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Abstract

We present an algorithm for finding landmarks
along a manifold. These landmarks provide a
small set of locations spaced out along the man-
ifold such that they capture the low-dimensional
nonlinear structure of the data embedded in the
high-dimensional space. The approach does not
select points directly from the dataset, but instead
we optimize each landmark by moving along the
continuous manifold space (as approximated by
the data) according to the gradient of an objec-
tive function. We borrow ideas from active learn-
ing with Gaussian processes to define the ob-
jective, which has the property that a new land-
mark is “repelled” by those currently selected,
allowing for exploration of the manifold. We de-
rive a stochastic algorithm for learning with large
datasets and show results on several datasets, in-
cluding the Million Song Dataset and articles
from the New York Times.

1. Introduction
In data analysis problems, a typical goal is to learn the
underlying structure of a dataset, whether it be its statis-
tical properties, latent patterns or the shape of the data it-
self. For example, Bayesian methods hypothesize a gener-
ative model for the data in which latent variables capture
information about certain structural properties assumed to
exist a priori. One common property is that the data
lies on or near a manifold, which is a nonlinear, low-
dimensional space embedded in a high-dimensional am-
bient space. For example, images of faces or normalized
word histograms of documents may have several thousand
dimensions, but be restricted in the way they vary within
that high-dimensional space based on the intrinsic proper-
ties of the data-generating processes.
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In this paper we consider the problem of landmarking man-
ifolds; that is, finding a subset of locations evenly spaced
along a manifold that captures its low-dimensional, non-
linear characteristics. Learning the overall structure of a
manifold by focusing on local information has many uses,
whether it is learning a low-dimensional embedding of
the data (Roweis & Saul, 2000; Tenenbaum et al., 2000;
Ng et al., 2001), finding relevant observations from the
dataset for supervised learning (Cortes & Vapnik, 1995;
Tipping, 2001) or unsupervised learning (Silva et al., 2005;
Li & Hao, 2009; Cai & He, 2012; Vladymyrov & Carreira-
Perpinán, 2013), or for active learning problems (Kapoor
et al., 2007; Paisley et al., 2010; Li et al., 2014).

Previous manifold landmarking approaches focus on se-
lecting a subset of points from within the dataset that char-
acterizes the manifold (Silva et al., 2005; Li & Hao, 2009;
Vladymyrov & Carreira-Perpinán, 2013). Related super-
vised approaches such as sparse regression models (Tip-
ping, 2001) implicitly do so as well. Such approaches as-
sume that the dataset provides a densely sampled represen-
tation of the manifold, which may not always be the case.
Furthermore, these methods typically require either a full
kernel constructed from pairwise distances, or the evalua-
tion of a function using all data points, both of which can be
computationally prohibitive as the size of the dataset grows.

We present an unsupervised method for finding points
along the space of a manifold that does not encounter these
issues. Our approach learns landmarks that can fall any-
where in the continuous ambient space, but will lie along
the manifold as approximated by the noisy data. The ap-
proach greedily learns these locations by optimizing a se-
quence of objective functions that naturally “repels” each
new location from the previously selected ones. The ob-
jective function is motivated by a simple active learn-
ing method using Gaussian processes (Cohn et al., 1996;
Rasmussen, 2006; Kapoor et al., 2007). This supervised
method selects the next location to measure according to
the level of uncertainty in the predicted response. Inter-
estingly, previous measurements are not used to determine
this and so the selection process itself is unsupervised. We
modify this algorithm to efficiently explore manifolds.
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(a) Active learning
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(b) Manifold landmarking

Figure 1. Landmarking and active learning with two toy manifolds. (a) The first 15 points selected by the active learning procedure in
Section 2. (b) The first 15 points selected using the continuous ambient space landmarking approach of Section 3. The landmarks in (b)
do not correspond exactly to any observation, but instead converged to these locations using gradient methods.

In the remainder of the paper, in Section 2 we review active
learning with Gaussian processes for supervised learning
problems and motivate this as a good approach for unsu-
pervised manifold learning as well. In Section 3 we use
this as a starting point for developing our landmarking al-
gorithm. We present a stochastic inference algorithm for
finding these landmarks with large datasets in Section 4 us-
ing a specific kernel mapping. In Section 5 we evaluate our
method on image datasets, the Million Song Dataset, and
1.8 million articles from the New York Times.

2. Active learning with Gaussian processes
Our unsupervised method uses ideas from active learn-
ing with Gaussian processes as a starting point and so we
briefly review this approach. Assume we have a dataset
(x1, y1), . . . , (xn, yn), where y is a response associated
with location x ∈ Rd. We also have a set D = {x} of loca-
tions without the corresponding responses y. Active learn-
ing seeks to pick the next location xn+1 ∈ D for which
to query yn+1 such that a large amount of information is
gained according to some measure. In the Gaussian pro-
cess regression setting, where y is a real-valued number
(possibly latent), this can be done by selecting xn+1 for
which the uncertainty of yn+1 is greatest as measured by
the variance of yn+1.

We recall that y(x) is a Gaussian process (GP) (Rasmussen,
2006) if all marginals evaluated at a finite set of locations
are multivariate Gaussian distributed. A GP is defined by
a mean function m(x) = E[y(x)] and covariance func-
tion k(x, x′) = E[(y(x) − m(x))(y(x′) − m(x′))], also
called a kernel. Assuming a Gaussian process, the vector
y = [y(x1), . . . , y(xn)]T discussed above is therefore dis-
tributed as

y ∼ N (m,K), (1)

with m = [m(x1), . . . ,m(xn)]T and Kij = k(xi, xj). We
will assume that m(x) = 0 in this paper.

Let the set Dn contain the first n measured locations,
x1, . . . , xn, and Kn be the kernel matrix constructed from
points in Dn. Given (x1, y1), . . . , (xn, yn), the value y(x)
at a new x is distributed as

y(x) | y ∼ N (ξ(x),Σ(x)) , (2)
ξ(x) = k(x,Dn)K−1n y,

Σ(x) = k(x, x)− k(x,Dn)K−1n k(x,Dn)T ,

where k(x,Dn) = [k(x, x1), . . . , k(x, xn)]. To pick the
next location x ∈ D for measuring y, one can simply select
the point with the greatest uncertainty,

xn+1 = arg max
x∈D

k(x, x)−k(x,Dn)K−1n k(x,Dn)T . (3)

When k(x, xi) = c · exp(−‖x− xi‖2/η), the term k(x, x)
is a constant. In this case, the selected point will have the
smallest second term. We observe two properties of this
objective function:

1. It does not depend on the observed values of y.

2. The sequence x1, x2, x3, . . . is selected such that the
space in which x resides is efficiently explored.

The second property is because k(x,Dn) penalizes close-
ness to previously selected locations. Since Kn is a PSD
matrix, when x is not close to any point x′ ∈ Dn the value
of k(x, x′) is nearly all zero and the second term becomes
less negative. We illustrate this on two toy manifolds in
Figure 1(a), where we show the first 15 points selected.

3. Landmarking with Gaussian processes
As shown in Figure 1(a), the active learning method de-
scribed in Section 2 also provides a good approach to land-
marking a manifold. However, this requires the landmarks
to correspond exactly to observed locations, and also the
evaluation of a kernel at (ideally) every point in the dataset.
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For small, densely sampled and low-dimensional data this
may be reasonable, but for bigger problems it has draw-
backs. For example, in high dimensions data usually isn’t
densely sampled, even if the manifold dimension is low rel-
ative to the ambient space. We may also believe a priori
that a landmark shouldn’t correspond exactly to an obser-
vation, for example in face or document datasets, in which
case we might want the landmark to be a local average of
related faces, or the underlying topics of a corpus of doc-
uments. In these cases, we might wish to avoid selecting
from the raw data regardless of the data size.

We build on the ideas of Section 2 to derive an algorithm
for finding relevant points along a manifold as defined by
the observed noisy data. We demonstrate the output of
the algorithm we will present on the same toy manifolds
from Section 2 in Figure 1(b). We see that we again learn
points evenly spaced along the manifolds, but this time
those points are not required to correspond exactly to an ob-
served location. Instead, we extend the objective function
in Equation (3) to allow for a gradient method that con-
verges to a local optimal location in the continuous mani-
fold space as approximated by the data.

Let M be a manifold in some ambient space S. (S is not
necessarily Rd, for example, it can be the intersection of
the unit sphere with the positive orthant.) OftenM has a
low-dimensional nonlinear structure. Let both µ and N be
probability distributions on S, with the support of µ being
constrained to the manifold M and N a zero mean noise
process. We assume the observed data point x = x̂+ε ∈ S,
where x̂ ∼i.i.d µ and ε ∼i.i.d. N ; that is, the data is a
randomly selected point from the manifold corrupted by
noise, which we assume to be small (Little et al., 2012).

We define the kernel function between points t, t′ ∈ S as

k(t, t′) =

∫
x̂∈S

φx̂(t)φx̂(t′)dµ(x̂). (4)

In this paper we use φx̂(t) = exp(−‖t − x̂‖2/η). Notice
that µ has supportM, and so the integral is effectively over
the manifold. This kernel function is closely related to the
Gaussian kernel in Section 2, but will only consider t and
t′ to be “close” (i.e., k(t, t′) will be “large”) according to
the path between them along the manifold.

This representation is problematic since we do not have the
distribution µ, or even the samples x̂ ∼i.i.d. µ. We there-
fore approximate Equation (4) with the observed noisy data
using a plug-in estimator,

k(t, t′) ≈ 1

N

N∑
i=1

φxi
(t)φxi

(t′) :=
1

N
~φ(t)T ~φ(t′), (5)

In this case, the data serves a different purpose from Sec-
tion 2. With this approach we are constructing k(t, t′) with

any two points t, t′ from the continuous ambient space S,
but restricting the kernel integral to the manifold. In Equa-
tion (5) the data x ∈ D allows us to approximate this mani-
fold and helps define what is being integrated out, whereas
using a Gaussian kernel in the framework of Section 2, the
kernel is evaluated at the data points and the implied inte-
gral is over Rd with dµ(x)→ dx.

Returning briefly to the ideal setting, given n selected land-
marks Tn = {t1, . . . , tn} from S, let Kn be the pairwise
kernel matrix of points in Tn using Equation (4). As with
active learning in Section 2, the goal is to select a new t
that is informative according to the objective function,

tn+1 = arg max
t∈S

k(t, t)− k(t, Tn)K−1n k(t, Tn)T . (6)

However, since we cannot calculate k exactly, we esti-
mate each of these values with the plug-in approximation of
Equation (5). Defining the matrix Φ = [~φ(t1), . . . , ~φ(tn)],
we can approximate tn+1 as

tn+1 ≈ arg max
t∈S

~φ(t)T ~φ(t)− ~φ(t)TΦ(ΦTΦ)−1ΦT ~φ(t).

(7)
This objective function can be interpreted as selecting the
value of t such that the high-dimensional mapping ~φ(t) ex-
tends the greatest Euclidean distance into the null space de-
fined by Φ. This can be seen by rewriting the objective in
Equation (7) as ~φ(t)T (I−Φ(ΦTΦ)−1ΦT )~φ(t): the product
(I − Φ(ΦTΦ)−1ΦT )~φ(t) projects ~φ(t) into the null space
of Φ, and so the objective is equal to the squared magnitude
of this projection. Since ~φ(t) is calculated using the data,
we can see that tn+1 should be close to many x ∈ D, but
this set of points ideally will be disjoint from those used to
define the span of ~φ(t1), . . . , ~φ(tn).

4. A stochastic algorithm for landmarking
We next present an algorithm for finding the sequence of
landmarks t1, t2, . . . , near the manifold M. Since t can
be any point in the continuous ambient space S, we can-
not simply evaluate over all possible values as done with
the active learning approach in Section 2. Furthermore, the
objective function in Equation (7) does not have a simple
closed form solution, and the number of observations N
may be too large to construct ~φ(t) at each observed point
in practice. We therefore derive a stochastic gradient algo-
rithm for learning each value of t (Bottou, 1998).

For point tn+1, we rewrite the objective in Equation (7) as

fn(t,D) =

N∑
i=1

N∑
j=1

Mijφxi(t)φxj (t), (8)

Mij = δij −
(
Φ(ΦTΦ)−1ΦT

)
ij
,

with δij a delta function indicating whether i = j. A simple
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Algorithm 1 Manifold landmarking with GPs

1: To find landmark tn+1 given t1, . . . , tn, initialize t(1)n+1

and do the following:
2: for s = 1, . . . S do
3: Randomly subsample a setBs of observations x ∈ D.
4: For each tk, construct ~φs(tk) using x ∈ Bs and the

function φx(tk) = exp(−‖x− tk‖2/η).
5: Define the matrix Φ = [~φs(t1), . . . , ~φs(tn)] and set

M = I − Φ(ΦTΦ)−1ΦT .
6: Let fn(t, Bs) =

∑
xi,xj∈Bs

Mijφxi
(t)φxj

(t).

7: Calculate γ = t
(s)
n+1 + ρs∇tfn(t, Bs)|t(s)n+1

using
Equation (10) and step size ρs.

8: Project γ onto S ⊆ Rd to obtain t(s+1)
n+1 .

9: end for

projected gradient method (Bertsekas, 1999) for maximiz-
ing fn is to iterate between the following two steps:

γ = t
(s)
n+1 +ρs∇tfn(t,D)|tn+1 , t

(s+1)
n+1 = ProjS(γ), (9)

where ρs is a step size and ProjS(·) is the projection onto
the feasible set S ⊂ Rd. (When S = Rd, this step is unnec-
essary.) For the non-convex objective in Equation (8), this
procedure will converge to a local optimal solution.

When φx(t) = exp(−‖t− x‖2/η), the gradient of fn is

∇tfn = −
N∑
i=1

N∑
j=1

4Mij

η

[
t− xi + xj

2

]
φxi

(t)φxj
(t).

(10)
We observe that symmetry can be exploited to efficiently
calculate this vector in practice.

The more data that is available, the better defined the sam-
pled manifold M will be, which will help learn better
landmarks. However, when the number of observations is
very large, calculating the vectors ~φ(t) can be prohibitively
slow. The final step of our algorithm is to perform stochas-
tic gradient optimization of fn(t,D) by randomly subsam-
pling a subset of points Bs ⊂ D at step s and approxi-
mating the gradient of fn.1 To ensure convergence, we use
step sizes such that

∑
s |ρs| = ∞,

∑
s ρ

2
s < ∞ (Robbins

& Monro, 1951). We summarize the final algorithm for
manifold landmarking in Algorithm 1.

5. Experiments
We evaluate our manifold landmarking algorithm on im-
ages, text and music data. For images, we consider the data
as lying near a manifold in the ambient space S = Rd+.

1We observe that the original gradient is stochastic as well by
approximatingM with a noise-corrupted x̂ ∼i.i.d. µ.

Figure 2. The first eight landmarks from the Yale faces dataset.

For the music and text problems, the data consists of vec-
tors that lie on the intersection of the unit sphere with the
positive orthant, which is a result of the data processing dis-
cussed later. For both of these problems our projection onto
S is made accordingly. For all problems we use a step size
of ρs = (s0 + s)−τ with s0 = 10 and τ = 0.51. The algo-
rithm was robust to changes in these values. We take 1000
steps for each landmark and use batch size |Bs| = 1000 un-
less noted otherwise. We set the kernel width η =

∑
i σ̂

2
i ,

where σ̂2
i is an empirical approximation of the variance of

the ith dimension of the data. To initialize each landmark,
we draw from a Gaussian with the empirical mean and di-
agonal covariance of the data.

5.1. Qualitative evaluation

We evaluate our method qualitatively on two face datasets.
In Figure 2 we show the first eight landmarks using 2,475
images of size 42× 48 from the Yale faces database2. The
dataset contains 165 images of various illuminations for
15 people. We see that the first eight landmarks capture
various illuminations of an average face that doesn’t corre-
spond to any single person in the dataset.

We also consider the larger PIE faces dataset, consisting of
11,554 images of size 64 × 64 across 68 people with var-
ious illuminations and frontal poses. In Figure 3 we show
a 2D embedding of 1,000 randomly selected images from
the dataset, along with the first twenty landmarks learned
from the full dataset, using the t-SNE algorithm (Van der
Maaten & Hinton, 2008). It is evident that the landmarks
effectively explore the space where the data resides. We
also show the five closest faces to some of the landmarks.
We again see averages of various genders and ethnicities
for different poses and illuminations.

We show running times for the PIE data in Figure 4(a) for
32× 32 and 64× 64 images. We see that the time to learn
a new landmark increases as the number of existing land-
marks increases, due to the larger size of the matrix inver-
sions and products in Equation (10). We also observe that

2http://www.cad.zju.edu.cn/home/dengcai/
Data/FaceData.html
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Figure 3. A 2D embedding of 1,000 randomly selected images from the PIE faces dataset (black dots), along with the first twenty
landmarks (numbered red dots), using t-SNE algorithm (Van der Maaten & Hinton, 2008). For some of the landmarks, we also show the
closest five faces. The landmarks locally average along the manifold (see later quantitative comparison with k-means).

as the dimensionality increases, the running time increases.
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Figure 4. The running time for (a) PIE as a function of landmark
number and image size and batch size |Bs| = 1000; (b) the New
York Times dataset. Learning speed is comparable to scalable
topic models such as online LDA (Hoffman et al., 2013).

We also consider a corpus of roughly 1.8 million docu-
ments from the New York Times, as well as the 20 News-
group data set. For this data, we set each data point xd near
the manifold to be the square root of the normalized word
histogram constructed using a vocabulary size of 8000 and
1545, respectively. That is, if wdn is the index of the nth
word in the dth document and document d has nd total
words, then we set

xd(j) =

√∑
n 1(wdn = j)

nd
. (11)

Each landmark t is also restricted to lie in this same space.
The function φx(t) therefore uses the Hellinger distance to
measure closeness between a landmark and a document.

We can naturally interpret the square of the elements of t as
a topic comparable to those learned by topic models. The
meaning of a landmark can then be interpreted by showing
the “most probable” words in the standard way. In Table
1 we show the top words for the first 11 landmarks of the
New York Times and the first 12 landmarks of 20 News-
group. As is clear, these landmarks correspond to themat-
ically meaningful concepts such as “sports”, “food”, and
“politics”. In Figure 4(b) we show the running time per
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Table 1. (top) The “most probable” words for the first 11 landmarks learned on the 1.8 million document New York Times dataset.
(bottom) The first 12 landmarks from the 20 Newsgroup dataset.
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back system season today chip christians program buy state orbit hard control

landmark on New York Times for several different batch
sizes on a laptop computer. As is to be expected, the time
increases as batch size increases, but all experiments can be
performed within a few hours on a single computer, which
is comparable to scalable topic models such as online LDA
(Hoffman et al., 2013).

5.2. MNIST classification with landmarks

One major distinction between our proposed method and
active learning with Gaussian processes as described in
Section 2 is that we allow the landmarks to move along
the continuous ambient space S. From the low-dimensional
toy examples in Figure 1, the advantage appears small be-
cause the data is dense on the manifold. In the next ex-
periment, we quantitatively evaluate the landmarks learned
from high-dimensional image data.

We consider the handwritten digit classification problem
on the MNIST dataset (LeCun et al., 1998), and use a
low-dimensional representation from different landmark
approaches to evaluate their performance.3 Given n se-
lected landmarks Tn = {t1, . . . , tn}, we compute the
n-dimensional landmark-based feature for the image xd
as ~w(xd) = [φt1(xd), . . . , φtn(xd)]

T where again we
use φtk(xd) = exp(−‖tk − xd‖2/η). We perform `2-
regularized logistic regression for classification. We use
50,000 images for training to learn both the landmarks and
to train the classifier. We use 10,000 images as a val-
idation set to select the regularization parameter among
λ = {0.001, 0.01, . . . , 1000}, and another 10,000 images
for classification testing.

3This is intended to quantitatively compare methods in the
same “domain”, and not argue for our approach as a state-of-the-
art dimensionality reduction technique.
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Figure 5. Test accuracy on MNIST with different landmark-
derived features.

In addition to our landmarking approach, we consider two
other approaches for obtaining landmarks, Tn:

1. Random selection: This serves as a baseline. We sim-
ply randomly select n data points as the landmarks.

2. Active learning: The landmarks are selected using
Equation (3). However, since this requires construct-
ing the kernel matrix, which cannot be entirely read
into memory even for moderate-sized datasets, we
first subsample the digits and select landmarks from
within this group using active learning. Here we re-
port results on a 5,000-image subset. (We note the
results are similar with other subsample sizes.)

We show the test accuracy as a function of the number of
landmarks for our manifold landmarking algorithm (ML),
random selection (Rand), and active learning (Act5K) in
Figure 5. Not surprisingly, randomly landmarking does the
worst. On the other hand, our proposed method is consis-
tently better than active learning, which indicates that in the
high-dimensional ambient space, we benefit from allowing
landmarks to fall on the continuous manifold between data
points rather than correspond to exactly one of them.
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Figure 6. The annotation and retrieval performance of each algorithm with various codebook size, J . (Small amount of jitters is added
for visualization.) For the feature derived from manifold landmarks (ML), active-learning-based landmarks (Act5K), k-means, and non-
negative matrix factorization (NMF), the metrics are reported with increasing number of landmarks/latent components. The straight line
is the baseline performance of logistic regression trained on the raw VQ features. Error bars correspond to one standard error.

5.3. Automatic Music tagging

We use an automatic music tagging problem to further
evaluate the performance of our algorithm on a more con-
strained ambient space.

Automatic music tagging (Eck et al., 2007) is the task of
analyzing the audio content (waveform) of a music record-
ing and assigning to it human-relevant semantic tags con-
cerning, e.g., style, genre or instrumentation. We perform
experiments on the Million Song Dataset (Bertin-Mahieux
et al., 2011) which contains the audio features and metadata
(user tagging information from Last.fm) for one million
songs. After preprocessing the data and removing songs
with fewer than 20 tags from the test set, we obtained a
dataset with 561 tags, 371,209 songs for training and 2,757
songs for testing.

Instead of directly working with the audio, we vector quan-
tize features extracted from audio using the standard pro-
cedure: We run the k-means algorithm on a large subset of
randomly selected feature vectors to learn J cluster cen-
troids (codewords). For each song, we assign each fea-
ture vector extracted from the song to the cluster with the
smallest Euclidean distance to the centroid, normalize a
histogram of these quantizations on this codebook and take
the square root to obtain a location xd for song d. This VQ

approach (without taking the square root) has been success-
fully applied to the music tagging problem and achieved
state-of-the-art results (Xie et al., 2011; Liang et al., 2014).
We use Echo Nest’s timbre features provided in the Million
Song Dataset to learn the codebook, which is similar to the
widely used Mel-frequency cepstral coefficients (MFCCs).
Since songs tend to have consistent timbre, the manifold
approximated by xd should be lower dimensional than the
ambient space, which in this case is the intersection of the
unit sphere with the positive orthant.

We treat music tagging as a binary classification problem:
For each tag, we make independent predictions on whether
the song is tagged with it or not. To this end, using the
manifold landmarks learned from all xd, we vectorize the
dth song as ~w(xd) = [φt1(xd), . . . , φtn(xd)]

T where again
φtk(xd) = exp(−‖tk − xd‖2/η). Again this uses the
Hellinger distance between two probability vectors.

We evaluate the performance on an annotation and a re-
trieval task: For the annotation task we seek to automati-
cally tag unlabeled songs. To evaluate the model’s ability to
annotate songs, we compute the average per-tag precision,
recall, and F-score on the held-out test set. For the retrieval
task, given a query tag we seek to provide a list of songs
which are related to that tag. To evaluate retrieval perfor-
mance, for each tag in the vocabulary we ranked each song
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in the test set by the predicted probability. We then calcu-
late the area under the receiver-operator curve (AROC) and
mean average precision (MAP) for each ranking.

For both of these tasks, we use `2-regularized logistic re-
gression on the vectors ~w. Logistic regression has been
shown to have state-of-the-art performance when applied
directly on VQ features (Xie et al., 2011), which we use
as our baseline. We also consider the following three ap-
proaches for comparison:

Non-negative matrix factorization (NMF): NMF (Lee &
Seung, 2001) learns a parts-based representation. If we
consider the learned latent components as landmarks, it
shares the same property with our algorithm: The land-
marks do not have to correspond exactly to a data point.
The difference is that NMF can only capture linear struc-
ture. We fit the unnormalized VQ histogram using NMF
with Kullback-Leibler divergence cost function and use the
weights from the learned factorization as features to train
the logistic regression.

Active learning: Similar to the MNIST experiment, we use
Equation (3) to select landmarks from 5,000 subsampled
songs and derive landmark-based feature as in Section 5.2.

k-means: We also treat the centroids of k-means as land-
marks. These centroids can also capture non-linear struc-
ture, but the absence of a kernel may result in centroids
that fall well off of the manifold. Another key difference
is that k-means does not enjoy the sequential property of
our method, i.e., we learn landmarks in their order of infor-
mativeness, whereas k-means must be restarted if the num-
ber of clusters changes. We fit the data with k-means++
(Arthur & Vassilvitskii, 2007) and treat the cluster cen-
troids as landmarks, constructing landmark-based features
in the same fashion as active learning and our proposed al-
gorithm.

We show results for both annotation and retrieval in
Figure 6 for several codebook size. For each logis-
tic regression model, we use 5-fold cross-validation to
search for the best regularization parameter among λ =
{0.001, 0.01, . . . , 1000}. As these plots show, the features
derived from the proposed method consistently outper-
form those from other methods, regardless of the number
of landmarks/latent components. Furthermore, the model
trained on the landmark-derived features often outperforms
the model trained on the raw VQ features. For example,
with a codebook size J = 1024, we achieve similar results
with only 100 locations (less than 10% of the original di-
mensionality) and significantly better with 200 locations.
We note that similar results were observed for larger values
of J .

6. Conclusion and Discussion
We have presented a method for finding landmarks on man-
ifolds. Our approach borrows ideas from active learning
with Gaussian processes to define an objective function for
finding each landmark sequentially. We treat the data as
noise-corrupted i.i.d. samples from some underlying distri-
bution on the manifold, which we use to derive a stochas-
tic gradient algorithm for finding landmarks near the man-
ifold as approximately defined by these samples. This has
the benefit of not requiring each landmark to correspond
exactly to an observation, and allows for a fast stochastic
learning algorithm.

Currently, we set the kernel width η from a simple heuris-
tic. As future work, we will investigate a joint optimization
over all the landmarks, which could potentially reduce the
influence on the choice of η. Also, as presented each lo-
cation is learned in a greedy fashion and then fixed. How-
ever, a simple (but slower) extension for joint optimization
would be to modify a previously learned landmark given
the subsequent ones. This can have the advantage of further
spacing out the landmarks to provide better coverage of the
manifold. For example, in the “circles” manifold of Figure
1(b) we see that landmarks 5, 9 and 11 are not spaced as
well as might be desired. This is because landmarks 5 and
9 were fixed after being learned, and landmark 11 repre-
sents a local optimal solution sensitive to these values. If
we returned to landmark 9 and continued to step along the
gradient given the subsequent landmarks, this point would
move down the circle to be more evenly spaced between
the 5th and 11th landmarks.
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