ≤ p < m and 0 ≤ q < k − 1

(E) i = k + 1 + ((k − 1)m+ 1)`

(F) i > k + 1 + ((k − 1)m+ 1)`

Figure 6 depicts how those cases cover the whole state space.

A · · · A B

k

k + 1

C · · · C D

k + 1 + `

C · · · C D

k + 1 + 2`

· · · C · · · C D

k + 1 + (k − 1)m`

C · · · C E

k + 1 + ((k − 1)m+ 1)`

F F · · ·

k `− 1 `− 1 `− 1 `− 1

Figure 6. Policy cases, each state is represented by a letter corresponding to a case of the policy πk+1. Starting from 1, state number
increase from left to right.

For all states i > 1 in each of the above cases, we consider the action-value functions q→k+1(i) (resp. q←k+1(i)) of action→
(resp. ←) defined as:

q→k+1(i) = ri + γvk(i− 1) and q←k+1(i) = γvk(i+ `− 1).

In case i = k + 1 (B) we will show that q→k+1(i) = q←k+1(i) meaning that a policy πk+1 greedy for vk may be either
πk+1(k + 1) =→ or πk+1(k + 1) =←. In all other cases we show that q→k+1(i) < q←k+1(i) which implies that for those
i 6= k + 1, πk+1(i) =←, as required by Lemma 7.
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A: In states 1 < i < k + 1 We have q→k+1(i) = ri + γvk(i+ `− 1) and q←k+1(i) = γvk(i− 1), depending on the value
of i+ `− 1, which is reached by taking the→ action, we need to consider two cases:

• Case 1: i+ `− 1 6= k. In this case vk(i+ `− 1) is described by either (10.a) or (10.d) when i+ `− 1 is less than, or
greater than k, respectively. In either case we have vk(i+ `− 1) = −γ(k−1)(`m+1)ε = vk(i− 1) and hence:

q→k+1(i) = ri + γvk(i+ `− 1) = ri + γvk(i− 1) < γvk(i− 1) = q←k+1(i)

which gives πk+1(i) =← as desired.

• Case 2: i+ `− 1 = k.

q→k+1(i) = ri + γvk(k) = ri + γ (vk(k + `) + rk − 2ε) {(10.c)}

= γ

k−1∑
j=0

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)
+ rk − 2ε

 {(10.b)}

≤ γ

k−1∑
j=0

γj(`m+1)ε+ rk − 2ε

 {rk−j ≤ 0}

= γ

k−1∑
j=1

(
γj(`m+1)ε− 2γjε

)
− ε

 {rk = −2

k−1∑
j=1

γjε}

< −γε {γj(`m+1)ε− 2γjε < 0}
< γvk(i− 1) {vk(i− 1) = −γ(k−1)(`m+1)ε (10.a)}
= q←k+1(i)

giving πk+1(i) =← as desired.

B: In state k + 1 Looking at the action value function q←k+1 in state k + 1, we observe that:

q←k+1(k + 1) = γvk(k) = γ (rk − 2ε+ vk(k + `)) {(10.c)}
= γrk − 2γε+ γvk(k + `)

= rk+1 + γvk(k + `) {ri+1 = γri − 2γε}
= q→k+1(k + 1)

This means that the algorithm can take πk+1(k + 1) =→ so as to satisfy Lemma 7.

C: In states i = k + 1 + q`+ p We restrict ourselves to the cases when 1 ≤ p < ` and 0 ≤ q ≤ (k − 1)m. Three cases
for the value of q need to be considered:

• Case 1: 0 ≤ q < (k − 1)m− 1. We have:

q→k+1(i) = ri + γvk(k + (q + 1)`+ p)

= ri + γvk(k + q`+ p) {(10.d) independent of q}
< γvk(k + q`+ p) {ri < 0}
= q←k+1(i).
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• Case 2: q = (k − 1)m− 1

q→k+1(i) = ri + γvk(k + (q + 1)`+ p)

= ri + γ0 {(10.e)}

= −2ε
γ − γk+1+q`+p

1− γ

= −2ε

(
γ − γk+q`+p

1− γ
+ γk+q`+p

)
< −γk+q`+pε
= −γk+(k−1)`m−`+pε {q = (k − 1)m− 1}
< −γk+(k−1)`mε = −γ(k−1)(`m+1)+1ε {p− ` < 0}
= γvk(k + q`+ p) {(10.d)}
= q←k+1(i).

• Case 3: q = (k − 1)m

q→k+1(i) = ri + γvk(k + ((k − 1)m+ 1)`+ p)

= ri + γ0 {(10.f)}
= ri + γvk(k + ((k − 1)m)`+ p) {(10.e)}
= ri + γvk(i− 1)

< q←k+1(i). {ri < 0}

D: In states i = k + 1 + (qm+ p+ 1)` In these states, we have:

q←k+1(i) = γvk(k + (qm+ p+ 1)`)

q→k+1(i) = ri + γvk(k + 1 + (qm+ p+ 1)`+ `− 1)

= ri + γvk(k + (qm+ p+ 2)`). (11)

As for the right-hand side of (11) we need to consider two cases:

• Case 1: p+ 1 < m:

In the following, define

xk,q =

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
.

Then,

q→k+1(i) = ri + γvk(k + (qm+ (p+ 1) + 1)`)

= ri + γγq(`m+1)

γ`(p+2) − γ`(m+1)

1− γ`
rk−q +

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

) {(10.b)}

= ri + γq(`m+1)+1

((
γ`(p+1) − γ`(m+1)

1− γ`
− γ`(p+1)

)
rk−q + xk,q

)
= ri − γ(qm+p+1)`+q+1rk−q + γq(`m+1)+1

(
γ`(p+1) − γ`(m+1)

1− γ`
rk−q + xk,q

)
= ri − γi−k+qrk−q + γvk(k + (qm+ p+ 1)`)− 1[p=0]γ

q(`m+1)+1ε {(10.b)}
≤ ri − γi−k+qrk−q + γvk(k + (qm+ p+ 1)`)

= ri − γi−k+qrk−q + q←k+1(i). (12)



Non-Stationary Approximate Modified Policy Iteration

Now, observe that

γi−k+qrk−q = −2γi−k+q
γ − γk−q

1− γ
ε

= −2
γi−k+q+1 − γi

1− γ
ε

= −2
γ − γ + γi−k+q+1 − γi

1− γ
ε

= −2
γ − γi

1− γ
ε− 2

−γ + γi−k+q+1

1− γ
ε

= ri − ri−k+q+1.

Plugging this back into (12), we get:

q→k+1(i) ≤ ri − ri + ri−k+q+1 + q←k+1(i)

< q←k+1(i). {ri−k+q+1 < 0}

• Case 2: p+ 1 = m:

Using the fact that p+ 1 = m implies γ`(p+1)−γ`(m+1)

1−γ` = γ`m we have:

q→k+1(i) = ri + γvk(k + ((q + 1)m+ 1)`)

= ri + γγ(q+1)(`m+1)

γ` − γ`(m+1)

1− γ`
rk−q−1 + ε+

k−q−2∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j−1 + ε

) {(10.b)}

= ri + γγ(q+1)(`m+1)

k−q−2∑
j=0

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j−1 + ε

)
= ri + γγq(`m+1)

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
= ri + γγq(`m+1)

(γ`(p+1) − γ`(m+1)

1− γ`
− γ`m

)
rk−q +

k−q−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−q−j + ε

)
= ri − γq(`m+1)+1γ`mrk−q + γ

(
vk(k + (qm+ p+ 1)`)− 1[p=0]γ

q(`m+1)ε
)

{(10.b)}

≤ ri − γi−k+qrk−q + γvk(k + (qm+ p+ 1)`)

< q←k+1(i),

where we concluded by observing that this is the same result as (12).

E: In state i = k + ((k − 1)m+ 1)`+ 1

q←k+1(i) = γvk(i− 1) = γvk(k + ((k − 1)m+ 1)`)

= γ(k−1)(`m+1)+1

(
γ` − γ`(m+1)

1− γ`
r1 + ε

)
{(10.b) with q = k − 1 and p = 0}

= γ(k−1)(`m+1)+1ε {r1 = 0}
> ri {ri < 0}
= ri + γvk(i+ `− 1) {vk(i+ `+ 1) = 0 (10.f)}
= q→k+1(i).
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F: In states i > k + ((k − 1)m+ 1)`+ 1 Following (10.f) we have vk(i− 1) = vk(i+ `− 1) = 0 and hence

q←k+1(i) = 0 > ri = q→k+1(i).

B.2.2. THE VALUE FUNCTION vk+1

In the following we will show that the value function vk+1 satisfies Lemma 7. To that end we consider the value of
((Tk+1,`)

mTk+1vk)(s0) by analysing the trajectories obtained by first following m times πk,` then πk+1 from various
starting states s0.

Given a starting state s0 and a non stationary policy πk+1,`, we will represent the trajectories as a sequence of triples
(si, ai, r(si, ai))i=0,...,`m arranged in a “trajectory matrix” of ` columns and m rows. Each column corresponds to one of
the policies πk+1, πk, . . . , πk+2−`. In a column labeled by policy πj the entries are of the form (si, πj(si), r(si, πj(si));
this layout makes clear which stationary policy is used to select the action in any particular step in the trajectory. Indeed,
in column πj , we have (si,→, rj) if and only if si = j, otherwise each entry is of the form (si,←, 0). Such a matrix
accounts for the first m applications of the operator Tk+1,`. One addional row of only one triple (si, πk+1(si), rπk+1

(si))
represents the final application of Tk+1. After this triple comes the end state of the trajectory s`m+1.

π4 π3 π2

(10,←, 0) (9,←, 0) (8,←, 0)

(7,←, 0) (6,←, 0) (5,←, 0)

(4,→, r4) (6,←, 0) (5,←, 0)

(4,→, r4) (6,←, 0) (5,←, 0)

(4,→, r4) 6

m = 4 times

` = 3 steps

Figure 7. The trajectory matrix of policy π4,` starting from state 10 with m = 4 and ` = 3.

Example 2. Figure 7 depicts the trajectory matrix of policy π4,` = π4π3π2 with m = 4 and ` = 3. The trajectory starts
from state s0 = 10 and ends in state s`m+1 = 6. The← action is always taken with reward 0 except when in state 4 under
the policy π4. From this matrix we can deduce that, for any value function v:

((T4,`)
mT4v)(10) = γ6r4 + γ9r4 + γ12r4 + γ13v(6)

= γ2`r4 + γ3`r4 + γ4`r4 + γ4`+1v(6)

=
γ2` − γ(m+1)`

1− γ`
r4 + γ`m+1v(6).

With this in hand, we are going to prove each case of Lemma 7 for vk+1.

In states i < k + 1 Following m times πk+1,` and then πk+1 starting from these states consists in taking the← action
`m+ 1 times to eventually finish either in state 1 if i ≤ `m+ 2 with value

vk+1(i) = γ`m+1vk(1) + εk+1(i) = −γ`m+1γ(k−1)(`m+1)ε = −γk(`m+1)ε

or otherwise in state i− `m− 1 < k with value

vk+1(i) = γ`m+1vk(i− `m− 1) + εk+1(i) = −γ`m+1γ(k−1)(`m+1)ε = −γk(`m+1)ε

This matches Equation (10.a) in both cases.

In states i = k + 1 + (qm + p + 1)` Consider the states i = k + 1 + (qm + p + 1)` with q ≥ 0 and 0 ≤ p < m.
Following m times πk+1,` and then πk+1 starting from state i gives the following trajectories:
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• when q = 0, (i.e. i = k + 1 + (p+ 1)`):

πk+1 πk . . . πk−`+2

(k + 1 + (p+ 1)`,←, 0) (k + (p+ 1)`,←, 0) . . . (k + p`+ 2,←, 0)

(k + 1 + p`,←, 0) (k + p`,←, 0) . . . (k + (p− 1)`+ 2,←, 0)

...
...

...
...

(k + 1 + `,←, 0) (k + `,←, 0) . . . (k + 2,←, 0)

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

...
...

...
...

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

(k + 1,→, rk+1) k + `

p+ 1 times

m− p− 1 times

` steps

Using (10.b) with q = p = 0 as our induction hypothesis, this gives

((Tk+1,`)
mTk+1vk) (i) =

m∑
j=p+1

γ`jrk+1 + γ`m+1vk(k + `)

=

m∑
j=p+1

γ`jrk+1 + γ`m+1

γ` − γ`(m+1)

1− γ`
rk + ε+

k−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)
=
γ`(p+1) − γ`(m+1)

1− γ`
rk+1 +

k∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)

Accounting for the error term and the fact that i = k + 1 + ` ⇐⇒ p = q = 0, we get

vk+1(i) = ((Tk+1,`)
mTk+1vk) (i) + 1[i=k+1+`]ε

=
γ`(p+1) − γ`(m+1)

1− γ`
rk+1 + 1[p=0]ε+

k∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)

which is (10.b) for k + 1 and q = 0 as desired.

• when 1 ≤ q ≤ k:

In this case we have i − (`m + 1) ≥ k + 1, meaning that k + 1, the first state where the → action would be available
is unreachable (in the sense that the tractory could end in k + 1, but no action will be taken there). Consequently the←
action is taken `m+ 1 times and the system ends in state i− `m− 1 = k + ((q − 1)m+ p+ 1)`. Therefore, using (10.b)
as induction hypothesis and the fact that i 6∈ {k + 1, k + `+ 1} =⇒ εk+1(i) = 0, we have:

vk+1(i) = γ`m+1vk(k + ((q − 1)m+ p+ 1)`) + εk+1(i)

= γq(`m+1)

(
γ`(p+1) − γ`(m+1)

1− γ`
rk+1−q + 1[p=0]ε+

k−q∑
i=1

γi(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk+1−q−k + ε

))
,

which statisfies (10.b) for k + 1.
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In state k + 1 Following m times πk+1,` and then πk+1 starting from k + 1 gives the following trajectory:

πk+1 πk . . . πk−`+2

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

...
...

...
...

(k + 1,→, rk+1) (k + `,←, 0) . . . (k + 2,←, 0)

(k + 1,→, rk+1) k + `

m times

` steps

As a consequence, with (10.c) as induction hypothesis we have:

((Tk+1,`)
mTk+1vk) (k + 1) =

1− γ`(m+1)

1− γ`
rk+1 + γ`m+1vk(k + `)

= rk+1 +
γ` − γ`(m+1)

1− γ`
rk+1 + γ`m+1

γ` − γ`(m+1)

1− γ`
rk + ε+

k−1∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j + ε

)
= rk+1 +

γ` − γ`(m+1)

1− γ`
rk+1 +

k∑
j=1

γj(`m+1)

(
γ` − γ`(m+1)

1− γ`
rk−j+1 + ε

)
= rk+1 + vk+1(k + `+ 1)− ε

Hence,

vk+1(k + 1) = ((Tk+1,`)
mTk+1vk) (k + 1) + εk+1(k + 1)

= vk+1(k + `+ 1) + rk+1 − 2ε,

which matches (10.c).

In states i = k + 1 + q` + p For states i = k + 1 + q` + p with 0 ≤ q ≤ km − 1 and 1 ≤ p < `, the policy πk+1,`

always takes the← action with either one of the following trajectories

• when q ≥ m:

πk+1 πk . . . πk−`+2

(k + 1 + q`+ p,←, 0) (k + q`+ p,←, 0) . . . (k + (q − 1)`+ p+ 2,←, 0)

...
...

...
...

(k + 1 + (q −m+ 1)`+ p,←, 0) (k + q`+ p,←, 0) . . . (k + (q −m)`+ p+ 2,←, 0)

(k + 1 + (q −m)`+ p,←, 0) k + (q −m)`+ p

m times

` steps

As a consequence, with (10.d) as induction hypothesis we have:

vk+1(i) = ((Tk+1,`)
mTk+1vk) (i) = γ`m+1vk(k + (q −m)`+ p) = −γ`m+1γ(k−1)(`m+1)ε = −γk(`m+1)ε

which satisfies (10.d) in this case.

• when q < m:
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Assuming that negative states correspond to state 1, where the action is irrelevant, we have the following trajectory:

πk+1 . . . πk−`+2

(k + 1 + q`+ p,←, 0) . . . (k + (q − 1)`+ p+ 2,←, 0)

...
...

...
(k + 1 + `+ p,←, 0) . . . (k + p+ 2,←, 0)

(k + 1 + p,←, 0) . . . (k − `+ p+ 2,←, 0)

(k + 1− `+ p,←, 0) . . . (k − 2`+ p+ 2,←, 0)

...
...

...
(k + 1− (m− q − 1)`+ p,←, 0) . . . (k − (m− q)`+ p+ 2,←, 0)

(k + 1− (m− q)`+ p,←, 0) k + (q −m)`+ p

q times

m− q times

` steps

In the above trajectory, one can see that only the← action is taken (ignoring state 1). Indeed, since we follow the policies
πk+1πk, . . . , πk−`+2 the→ action may only be taken in states k + 1, k, . . . , k − ` + 2. When state k + 1 is reached, the
selected action is πk−p+1(k+ 1) which is← since p ≥ 1. The same reasonning applies in the next states k, . . . , k− `+ 1,
where p ≥ 1 prevents to use a policy that would select the→ action in those states.

Since p − ` < 0 the trajectory always terminates in a state j < k with value vk(j) = −γ(k−1)(`m−1)ε as for the q ≥ m
case, which allows to conclude that (10.d) also holds in this case.

In states i = k + 1 + km` + p Observe that following m times πk+1,` and then πk+1 once amounts to always take←
actions. Thus, one eventually finishes in state k + (k − 1)m`+ p ≥ k + 1, which, since εk(i) = 0, gives

vk+1(i) = ((Tk+1,`)
mTk+1vk) (i) = γ`m+1vk(k + (k − 1)m`+ p) = −γ`m+10 = 0,

satisfiying (10.e).

In states i > k + 1 + (km + 1)` In these states, the action← is taken `m + 1 times ending up in state j > k + ((k −
1)m+ 1)`, with value vk(j) = 0, from which vk+1(i) = 0 follows as required by (10.f).


