## Supplementary Material for Non-Stationary Approximate Modified Policy Iteration

## A. Proof of Theorem 3

For clarity, we here provide a detailed and complete proof. Throughout this proof we will write $P_{k}$ (resp. $P_{*}$ ) for the transition kernel $P_{\pi_{k}}$ (resp. $P_{\pi_{*}}$ ) induced by the stationary policy $\pi_{k}$ (resp. $\pi_{*}$ ). We will write $T_{k}$ (resp. $T_{*}$ ) for the associated Bellman operator. Similarly, we will write $P_{k, \ell}$ for the transition kernel associated with the non-stationary policy $\pi_{k, \ell}$ and $T_{k, \ell}$ for its associated Bellman operator.

For $k \geq 0$ we define the following quantities:

- $b_{k}=T_{k+1} v_{k}-T_{k+1, \ell} T_{k+1} v_{k}$. This quantity which we will call the residual may be viewed as a non-stationary analogue of the Bellman residual $v_{k}-T_{k+1} v_{k}$.
- $s_{k}=v_{k}-v_{\pi_{k, \ell}}-\epsilon_{k}$. We will call it shift, as it measures the shift between the value $v_{\pi_{k, \ell}}$ and the estimate $v_{k}$ before incurring the error.
- $d_{k}=v_{*}-v_{k}+\epsilon_{k}$. This quantity, called distance thereafter, provides the distance between the $k^{\text {th }}$ value function (before the error is added) and the optimal value function.
- $l_{k}=v_{*}-v_{\pi_{k, \ell}}$. This is the loss of the policy $v_{\pi_{k, \ell}}$. The loss is always non-negative since no policy can have a value greater than or equal to $v_{*}$.

The proof is outlined as follows. We first provide a bound on $b_{k}$ which will be used to express both the bounds on $s_{k}$ and $d_{k}$. Then, observing that $l_{k}=s_{k}+d_{k}$ will allow to express the bound of $\left\|l_{k}\right\|_{\infty}$ stated by Theorem 3. Our arguments extend those made by Scherrer et al. (2012) in the specific case $\ell=1$.

We will repeatedly use the fact that since policy $\pi_{k+1}$ is greedy with respect to $v_{k}$, we have

$$
\begin{equation*}
\forall \pi^{\prime}, \quad T_{k+1} v_{k} \geq T_{\pi^{\prime}} v_{k} \tag{5}
\end{equation*}
$$

For a non-stationary policy $\pi_{k, \ell}$, the induced $\ell$-step transition kernel is

$$
P_{k, \ell}=P_{k} P_{k-1} \cdots P_{k-\ell+1} .
$$

As a consequence, for any function $f: \mathcal{S} \rightarrow \mathbb{R}$, the operator $T_{k, \ell}$ may be expressed as:

$$
T_{k, \ell} f=r_{k}+\gamma P_{k, 1} r_{k-1}+\gamma^{2} P_{k, 2} r_{k-2}+\cdots+\gamma^{\ell-1} P_{k, \ell-1} r_{k-\ell+1}+\gamma^{\ell} P_{k, \ell} f
$$

then, for any function $g: \mathcal{S} \rightarrow \mathbb{R}$, we have

$$
\begin{equation*}
T_{k, \ell} f-T_{k, \ell} g=\gamma^{\ell} P_{k, \ell}(f-g) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k, \ell}(f+g)=T_{k, \ell} f+\gamma^{\ell} P_{k, \ell}(g) \tag{7}
\end{equation*}
$$

The following notation will be useful.
Definition 1 (Scherrer et al. (2012)). For a positive integer $n$, we define $\mathbb{P}_{n}$ as the set of discounted transition kernels that are defined as follows:

1. for any set of $n$ policies $\left\{\pi_{1}, \ldots, \pi_{n}\right\}$, $\left(\gamma P_{\pi_{1}}\right)\left(\gamma P_{\pi_{2}}\right) \cdots\left(\gamma P_{\pi_{n}}\right) \in \mathbb{P}_{n}$,
2. for any $\alpha \in(0,1)$ and $P_{1}, P_{2} \in \mathbb{P}_{n}, \alpha P_{1}+(1-\alpha) P_{2} \in \mathbb{P}_{n}$

With some abuse of notation, we write $\Gamma^{n}$ for denoting any element of $\mathbb{P}_{n}$.

Example 1 ( $\Gamma^{n}$ notation). If we write a transition kernel P as $P=\alpha_{1} \Gamma^{i}+\alpha_{2} \Gamma^{j} \Gamma^{k}=\alpha_{1} \Gamma^{i}+\alpha_{2} \Gamma^{j+k}$, it should be read as: "There exists $P_{1} \in \mathbb{P}_{i}, P_{2} \in \mathbb{P}_{j}, P_{3} \in \mathbb{P}_{k}$ and $P_{4} \in \mathbb{P}_{j+k}$ such that $P=\alpha_{1} P_{1}+\alpha_{2} P_{2} P_{3}=\alpha_{1} P_{1}+\alpha_{2} P_{4}$.".

We first provide three lemmas bounding the residual, the shift and the distance, respectively.
Lemma 2 (residual bound). The residual $b_{k}$ satisfies the following bound:

$$
b_{k} \leq \sum_{i=1}^{k} \Gamma^{(\ell m+1)(k-i)} x_{i}+\Gamma^{(\ell m+1) k} b_{0}
$$

where

$$
x_{k}=\left(I-\Gamma^{\ell}\right) \Gamma \epsilon_{k}
$$

Proof. We have:

$$
\begin{array}{rlr}
b_{k} & =T_{k+1} v_{k}-T_{k+1, \ell} T_{k+1} v_{k} & \\
& \leq T_{k+1} v_{k}-T_{k+1, \ell} T_{k-\ell+1} v_{k} & \left\{T_{k+1} v_{k} \geq T_{k-\ell+1} v_{k}(5)\right\} \\
& =T_{k+1} v_{k}-T_{k+1} T_{k, \ell} v_{k} & \\
& =\gamma P_{k+1}\left(v_{k}-T_{k, \ell} v_{k}\right) & \\
& =\gamma P_{k+1}\left(\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1}+\epsilon_{k}-T_{k, \ell}\left(\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1}+\epsilon_{k}\right)\right) \\
& =\gamma P_{k+1}\left(\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1}-\left(T_{k, \ell}\right)^{m+1} T_{k} v_{k-1}+\left(I-\gamma^{\ell} P_{k, \ell}\right) \epsilon_{k}\right) & \{(7)\} \\
& =\gamma P_{k+1}\left(\left(\gamma^{\ell} P_{k, \ell}\right)^{m}\left(T_{k} v_{k-1}-T_{k, \ell} T_{k} v_{k-1}\right)+\left(I-\gamma^{\ell} P_{k, \ell}\right) \epsilon_{k}\right) & \{(6)\}  \tag{6}\\
& =\gamma P_{k+1}\left(\left(\gamma^{\ell} P_{k, \ell}\right)^{m} b_{k-1}+\left(I-\gamma^{\ell} P_{k, \ell}\right) \epsilon_{k}\right) . &
\end{array}
$$

Which can be written as

$$
b_{k} \leq \Gamma\left(\Gamma^{\ell m} b_{k-1}+\left(I-\Gamma^{\ell}\right) \epsilon_{k}\right)=\Gamma^{\ell m+1} b_{k-1}+x_{k}
$$

Then, by induction:

$$
b_{k} \leq \sum_{i=0}^{k-1} \Gamma^{(\ell m+1) i} x_{k-i}+\Gamma^{(\ell m+1) k} b_{0}=\sum_{i=1}^{k} \Gamma^{(\ell m+1)(k-i)} x_{i}+\Gamma^{(\ell m+1) k} b_{0}
$$

Lemma 3 (distance bound). The distance $d_{k}$ satisfies the following bound:

$$
d_{k} \leq \sum_{i=1}^{k} \sum_{j=0}^{m i-1} \Gamma^{\ell j+i-1} x_{k-i}+\sum_{i=1}^{k} \Gamma^{i-1} y_{k-i}+z_{k}
$$

where

$$
y_{k}=-\Gamma \epsilon_{k}
$$

and

$$
z_{k}=\sum_{i=0}^{m k-1} \Gamma^{k-1+\ell i} b_{0}+\Gamma^{k} d_{0}
$$

## Proof. First expand $d_{k}$ :

$$
\begin{align*}
& d_{k}= v_{*}-v_{k}+\epsilon_{k} \\
&= v_{*}-\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1} \\
&= v_{*}-T_{k} v_{k-1}+T_{k} v_{k-1}-T_{k, \ell} T_{k} v_{k-1}+T_{k, \ell} T_{k} v_{k-1}-\left(T_{k, \ell}\right)^{2} T_{k} v_{k-1} \\
&+\left(T_{k, \ell}\right)^{2} T_{k} v_{k-1}-\cdots-\left(T_{k, \ell}\right)^{m-1} T_{k} v_{k-1}+\left(T_{k, \ell}\right)^{m-1} T_{k} v_{k-1}-\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1} \\
&= v_{*}-T_{k} v_{k-1}+\sum_{i=0}^{m-1}\left(T_{k, \ell}\right)^{i} T_{k} v_{k-1}-\left(T_{k, \ell}\right)^{i+1} T_{k} v_{k-1} \\
&= T_{*} v_{*}-T_{k} v_{k-1}+\sum_{i=0}^{m-1}\left(\gamma^{\ell} P_{k, \ell}\right)^{i}\left(T_{k} v_{k-1}-T_{k, \ell} T_{k} v_{k-1}\right)  \tag{6}\\
& \leq T_{*} v_{*}-T_{*} v_{k-1}+\sum_{i=0}^{m-1}\left(\gamma^{\ell} P_{k, \ell}\right)^{i} b_{k-1}  \tag{k}\\
&= \gamma P_{*}\left(v_{*}-v_{k-1}\right)+\sum_{i=0}^{m-1}\left(\gamma^{\ell} P_{k, \ell}\right)^{i} b_{k-1}  \tag{6}\\
&= \gamma P_{*} d_{k-1}-\gamma P_{*} \epsilon_{k-1}+\sum_{i=0}^{m-1}\left(\gamma^{\ell} P_{k, \ell}\right)^{i} b_{k-1} \\
&=\left\{T_{k} v_{k-1} \geq T_{*} v_{k-1}(5)\right\} \\
& \\
&
\end{align*}
$$

Then, by induction

$$
d_{k} \leq \sum_{j=0}^{k-1} \Gamma^{k-1-j}\left(y_{j}+\sum_{p=0}^{m-1} \Gamma^{\ell p} b_{j}\right)+\Gamma^{k} d_{0}
$$

Using the bound on $b_{k}$ from Lemma 2 we get:

$$
\begin{aligned}
d_{k} & \leq \sum_{j=0}^{k-1} \Gamma^{k-1-j}\left(y_{j}+\sum_{p=0}^{m-1} \Gamma^{\ell p}\left(\sum_{i=1}^{j} \Gamma^{(\ell m+1)(j-i)} x_{i}+\Gamma^{(\ell m+1) j} b_{0}\right)\right)+\Gamma^{k} d_{0} \\
& =\sum_{j=0}^{k-1} \sum_{p=0}^{m-1} \sum_{i=1}^{j} \Gamma^{k-1-j+\ell p+(\ell m+1)(j-i)} x_{i}+\sum_{j=0}^{k-1} \sum_{p=0}^{m-1} \Gamma^{k-1-j+\ell p+(\ell m+1) j} b_{0}+\Gamma^{k} d_{0}+\sum_{i=1}^{k} \Gamma^{i-1} y_{k-i}
\end{aligned}
$$

First we have:

$$
\begin{aligned}
\sum_{j=0}^{k-1} \sum_{p=0}^{m-1} \sum_{i=1}^{j} \Gamma^{k-1-j+\ell p+(\ell m+1)(j-i)} x_{i} & =\sum_{i=1}^{k-1} \sum_{j=i}^{k-1} \sum_{p=0}^{m-1} \Gamma^{k-1+\ell(p+m j)-i(\ell m+1)} x_{i} \\
& =\sum_{i=1}^{k-1} \sum_{j=0}^{m(k-i)-1} \Gamma^{k-1+\ell(j+m i)-i(\ell m+1)} x_{i} \\
& =\sum_{i=1}^{k-1} \sum_{j=0}^{m(k-i)-1} \Gamma^{\ell j+k-i-1} x_{i} \\
& =\sum_{i=1}^{k-1} \sum_{j=0}^{m i-1} \Gamma^{\ell j+i-1} x_{k-i}
\end{aligned}
$$

Second we have:

$$
\sum_{j=0}^{k-1} \sum_{p=0}^{m-1} \Gamma^{k-1-j+\ell p+(\ell m+1) j} b_{0}=\sum_{j=0}^{k-1} \sum_{p=0}^{m-1} \Gamma^{k-1+\ell(p+m j)} b_{0}=\sum_{i=0}^{m k-1} \Gamma^{k-1+\ell i} b_{0}=z_{k}-\Gamma^{k} d_{0}
$$

Hence

$$
d_{k} \leq \sum_{i=1}^{k} \sum_{j=0}^{m i-1} \Gamma^{\ell j+i-1} x_{k-i}+\sum_{i=1}^{k} \Gamma^{i-1} y_{k-i}+z_{k}
$$

Lemma 4 (shift bound). The shift $s_{k}$ is bounded by:

$$
s_{k} \leq \sum_{i=1}^{k-1} \sum_{j=m i}^{\infty} \Gamma^{\ell j+i-1} x_{k-i}+w_{k}
$$

where

$$
w_{k}=\sum_{j=m k}^{\infty} \Gamma^{\ell j+k-1} b_{0}
$$

Proof. Expanding $s_{k}$ we obtain:

$$
\begin{aligned}
s_{k} & =v_{k}-v_{\pi_{k, \ell}}-\epsilon_{k} \\
& =\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1}-v_{\pi_{k, \ell}} \\
& =\left(T_{k, \ell}\right)^{m} T_{k} v_{k-1}-\left(T_{k, \ell}\right)^{\infty} T_{k, \ell} T_{k} v_{k-1} \quad\left\{\forall f: v_{\pi_{k, \ell}}=\left(T_{k, \ell}\right)^{\infty} f\right\} \\
& =\left(\gamma^{\ell} P_{k, \ell}\right)^{m} \sum_{j=0}^{\infty}\left(\gamma^{\ell} P_{k, \ell}\right)^{j}\left(T_{k} v_{k-1}-T_{k, \ell} T_{k} v_{k-1}\right) \\
& =\Gamma^{\ell m} \sum_{j=0}^{\infty} \Gamma^{\ell j} b_{k-1} \\
& =\sum_{j=0}^{\infty} \Gamma^{\ell m+\ell j} b_{k-1} .
\end{aligned}
$$

Plugging the bound on $b_{k}$ of Lemma 2 we get:

$$
\begin{aligned}
s_{k} & \leq \sum_{j=0}^{\infty} \Gamma^{\ell m+\ell j}\left(\sum_{i=1}^{k-1} \Gamma^{(\ell m+1)(k-1-i)} x_{i}+\Gamma^{(\ell m+1)(k-1)} b_{0}\right) \\
& =\sum_{j=0}^{\infty} \sum_{i=1}^{k-1} \Gamma^{\ell m+\ell j+(\ell m+1)(k-1-i)} x_{i}+\sum_{j=0}^{\infty} \Gamma^{\ell m+\ell j+(\ell m+1)(k-1)} b_{0} \\
& =\sum_{j=0}^{\infty} \sum_{i=1}^{k-1} \Gamma^{\ell(j+m i)+i-1} x_{k-i}+\sum_{j=0}^{\infty} \Gamma^{\ell(j+m k)+k-1} b_{0} \\
& =\sum_{i=1}^{k-1} \sum_{j=m i}^{\infty} \Gamma^{\ell j+i-1} x_{k-i}+\sum_{j=m k}^{\infty} \Gamma^{\ell j+k-1} b_{0} \\
& =\sum_{i=1}^{k-1} \sum_{j=m i}^{\infty} \Gamma^{\ell j+i-1} x_{k-i}+w_{k} .
\end{aligned}
$$

Lemma 5 (loss bound). The loss $l_{k}$ is bounded by:

$$
l_{k} \leq \sum_{i=1}^{k-1} \Gamma^{i}\left(\sum_{j=0}^{\infty} \Gamma^{\ell j}\left(I-\Gamma^{\ell}\right)-I\right) \epsilon_{k-i}+\eta_{k}
$$

where

$$
\eta_{k}=z_{k}+w_{k}=\sum_{i=0}^{m k-1} \Gamma^{k-1+\ell i} b_{0}+\Gamma^{k} d_{0}+\sum_{j=m k}^{\infty} \Gamma^{\ell j+k-1} b_{0}=\sum_{i=0}^{\infty} \Gamma^{\ell i+k-1} b_{0}+\Gamma^{k} d_{0}
$$

Proof. Using Lemmas 3 and 4, we have:

$$
\begin{aligned}
l_{k} & =s_{k}+d_{k} \\
& \leq \sum_{i=1}^{k-1} \sum_{j=m i}^{\infty} \Gamma^{\ell j+i-1} x_{k-i}+\sum_{i=1}^{k-1} \sum_{j=0}^{m i-1} \Gamma^{\ell j+i-1} x_{k-i}+\sum_{i=1}^{k} \Gamma^{i-1} y_{k-i}+z_{k}+w_{k} \\
& =\sum_{i=1}^{k-1} \sum_{j=0}^{\infty} \Gamma^{\ell j+i-1} x_{k-i}+\sum_{i=1}^{k} \Gamma^{i-1} y_{k-i}+\eta_{k} .
\end{aligned}
$$

Plugging back the values of $x_{k}$ and $y_{k}$ and using the fact that $\epsilon_{0}=0$ we obtain:

$$
\begin{aligned}
l_{k} & \leq \sum_{i=1}^{k-1} \sum_{j=0}^{\infty} \Gamma^{\ell j+i-1}\left(I-\Gamma^{\ell}\right) \Gamma \epsilon_{k-i}+\sum_{i=1}^{k-1} \Gamma^{i-1}(-\Gamma) \epsilon_{k-i}-\Gamma^{k} \epsilon_{0}+\eta_{k} \\
& =\sum_{i=1}^{k-1}\left(\sum_{j=0}^{\infty} \Gamma^{\ell j+i}\left(I-\Gamma^{\ell}\right) \epsilon_{k-i}-\Gamma^{i} \epsilon_{k-i}\right)+\eta_{k} \\
& =\sum_{i=1}^{k-1} \Gamma^{i}\left(\sum_{j=0}^{\infty} \Gamma^{\ell j}\left(I-\Gamma^{\ell}\right)-I\right) \epsilon_{k-i}+\eta_{k}
\end{aligned}
$$

We now provide a bound of $\eta_{k}$ in terms of $d_{0}$ :

## Lemma 6.

$$
\eta_{k} \leq \Gamma^{k}\left(\sum_{i=0}^{\infty} \Gamma^{i}(\Gamma-I)+I\right) d_{0}
$$

Proof. First recall that

$$
\eta_{k}=\sum_{i=0}^{\infty} \Gamma^{\ell i+k-1} b_{0}+\Gamma^{k} d_{0}
$$

In order to bound $\eta_{k}$ in terms of $d_{0}$ only, we express $b_{0}$ in terms of $d_{0}$ :

$$
\begin{align*}
b_{0} & =T_{1} v_{0}-\left(T_{1}\right)^{\ell} T_{1} v_{0} \\
& =T_{1} v_{0}-\left(T_{1}\right)^{2} v_{0}+\left(T_{1}\right)^{2} v_{0}-\cdots-\left(T_{1}\right)^{\ell} v_{0}+\left(T_{1}\right)^{\ell} v_{0}-\left(T_{1}\right)^{\ell+1} v_{0} \\
& =\sum_{i=1}^{\ell}\left(\gamma P_{1}\right)^{i}\left(v_{0}-T_{1} v_{0}\right) \\
& =\sum_{i=1}^{\ell}\left(\gamma P_{1}\right)^{i}\left(v_{0}-v_{*}+T_{*} v_{*}-T_{*} v_{0}+T_{*} v_{0}-T_{1} v_{0}\right) \\
& \leq \sum_{i=1}^{\ell}\left(\gamma P_{1}\right)^{i}\left(v_{0}-v_{*}+T_{*} v_{*}-T_{*} v_{0}\right)  \tag{1}\\
& =\sum_{i=1}^{\ell}\left(\gamma P_{1}\right)^{i}\left(\gamma P_{*}-I\right) d_{0} .
\end{align*}
$$

Consequently, we have:

$$
\begin{aligned}
\eta_{k} & \leq \sum_{i=0}^{\infty} \Gamma^{\ell i+k-1} \sum_{j=1}^{\ell}\left(\gamma P_{1}\right)^{j}\left(\gamma P_{*}-I\right) d_{0}+\Gamma^{k} d_{0} \\
& =\sum_{i=0}^{\infty} \Gamma^{\ell i+k} \sum_{j=0}^{\ell-1}\left(\gamma P_{1}\right)^{j}\left(\gamma P_{*}-I\right) d_{0}+\Gamma^{k} d_{0} \\
& =\Gamma^{k}\left(\sum_{i=0}^{\infty} \Gamma^{\ell i} \sum_{j=0}^{\ell-1} \Gamma^{j}(\Gamma-I)+I\right) d_{0} \\
& =\Gamma^{k}\left(\sum_{i=0}^{\infty} \Gamma^{i}(\Gamma-I)+I\right) d_{0}
\end{aligned}
$$

We now conclude the proof of Theorem 3. Taking the absolute value in Lemma 6 we obtain:

$$
\left|\eta_{k}\right| \leq \Gamma^{k}\left(\sum_{i=0}^{\infty} \Gamma^{i}(\Gamma+I)+I\right)\left|d_{0}\right|=2 \sum_{i=k}^{\infty} \Gamma^{i}\left|d_{0}\right|
$$

Since $l_{k}$ is non-negative, from Lemma 5 we have:

$$
\begin{equation*}
\left|l_{k}\right| \leq \sum_{i=1}^{k-1} \Gamma^{i}\left(\sum_{j=0}^{\infty} \Gamma^{\ell j}\left(I+\Gamma^{\ell}\right)+I\right)\left|\epsilon_{k-i}\right|+\left|\eta_{k}\right|=2 \sum_{i=1}^{k-1} \Gamma^{i} \sum_{j=0}^{\infty} \Gamma^{\ell j}\left|\epsilon_{k-i}\right|+2 \sum_{i=k}^{\infty} \Gamma^{i}\left|d_{0}\right| \tag{8}
\end{equation*}
$$

Since $\|v\|_{\infty}=\max |v|, d_{0}=v_{*}-v_{0}$ and $l_{k}=v_{*}-v_{\pi_{k, \ell}}$, we can take the maximum in (8) and conclude that:

$$
\left\|v_{*}-v_{\pi_{k, \ell}}\right\|_{\infty} \leq \frac{2\left(\gamma-\gamma^{k}\right)}{(1-\gamma)\left(1-\gamma^{\ell}\right)} 2 \epsilon+\frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-v_{0}\right\|_{\infty}
$$

## B. Proof of Theorem 4

We shall prove the following result.
Lemma 7. Consider NS-AMPI with parameters $m \geq 0$ and $\ell \geq 1$ applied on the problem of Figure 1 , starting from $v_{0}=0$ and all initial policies $\pi_{0}, \pi_{-1}, \ldots, \pi_{-\ell+2}$ equal to $\pi_{*}$. Assume that at each iteration $k$, the following error terms are applied, for some $\epsilon \geq 0$ :

$$
\forall i, \quad \epsilon_{k}(i)= \begin{cases}-\epsilon & \text { if } i=k \\ \epsilon & \text { if } i=k+\ell \\ 0 & \text { otherwise }\end{cases}
$$

Then NS-AMPI can ${ }^{8}$ generate a sequence of value-policy pairs that is described below.
For all iterations $k \geq 1$, the policy $\pi_{k}$ takes the optimal action in all states but $k$, that is

$$
\forall i \geq 2, \quad \pi_{k}(i)= \begin{cases}\rightarrow & \text { if } i=k  \tag{9}\\ \leftarrow & \text { otherwise }\end{cases}
$$

For all iterations $k \geq 1$, the value function $v_{k}$ satisfies the following equations:

- For all $i<k$ :

$$
\begin{equation*}
v_{k}(i)=-\gamma^{(k-1)(\ell m+1)} \epsilon \tag{10.a}
\end{equation*}
$$

- For all $i$ such that $k \leq i \leq k+((k-1) m+1) \ell$ :
- For $i=k+(q m+p+1) \ell$ with $q \geq 0$ and $0 \leq p<m$ (i.e. $i=k+n \ell, n \geq 1$ ):

$$
\begin{equation*}
v_{k}(i)=\gamma^{q(\ell m+1)}\left(\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q}+\mathbb{1}_{[p=0]} \epsilon+\sum_{j=1}^{k-q-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j}+\epsilon\right)\right) \tag{10.b}
\end{equation*}
$$

- For $i=k$ :

$$
\begin{equation*}
v_{k}(k)=v_{k}(k+\ell)+r_{k}-2 \epsilon \tag{10.c}
\end{equation*}
$$

- For $i=k+q \ell+p$ with $0 \leq q \leq(k-1) m-1$ and $1 \leq p<\ell$ :

$$
\begin{equation*}
v_{k}(i)=-\gamma^{(k-1)(\ell m+1)} \epsilon \tag{10.d}
\end{equation*}
$$

- Otherwise, i.e. when $i=k+(k-1) m \ell+p$ with $1 \leq p<\ell$ :

$$
\begin{equation*}
v_{k}(i)=0 \tag{10.e}
\end{equation*}
$$

- For all $i>k+((k-1) m+1) \ell$

$$
\begin{equation*}
v_{k}(i)=0 \tag{10.f}
\end{equation*}
$$

The relative complexity of the different expressions of $v_{k}$ in Lemma 7 is due to the presence of nested periodic patterns in the shape of the value function along the state space and the horizon. Figures 4 and 5 give the shape of the value function for different values of $\ell$ and $m$, exhibiting the periodic patterns. The proof of Lemma 7 is done by recurrence on $k$.

## B.1. Base case $k=1$

Since $v_{0}=0, \pi_{1}$ is the optimal policy that takes $\leftarrow$ in all states as desired. Hence, $\left(T_{1, \ell}\right)^{m} T_{1} v_{0}=0$ in all states. Accounting for the errors $\epsilon_{1}$ we have $v_{1}=\left(T_{1, \ell}\right)^{m} T_{1} v_{0}+\epsilon_{1}=\epsilon_{1}$. As can be seen on Figures 4 and 5 , when $k=1$ we only need to consider equations (10.b), (10.c), (10.e) and (10.f) since the others apply to an empty set of states.

First, we have

$$
v_{1}(1+\ell)=\epsilon_{1}(1+\ell)=\epsilon
$$

[^0]$i$ (state)


Figure 4. Shape of the value function with $\ell=2$ and $m=3$.


Figure 5. Shape of the value function with $\ell=3$ and $m=2$.
which is (10.b) when $q=(k-1)=0$ and $p=0$.
Second, we have

$$
v_{1}(1)=\epsilon_{1}(1)=-\epsilon=\epsilon+0-2 \epsilon=v_{1}(1+\ell)+r_{1}-2 \epsilon
$$

which corresponds to (10.c).
Third, for $1 \leq p<\ell$ we have

$$
v_{1}(1+p)=\epsilon_{1}(1+p)=0
$$

corresponding to (10.e).
Finally, for all the remaining states $i>1+\ell$, we have

$$
v_{1}(i)=\epsilon_{1}(i)=0
$$

corresponding to (10.f).
The base case is now proved.

## B.2. Induction Step

We assume that Lemma 7 holds for some fixed $k \geq 1$, we now show that it also holds for $k+1$.

## B.2.1. THE POLICY $\pi_{k+1}$

We begin by showing that the policy $\pi_{k+1}$ is greedy with respect to $v_{k}$. Since there is no choice in state 1 is $\rightarrow$, we turn our attention to the other states. There are many cases to consider, each one of them corresponding to one or more states. These cases, labelled from A through F, are summarized as follows, depending on the state $i$ :
(A) $1<i<k+1$
(B) $i=k+1$
(C) $i=k+1+q \ell+p$ with $1 \leq p<\ell$ and $0 \leq q \leq(k-1) m$
(D) $i=k+1+(q m+p+1) \ell$ with $0 \leq p<m$ and $0 \leq q<k-1$
(E) $i=k+1+((k-1) m+1) \ell$
(F) $i>k+1+((k-1) m+1) \ell$

Figure 6 depicts how those cases cover the whole state space.


Figure 6. Policy cases, each state is represented by a letter corresponding to a case of the policy $\pi_{k+1}$. Starting from 1, state number increase from left to right.

For all states $i>1$ in each of the above cases, we consider the action-value functions $q_{k+1}^{\vec{~}}(i)$ (resp. $\left.q_{k+1}^{\overleftarrow{ }}(i)\right)$ of action $\rightarrow$ (resp. $\leftarrow$ ) defined as:

$$
q_{k+1}^{\overrightarrow{2}}(i)=r_{i}+\gamma v_{k}(i-1) \quad \text { and } \quad q_{k+1}^{\leftarrow}(i)=\gamma v_{k}(i+\ell-1)
$$

In case $i=k+1$ (B) we will show that $q_{k+1}^{\vec{~}}(i)=q_{k+1}^{\leftarrow}(i)$ meaning that a policy $\pi_{k+1}$ greedy for $v_{k}$ may be either $\pi_{k+1}(k+1)=\rightarrow$ or $\pi_{k+1}(k+1)=\leftarrow$. In all other cases we show that $q_{k+1}^{\vec{~}}(i)<q_{k+1}^{\leftarrow}(i)$ which implies that for those $i \neq k+1, \pi_{k+1}(i)=\leftarrow$, as required by Lemma 7 .

A: In states $1<i<k+1 \quad$ We have $q_{k+1}^{\overrightarrow{1}}(i)=r_{i}+\gamma v_{k}(i+\ell-1)$ and $q_{k+1}^{\leftarrow}(i)=\gamma v_{k}(i-1)$, depending on the value of $i+\ell-1$, which is reached by taking the $\rightarrow$ action, we need to consider two cases:

- Case $1: i+\ell-1 \neq k$. In this case $v_{k}(i+\ell-1)$ is described by either (10.a) or (10.d) when $i+\ell-1$ is less than, or greater than $k$, respectively. In either case we have $v_{k}(i+\ell-1)=-\gamma^{(k-1)(\ell m+1)} \epsilon=v_{k}(i-1)$ and hence:

$$
q_{k+1}^{\overrightarrow{ }}(i)=r_{i}+\gamma v_{k}(i+\ell-1)=r_{i}+\gamma v_{k}(i-1)<\gamma v_{k}(i-1)=q_{k+1}^{\overleftarrow{ }}(i)
$$

which gives $\pi_{k+1}(i)=\leftarrow$ as desired.

- Case 2: $i+\ell-1=k$.

$$
\begin{array}{rlr}
q_{k+1}^{\vec{~}}(i) & =r_{i}+\gamma v_{k}(k)=r_{i}+\gamma\left(v_{k}(k+\ell)+r_{k}-2 \epsilon\right) \\
& =\gamma\left(\sum_{j=0}^{k-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-j}+\epsilon\right)+r_{k}-2 \epsilon\right) & \{(10 . \mathrm{c})\}  \tag{10.b}\\
& \leq \gamma\left(\sum_{j=0}^{k-1} \gamma^{j(\ell m+1)} \epsilon+r_{k}-2 \epsilon\right) & \{(10 . \mathrm{b})\} \\
& =\gamma\left(\sum_{j=1}^{k-1}\left(\gamma^{j(\ell m+1)} \epsilon-2 \gamma^{j} \epsilon\right)-\epsilon\right) & \left\{r_{k}=-2 \sum_{j=1}^{k-1} \gamma^{j} \epsilon\right\} \\
& <-\gamma \epsilon \\
& <\gamma v_{k}(i-1) & \left\{\gamma_{k}^{j(\ell m+1)} \epsilon-2 \gamma^{j} \epsilon<0\right\}
\end{array}
$$

$$
=q_{k+1}^{\overleftarrow{ }}(i)
$$

giving $\pi_{k+1}(i)=\leftarrow$ as desired.

B: In state $k+1$ Looking at the action value function $q_{k+1}^{\leftarrow}$ in state $k+1$, we observe that:

$$
\begin{array}{rlr}
q_{k+1}^{\leftarrow}(k+1) & =\gamma v_{k}(k)=\gamma\left(r_{k}-2 \epsilon+v_{k}(k+\ell)\right)  \tag{10.c}\\
& =\gamma r_{k}-2 \gamma \epsilon+\gamma v_{k}(k+\ell) \\
& =r_{k+1}+\gamma v_{k}(k+\ell) & \{(10 . \mathrm{c})\} \\
& =q_{k+1}(k+1) & \left\{r_{i+1}=\gamma r_{i}-2 \gamma \epsilon\right\}
\end{array}
$$

This means that the algorithm can take $\pi_{k+1}(k+1)=\rightarrow$ so as to satisfy Lemma 7.

C: In states $i=k+1+q \ell+p \quad$ We restrict ourselves to the cases when $1 \leq p<\ell$ and $0 \leq q \leq(k-1) m$. Three cases for the value of $q$ need to be considered:

- Case 1: $0 \leq q<(k-1) m-1$. We have:

$$
\begin{array}{rlr}
q_{k+1}^{\vec{~}}(i) & =r_{i}+\gamma v_{k}(k+(q+1) \ell+p) & \\
& =r_{i}+\gamma v_{k}(k+q \ell+p) & \\
& <\gamma v_{k}(k+q \ell+p) & \{(10 . \mathrm{d}) \text { independent of } q\} \\
& =q_{k+1}^{\overleftarrow{k}}(i) & \left\{r_{i}<0\right\}
\end{array}
$$

- Case 2: $q=(k-1) m-1$

$$
\begin{array}{rlr}
q_{k+1}^{\vec{~}}(i) & =r_{i}+\gamma v_{k}(k+(q+1) \ell+p) & \\
& =r_{i}+\gamma 0 & \\
& =-2 \epsilon \frac{\gamma-\gamma^{k+1+q \ell+p}}{1-\gamma} & \\
& =-2 \epsilon\left(\frac{\gamma-\gamma^{k+q \ell+p}}{1-\gamma}+\gamma^{k+q \ell+p}\right) & \\
& <-\gamma^{k+q \ell+p} \epsilon & \\
& =-\gamma^{k+(k-1) \ell m-\ell+p} \epsilon & \{q=(k-1) m-1\} \\
& <-\gamma^{k+(k-1) \ell m} \epsilon=-\gamma^{(k-1)(\ell m+1)+1} \epsilon & \{p-\ell<0\} \\
& =\gamma v_{k}(k+q \ell+p) & \{(10 . \mathrm{d})\}  \tag{10.d}\\
& =q_{k+1}^{\leftarrow}(i) . &
\end{array}
$$

- Case 3: $q=(k-1) m$

$$
\begin{align*}
q_{k+1}^{\vec{~}}(i) & =r_{i}+\gamma v_{k}(k+((k-1) m+1) \ell+p) & & \\
& =r_{i}+\gamma 0 & & \{(10 . \mathrm{f})\}  \tag{10.f}\\
& =r_{i}+\gamma v_{k}(k+((k-1) m) \ell+p) & & \{(10 . \mathrm{e})\}  \tag{10.e}\\
& =r_{i}+\gamma v_{k}(i-1) & & \\
& <q_{k+1}^{\leftarrow}(i) . & & \left\{r_{i}<0\right\}
\end{align*}
$$

D: In states $i=k+1+(q m+p+1) \ell \quad$ In these states, we have:

$$
\begin{align*}
q_{k+1}^{\overleftarrow{ }}(i) & =\gamma v_{k}(k+(q m+p+1) \ell) \\
q_{k+1}^{\rightarrow}(i) & =r_{i}+\gamma v_{k}(k+1+(q m+p+1) \ell+\ell-1) \\
& =r_{i}+\gamma v_{k}(k+(q m+p+2) \ell) \tag{11}
\end{align*}
$$

As for the right-hand side of (11) we need to consider two cases:

- Case 1: $p+1<m$ :

In the following, define

$$
x_{k, q}=\sum_{j=1}^{k-q-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j}+\epsilon\right) .
$$

Then,

$$
\begin{align*}
& q_{k+1}^{\vec{~}}(i)=r_{i}+\gamma v_{k}(k+(q m+(p+1)+1) \ell) \\
& =r_{i}+\gamma \gamma^{q(\ell m+1)}\left(\frac{\gamma^{\ell(p+2)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q}+\sum_{j=1}^{k-q-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j}+\epsilon\right)\right)  \tag{10.b}\\
& =r_{i}+\gamma^{q(\ell m+1)+1}\left(\left(\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}}-\gamma^{\ell(p+1)}\right) r_{k-q}+x_{k, q}\right) \\
& =r_{i}-\gamma^{(q m+p+1) \ell+q+1} r_{k-q}+\gamma^{q(\ell m+1)+1}\left(\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q}+x_{k, q}\right) \\
& =r_{i}-\gamma^{i-k+q} r_{k-q}+\gamma v_{k}(k+(q m+p+1) \ell)-\mathbb{1}_{[p=0]} \gamma^{q(\ell m+1)+1} \epsilon  \tag{10.b}\\
& \leq r_{i}-\gamma^{i-k+q} r_{k-q}+\gamma v_{k}(k+(q m+p+1) \ell) \\
& =r_{i}-\gamma^{i-k+q} r_{k-q}+q_{k+1}^{\overleftarrow{k}}(i) . \tag{12}
\end{align*}
$$

Now, observe that

$$
\begin{aligned}
\gamma^{i-k+q} r_{k-q} & =-2 \gamma^{i-k+q} \frac{\gamma-\gamma^{k-q}}{1-\gamma} \epsilon \\
& =-2 \frac{\gamma^{i-k+q+1}-\gamma^{i}}{1-\gamma} \epsilon \\
& =-2 \frac{\gamma-\gamma+\gamma^{i-k+q+1}-\gamma^{i}}{1-\gamma} \epsilon \\
& =-2 \frac{\gamma-\gamma^{i}}{1-\gamma} \epsilon-2 \frac{-\gamma+\gamma^{i-k+q+1}}{1-\gamma} \epsilon \\
& =r_{i}-r_{i-k+q+1} .
\end{aligned}
$$

Plugging this back into (12), we get:

$$
\begin{array}{rlrl}
q_{k+1}(i) & \leq r_{i}-r_{i}+r_{i-k+q+1}+q_{k+1}^{\leftarrow}(i) & \\
& <q_{k+1}^{\overleftarrow{ }}(i) & & \left\{r_{i-k+q+1}<0\right\}
\end{array}
$$

- Case 2: $p+1=m$ :

Using the fact that $p+1=m$ implies $\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}}=\gamma^{\ell m}$ we have:

$$
\begin{align*}
& q_{k+1}(i)=r_{i}+\gamma v_{k}(k+((q+1) m+1) \ell) \\
& =r_{i}+\gamma \gamma^{(q+1)(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-1}+\epsilon+\sum_{j=1}^{k-q-2} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j-1}+\epsilon\right)\right)  \tag{10.b}\\
& =r_{i}+\gamma \gamma^{(q+1)(\ell m+1)}\left(\sum_{j=0}^{k-q-2} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j-1}+\epsilon\right)\right) \\
& =r_{i}+\gamma \gamma^{q(\ell m+1)}\left(\sum_{j=1}^{k-q-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j}+\epsilon\right)\right) \\
& =r_{i}+\gamma \gamma^{q(\ell m+1)}\left(\left(\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}}-\gamma^{\ell m}\right) r_{k-q}+\sum_{j=1}^{k-q-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-q-j}+\epsilon\right)\right) \\
& =r_{i}-\gamma^{q(\ell m+1)+1} \gamma^{\ell m} r_{k-q}+\gamma\left(v_{k}(k+(q m+p+1) \ell)-\mathbb{1}_{[p=0]} \gamma^{q(\ell m+1)} \epsilon\right)  \tag{10.b}\\
& \leq r_{i}-\gamma^{i-k+q} r_{k-q}+\gamma v_{k}(k+(q m+p+1) \ell) \\
& <q_{k+1}^{\overleftarrow{K}(i),}
\end{align*}
$$

where we concluded by observing that this is the same result as (12).
E: In state $i=k+((k-1) m+1) \ell+1$

$$
\begin{aligned}
& q_{k+1}^{\overleftarrow{ }}(i)=\gamma v_{k}(i-1)=\gamma v_{k}(k+((k-1) m+1) \ell) \\
& =\gamma^{(k-1)(\ell m+1)+1}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{1}+\epsilon\right) \\
& =\gamma^{(k-1)(\ell m+1)+1} \epsilon \\
& >r_{i} \\
& =r_{i}+\gamma v_{k}(i+\ell-1) \\
& =q_{k+1}(i) \text {. } \\
& \{(10 . \mathrm{b}) \text { with } q=k-1 \text { and } p=0\} \\
& \left\{r_{1}=0\right\} \\
& \left\{r_{i}<0\right\} \\
& \left\{v_{k}(i+\ell+1)=0(10 . \mathrm{f})\right\}
\end{aligned}
$$

F: In states $i>k+((k-1) m+1) \ell+1 \quad$ Following (10.f) we have $v_{k}(i-1)=v_{k}(i+\ell-1)=0$ and hence

$$
q_{k+1}^{\leftarrow}(i)=0>r_{i}=q_{k+1}^{\overrightarrow{2}}(i)
$$

## B.2.2. The value function $v_{k+1}$

In the following we will show that the value function $v_{k+1}$ satisfies Lemma 7. To that end we consider the value of $\left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)\left(s_{0}\right)$ by analysing the trajectories obtained by first following $m$ times $\pi_{k, \ell}$ then $\pi_{k+1}$ from various starting states $s_{0}$.

Given a starting state $s_{0}$ and a non stationary policy $\pi_{k+1, \ell}$, we will represent the trajectories as a sequence of triples $\left(s_{i}, a_{i}, r\left(s_{i}, a_{i}\right)\right)_{i=0, \ldots, \ell m}$ arranged in a "trajectory matrix" of $\ell$ columns and $m$ rows. Each column corresponds to one of the policies $\pi_{k+1}, \pi_{k}, \ldots, \pi_{k+2-\ell}$. In a column labeled by policy $\pi_{j}$ the entries are of the form $\left(s_{i}, \pi_{j}\left(s_{i}\right), r\left(s_{i}, \pi_{j}\left(s_{i}\right)\right)\right.$; this layout makes clear which stationary policy is used to select the action in any particular step in the trajectory. Indeed, in column $\pi_{j}$, we have $\left(s_{i}, \rightarrow, r_{j}\right)$ if and only if $s_{i}=j$, otherwise each entry is of the form $\left(s_{i}, \leftarrow, 0\right)$. Such a matrix accounts for the first $m$ applications of the operator $T_{k+1, \ell}$. One addional row of only one triple $\left(s_{i}, \pi_{k+1}\left(s_{i}\right), r_{\pi_{k+1}}\left(s_{i}\right)\right)$ represents the final application of $T_{k+1}$. After this triple comes the end state of the trajectory $s_{\ell m+1}$.

$$
m=4 \text { times }\left\{\begin{array}{ccc} 
& \ell=3 \text { steps } \\
\pi_{4} & \pi_{3} & \pi_{2} \\
(10, \leftarrow, 0) & (9, \leftarrow, 0) & (8, \leftarrow, 0) \\
(7, \leftarrow, 0) & (6, \leftarrow, 0) & (5, \leftarrow, 0) \\
\left(4, \rightarrow, r_{4}\right) & (6, \leftarrow, 0) & (5, \leftarrow, 0) \\
\left(4, \rightarrow, r_{4}\right) & (6, \leftarrow, 0) & (5, \leftarrow, 0) \\
\left(4, \rightarrow, r_{4}\right) & 6 &
\end{array}\right.
$$

Figure 7. The trajectory matrix of policy $\pi_{4, \ell}$ starting from state 10 with $m=4$ and $\ell=3$.

Example 2. Figure 7 depicts the trajectory matrix of policy $\pi_{4, \ell}=\pi_{4} \pi_{3} \pi_{2}$ with $m=4$ and $\ell=3$. The trajectory starts from state $s_{0}=10$ and ends in state $s_{\ell m+1}=6$. The $\leftarrow$ action is always taken with reward 0 except when in state 4 under the policy $\pi_{4}$. From this matrix we can deduce that, for any value function $v$ :

$$
\begin{aligned}
\left(\left(T_{4, \ell}\right)^{m} T_{4} v\right)(10) & =\gamma^{6} r_{4}+\gamma^{9} r_{4}+\gamma^{12} r_{4}+\gamma^{13} v(6) \\
& =\gamma^{2 \ell} r_{4}+\gamma^{3 \ell} r_{4}+\gamma^{4 \ell} r_{4}+\gamma^{4 \ell+1} v(6) \\
& =\frac{\gamma^{2 \ell}-\gamma^{(m+1) \ell}}{1-\gamma^{\ell}} r_{4}+\gamma^{\ell m+1} v(6)
\end{aligned}
$$

With this in hand, we are going to prove each case of Lemma 7 for $v_{k+1}$.
In states $i<k+1 \quad$ Following $m$ times $\pi_{k+1, \ell}$ and then $\pi_{k+1}$ starting from these states consists in taking the $\leftarrow$ action $\ell m+1$ times to eventually finish either in state 1 if $i \leq \ell m+2$ with value

$$
v_{k+1}(i)=\gamma^{\ell m+1} v_{k}(1)+\epsilon_{k+1}(i)=-\gamma^{\ell m+1} \gamma^{(k-1)(\ell m+1)} \epsilon=-\gamma^{k(\ell m+1)} \epsilon
$$

or otherwise in state $i-\ell m-1<k$ with value

$$
v_{k+1}(i)=\gamma^{\ell m+1} v_{k}(i-\ell m-1)+\epsilon_{k+1}(i)=-\gamma^{\ell m+1} \gamma^{(k-1)(\ell m+1)} \epsilon=-\gamma^{k(\ell m+1)} \epsilon
$$

This matches Equation (10.a) in both cases.
In states $i=k+1+(q m+p+1) \ell \quad$ Consider the states $i=k+1+(q m+p+1) \ell$ with $q \geq 0$ and $0 \leq p<m$. Following $m$ times $\pi_{k+1, \ell}$ and then $\pi_{k+1}$ starting from state $i$ gives the following trajectories:

- when $q=0$, (i.e. $i=k+1+(p+1) \ell)$ :


Using (10.b) with $q=p=0$ as our induction hypothesis, this gives

$$
\begin{aligned}
& \left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)(i)=\sum_{j=p+1}^{m} \gamma^{\ell j} r_{k+1}+\gamma^{\ell m+1} v_{k}(k+\ell) \\
& =\sum_{j=p+1}^{m} \gamma^{\ell j} r_{k+1}+\gamma^{\ell m+1}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k}+\epsilon+\sum_{j=1}^{k-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-j}+\epsilon\right)\right) \\
& =\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1}+\sum_{j=1}^{k} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-j}+\epsilon\right)
\end{aligned}
$$

Accounting for the error term and the fact that $i=k+1+\ell \Longleftrightarrow p=q=0$, we get

$$
\begin{aligned}
v_{k+1}(i) & =\left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)(i)+\mathbb{1}_{[i=k+1+\ell]} \epsilon \\
& =\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1}+\mathbb{1}_{[p=0]} \epsilon+\sum_{j=1}^{k} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-j}+\epsilon\right)
\end{aligned}
$$

which is (10.b) for $k+1$ and $q=0$ as desired.

- when $1 \leq q \leq k$ :

In this case we have $i-(\ell m+1) \geq k+1$, meaning that $k+1$, the first state where the $\rightarrow$ action would be available is unreachable (in the sense that the tractory could end in $k+1$, but no action will be taken there). Consequently the $\leftarrow$ action is taken $\ell m+1$ times and the system ends in state $i-\ell m-1=k+((q-1) m+p+1) \ell$. Therefore, using (10.b) as induction hypothesis and the fact that $i \notin\{k+1, k+\ell+1\} \Longrightarrow \epsilon_{k+1}(i)=0$, we have:

$$
\begin{aligned}
v_{k+1}(i) & =\gamma^{\ell m+1} v_{k}(k+((q-1) m+p+1) \ell)+\epsilon_{k+1}(i) \\
& =\gamma^{q(\ell m+1)}\left(\frac{\gamma^{\ell(p+1)}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1-q}+\mathbb{1}_{[p=0]} \epsilon+\sum_{i=1}^{k-q} \gamma^{i(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1-q-k}+\epsilon\right)\right)
\end{aligned}
$$

which statisfies (10.b) for $k+1$.

In state $k+1$ Following $m$ times $\pi_{k+1, \ell}$ and then $\pi_{k+1}$ starting from $k+1$ gives the following trajectory:

$$
m \text { times }\left\{\begin{array}{cccc}
\overbrace{\pi_{k+1}} & \pi_{k} & \ldots & \pi_{k-\ell+2} \\
\left(k+1, \rightarrow, r_{k+1}\right) & (k+\ell, \leftarrow, 0) & \ldots & (k+2, \leftarrow, 0) \\
\vdots & \vdots & \vdots & \vdots \\
\left(k+1, \rightarrow, r_{k+1}\right) & (k+\ell, \leftarrow, 0) & \ldots & (k+2, \leftarrow, 0) \\
\left(k+1, \rightarrow, r_{k+1}\right) & k+\ell
\end{array}\right.
$$

As a consequence, with (10.c) as induction hypothesis we have:

$$
\begin{aligned}
& \left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)(k+1)=\frac{1-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1}+\gamma^{\ell m+1} v_{k}(k+\ell) \\
& =r_{k+1}+\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1}+\gamma^{\ell m+1}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k}+\epsilon+\sum_{j=1}^{k-1} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-j}+\epsilon\right)\right) \\
& =r_{k+1}+\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k+1}+\sum_{j=1}^{k} \gamma^{j(\ell m+1)}\left(\frac{\gamma^{\ell}-\gamma^{\ell(m+1)}}{1-\gamma^{\ell}} r_{k-j+1}+\epsilon\right) \\
& =r_{k+1}+v_{k+1}(k+\ell+1)-\epsilon
\end{aligned}
$$

Hence,

$$
\begin{aligned}
v_{k+1}(k+1) & =\left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)(k+1)+\epsilon_{k+1}(k+1) \\
& =v_{k+1}(k+\ell+1)+r_{k+1}-2 \epsilon,
\end{aligned}
$$

which matches (10.c).

In states $i=k+1+q \ell+p \quad$ For states $i=k+1+q \ell+p$ with $0 \leq q \leq k m-1$ and $1 \leq p<\ell$, the policy $\pi_{k+1, \ell}$ always takes the $\leftarrow$ action with either one of the following trajectories

- when $q \geq m$ :

$$
m \text { times }\left\{\begin{array}{cccc}
\overbrace{\pi_{k+1}}\left\{\begin{array}{ccc}
\pi_{k} & \ldots & \pi_{k-\ell+2} \\
(k+1+q \ell+p, \leftarrow, 0) & (k+q \ell+p, \leftarrow, 0) & \ldots \\
\vdots & \vdots & (k+(q-1) \ell+p+2, \leftarrow, 0) \\
(k+1+(q-m+1) \ell+p, \leftarrow, 0) & (k+q \ell+p, \leftarrow, 0) & \ldots
\end{array}\right)(k+(q-m) \ell+p+2, \leftarrow, 0) \\
(k+1+(q-m) \ell+p, \leftarrow, 0) & \boxed{k+(q-m) \ell+p} &
\end{array}\right.
$$

As a consequence, with (10.d) as induction hypothesis we have:

$$
v_{k+1}(i)=\left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)(i)=\gamma^{\ell m+1} v_{k}(k+(q-m) \ell+p)=-\gamma^{\ell m+1} \gamma^{(k-1)(\ell m+1)} \epsilon=-\gamma^{k(\ell m+1)} \epsilon
$$

which satisfies (10.d) in this case.

- when $q<m$ :

Assuming that negative states correspond to state 1, where the action is irrelevant, we have the following trajectory:


In the above trajectory, one can see that only the $\leftarrow$ action is taken (ignoring state 1 ). Indeed, since we follow the policies $\pi_{k+1} \pi_{k}, \ldots, \pi_{k-\ell+2}$ the $\rightarrow$ action may only be taken in states $k+1, k, \ldots, k-\ell+2$. When state $k+1$ is reached, the selected action is $\pi_{k-p+1}(k+1)$ which is $\leftarrow$ since $p \geq 1$. The same reasonning applies in the next states $k, \ldots, k-\ell+1$, where $p \geq 1$ prevents to use a policy that would select the $\rightarrow$ action in those states.
Since $p-\ell<0$ the trajectory always terminates in a state $j<k$ with value $v_{k}(j)=-\gamma^{(k-1)(\ell m-1)} \epsilon$ as for the $q \geq m$ case, which allows to conclude that (10.d) also holds in this case.

In states $i=k+1+k m \ell+p \quad$ Observe that following $m$ times $\pi_{k+1, \ell}$ and then $\pi_{k+1}$ once amounts to always take $\leftarrow$ actions. Thus, one eventually finishes in state $k+(k-1) m \ell+p \geq k+1$, which, since $\epsilon_{k}(i)=0$, gives

$$
v_{k+1}(i)=\left(\left(T_{k+1, \ell}\right)^{m} T_{k+1} v_{k}\right)(i)=\gamma^{\ell m+1} v_{k}(k+(k-1) m \ell+p)=-\gamma^{\ell m+1} 0=0
$$

satisfiying (10.e).
In states $i>k+1+(k m+1) \ell$ In these states, the action $\leftarrow$ is taken $\ell m+1$ times ending up in state $j>k+((k-$ 1) $m+1) \ell$, with value $v_{k}(j)=0$, from which $v_{k+1}(i)=0$ follows as required by (10.f).


[^0]:    ${ }^{8}$ We write here "can" since at each iteration, several policies will be greedy with respect to the current value.

