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Table 3: The summary of 7 real data sets. n is the number of instances and d0 is the
dimension of the original data

data set number of instances n dimensionality d0 σ k

Dexter 2600 20000 100.0 20,50
WineZ 4898 11 1.0, 3.0 20

AbaloneZ 4177 8 1.0, 3.0 20
Letter 20000 16 1.0, 3.0 20,50

MNIST 60000 784 5.0, 10.0 20,50
MiniBooNE 130064 50 0.3, 1.0 20,50
Covertype 581012 54 1.0 20,50

A Additional Experiments

In this section, we present additional experimental results that demonstrate our theoretical
work and algorithms. 7 real data sets, σ and rank-k, which are we used in the experiments,
are summarized in Tbl 3. We adopt two measures for experiments: “relative approximation
error” (Relative Error), and “normalized approximation error” (Normalized Error)

Relative Error = ‖K− K̃k‖F /‖K‖F (12)

Normalized Error = ‖K− K̃k‖F /‖K−Kk‖F , (13)

where the minimum of the normalized error is 1.

A.1 Efficiency and Accuracy

In this section, we empirically compare the double Nyström method described in Alg 3 with
four representative Nyström methods: the standard Nyström method (Williams & Seeger,
2001), the standard Nyström method using randomized SVD (Li et al., 2015), the one-shot
Nyström method (Fowlkes et al., 2004), and the standard Nyström method using K-means
sampling (Zhang & Kwok, 2010). We run the double Nyström method with the spanning
set S constructed by uniform random sampling (Unif) and approximate leverage scores
(ALev).

There are 10 episodes for each test, and there are 10 points on the each line in the
figures. We set s = 500t, ` = (140 + 5t), and m = (250 + 50t) when n ≥ 20000, where
t = 1, 2, ..., 10. For Dexter data, we set s = 200t, ` = (100 + 5t), and m = (150 + 20t),
where t = 1, 2, ..., 10.

A.1.1 Different rank-k

For Nyström approximation, we select two different rank-k which are 20 and 50. We dis-
play the experimental results in Fig 3. Regardless of rank-k, Fig 3 shows that the double
Nyström method always shows better efficiency than other methods under the same condi-
tion of using O(sn) kernel elements. In the experiment on the Letter data set, we can also
notice that the error of the double Nyström approximation more rapidly decreases to the
optimal error than the others.
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Figure 3: Performance comparison both for k = 20 and k = 50 among the four methods:
the standard Nyström method (Williams & Seeger, 2001), the one-shot Nyström method
(Fowlkes et al., 2004), the standard Nyström method using randomized SVD (Li et al.,
2015), and the double Nyström method (ours). There are 10 episodes for each test, and
there are 10 points on the each line in the figures. We perform SVD algorithm only on the
Dexter and Letter data sets due to memory limit. In this experiment, we set σ for 5 data
sets as follows: σ = 100.0 for Dexter, σ = 1.0 for Letter, σ = 5.0 for MNIST, σ = 0.3 for
MiniBooNE, and σ = 1.0 for Covertype.
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A.1.2 Different σ

In this section, we report the results when we choose two different sigma for Gaussian kernel.
Regardless of sigma, Fig 4 shows that our methods is both efficient and accurate compared
to other methods.

10
−1

10
0

10
1

10
−0.1

10
−0.09

10
−0.08

10
−0.07

10
−0.06

Letter (sigma=1.0)

Time (s)

R
el

a
ti
ve

E
rr

o
r
(k

=
2
0
)

 

 

SVD (optimal)
Standard Nys.
One-shot Nys.
RandSVD + Nys.
Double Nys. (ALev)
Double Nys. (Unif)

10
−1

10
0

10
1

10
−1

Letter (sigma=3.0)

Time (s)

R
el

a
ti
ve

E
rr

o
r
(k

=
2
0
)

 

 

Standard Nys.
One-shot Nys.
RandSVD + Nys.
Double Nys. (ALev)
Double Nys. (Unif)

10
0

10
1

10
2

10
−0.4

10
−0.3

MNIST (sigma=5.0)

Time (s)

R
el

a
ti
ve

E
rr

o
r
(k

=
2
0
)

 

 

Standard Nys.
One-shot Nys.
RandSVD + Nys.
Double Nys. (ALev)
Double Nys. (Unif)

10
0

10
1

10
2

10
−0.92

10
−0.9

10
−0.88

10
−0.86

MNIST (sigma=10.0)

Time (s)

R
el

a
ti
ve

E
rr

o
r
(k

=
2
0
)

 

 

Standard Nys.
One-shot Nys.
RandSVD + Nys.
Double Nys. (ALev)
Double Nys. (Unif)

10
0

10
1

10
2

10
−0.13

10
−0.11

10
−0.09

10
−0.07

10
−0.05

MiniBooNE (sigma=0.3)

Time (s)

R
el

a
ti
ve

E
rr

o
r
(k

=
2
0
)

 

 

Standard Nys.
One-shot Nys.
RandSVD + Nys.
Double Nys. (ALev)
Double Nys. (Unif)

10
0

10
1

10
2

10
−0.92

10
−0.91

10
−0.9

10
−0.89

10
−0.88

MiniBooNE (sigma=1.0)

Time (s)

R
el

a
ti
ve

E
rr

o
r
(k

=
2
0
)

 

 

Standard Nys.
One-shot Nys.
RandSVD + Nys.
Double Nys. (ALev)
Double Nys. (Unif)

Figure 4: Experimental results for two different sigma on three data sets: Letter, MNIST,
and MiniBooNE. We gradually increase the number of samples s as 500, 1000, 1500,...,
5000, and there are corresponding 10 points on the each line.
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Figure 5: Comparison between the double Nyström method and the one-shot
Nyström method using K-means sampling. We set σ = 1.0 for Letter, σ = 5.0 for MNIST,
and σ = 0.3 for MiniBooNE in this experiment.

A.1.3 Double Nyström method vs K-means sampling + One-shot Nyström

One of the heuristic Nyström strategies is combining normal K-means sampling and the
standard Nyström method (Zhang & Kwok, 2010). Thus, we also report experimental
results of Nyström methods utilizing K-means sampling in this section. We adopted an
efficient K-means algorithm, and limited the maximum iteration as 10. For K-means sam-
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pling, we gradually increase the number of clusters K as 100, 200, 300,..., 1000, thus there
are corresponding 10 points on the line.

Fig 5 displays the corresponding results. We omit the experimental result of the
standard Nyström method using K-means sampling (Zhang & Kwok, 2010), because it
shows relatively poor efficiency and accuracy compared to other methods. The one-shot
Nyström method using K-means sampling shows better accuracy and efficiency than the
standard Nyström using K-means, however it is relatively slow than our methods and
Nyström method using randomized SVD (Li et al., 2015) due to the running time of K-
means. Especially, it is too slow for the experiments on the MNIST data set which has
784 original dimension. Whereas our methods shows a better efficiency even on the low-
dimensional data sets which are Letter and MiniBooNE.

A.2 Leverage Scores, Kernel K-means and CAPS

Rem 1 implies the kernel K-means sampling, leverage score sampling, and CAPS sampling.
Thus, we compare the three sampling methods for Nyström schemes in this section.

We introduced the notion of spanning set S and its corresponding matrix S in the main
section. Let C0 be a n×s matrix such that C0 = Φ>S. Then, we can also think that CAPS
sampling extracts W ∈ Rd×` from S ∈ Rd×s, and compress the n× s matrix C0 and s× s
matrix KS as a n× ` matrix C and a `× ` matrix KW respectively. Consequently, we can
understand that the three sampling methods compress C0 as C, and test which sampling
method extracts n × ` matrix C inducing small approximation error. We denote ` as the
number of columns of C in the experiments.

We apply each sampling method to the standard Nyström method (S.Nys) and one-shot
Nyström method (O.S.Nys.). We select 7 sampling methods: uniform random sampling
(Unif), adaptive-part sampling (Adapt-part) (Kumar et al., 2012), leverage-score sam-
pling (lev) (Gittens & Mahoney, 2013), near-optimal sampling (NearOptimal) (Boutsidis
et al., 2014), normal K-means sampling (Kmeans) (Zhang & Kwok, 2010), kernel K-
means sampling (KKmeans), and CAPS sampling using one-shot Nyström (CAPS (unif),
CAPS(ALev)) (ours). We set s = n/10 both for standard Nyström method using random-
ized SVD and double Nyström method, and assign m = n/50 in these experiments.

We adopted normalized approximation error (Normalized Error) which is defined in
Eqn (13) in this experiment. Since the optimum value of the normalized approximation
error is 1, we can easily interpret the results. Meanwhile, since we need to compute the
optimal error ‖K−Kk‖F , thus we select 3 data sets which is not very large: Abalone,
Wine, and Letter.

The experimental results are displayed in Fig 6 and Fig 7. Although the exact leverage
score sampling utilizes the full kernel matrix K, accuracy is not better than the normal K-
means sampling. Since, column sampling methods including leverage score sampling select
just one column index per a sample, whereas clustering samplings and CAPS samplings
extract the samples as linear combination of instances. We note that kernel K-means
sampling and CAPS samplings are superior to the other methods in terms of accuracy,
and induce low errors closed to the optimum value 1 of the normalized error with a small
`. This means that the suggestions based on our analysis is correct. If we consider both
running time and accuracy, then “CAPS sampling + Nyström methods” outperform all
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Figure 6: Comparison of the errors induced by sampling methods. The dotted line corre-
sponds to the standard Nyström method, and the solid line corresponds to the one-shot
Nyström method. Double Nyström denotes “CAPS + O.S.Nys.”.

other strategies, especially the double Nyström method.

B Analysis in Section 3

B.1 The proof of Lemma 2

Lemma 2 In the standard Nyström method, approximate principal directions are

Ũnys
k = UW,k,
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Figure 7: Comparison of the running times. Since the sizes of the data sets are small, the
running times of two Nyström methods are relatively small compared to the sampling time.
Thus, dotted are solid lines are close to each other.
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where W = UWΣWV>W . In the one-shot Nyström method, approximate principal directions
are

Ũosn
k = UWVG,k,

where G = Φ>WVWΣ−1
W = Φ>UW and G>G = VGΣGV>G.

Proof. Consider the reconstruction form Kk = VkΣ
2
kVk = Φ>UkU

>
k Φ. Similarly, we can

consider the reconstruction form both for the standard and one-shot Nyström approxima-
tions such as K̃k = ṼkΣ̃

2
kṼk = Φ>ŨkŨ

>
k Φ. Then, we have a following equation for K̃nys

k

K̃nys
k = CK†W,kC

> = Φ>WVW,kΣ
−2
W,kV

>
W,kW

>Φ = Φ>UW,kU
>
W,kΦ,

and U>W,kUW,k = Ik. Thus, Ũnys
k = UW,k. Second, we have a following equation for K̃osn

k

K̃osn
k = GVG,kV

>
G,kG

> = Φ>UWVG,kV
>
G,kU

>
WΦ,

and (UWVG,k)
>UWVG,k = Ik. Consequently, Ũosn

k = UWVG,k.

B.2 The proof of Theorem 1

Theorem 1 Given the s samples W ∈ Rd×s with rank(W) = s′, KPCA using the one-shot
Nyström method solves the optimization problem in Def 1.

Proof. Let Ũk ∈ Rd×k be a matrix with orthonormal columns ũi. The NRE can then be
re-formulated as

NRE(Ũk) =

√
tr((Φ− ŨkŨ

>
k Φ)>(Φ− ŨkŨ

>
k Φ))

tr(Φ>Φ)
=

√
1−

tr(Ũ>k ΦΦ>Ũk)

tr(K)
.

where K = Φ>Φ is the full kernel matrix. Consequently, the optimization problem
in Eqn (5) can be reformulated as

maximize
Ak

tr(Ũ>k ΦΦ>Ũk) subject to Ũ>k Ũk = Ik, Ũk = WAk. (14)

Using compact SVD W = UWΣWV>W , we have

Ũk = WAk = UWΣWV>WAk = UWZk,

by introducing matrix Zk = ΣWV>WAk ∈ Rs′×k. Since Ũ>k Ũk = Z>k Zk, Eqn (14) becomes

maximize
Zk

tr(Z>k G>GZk) subject to Z>k Zk = Ik, (15)

where G = Φ>UW . Note that this matrix is the same G in Alg 1 since UW = WVWΣ−1
W

and C = Φ>W. By the work in Fan (1949), setting Zk to the first k eigenvectors of the
matrix G>G solves the problem, which is VG,k computed in Alg 1. Hence,

Ũopt
k = UWZoptk = UWVG,k = WVWΣ−1

W VG,k = Ũosn
k . (16)
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Lastly, computing the projection of each data instance requires the eigenvectors of the kernel
matrix, given in Eqn (4). Using Ũopt

k in the above, the diagonal matrix of singular values

Σ̃opt
k = (Ũopt

k )>ΦΦ>Ũopt
k = ΣG,k since tr(ΣG,k) is the objective value at the optimum

in Eqn (15), which is equal to that in Eqn (14). Finally, Eqn (4) with Ũopt
k and Σ̃opt

k yields

Ṽopt
k = Φ>Ũopt

k (Σ̃opt
k )−1 = Φ>WVWΣ−1

W VG,kΣ
−1
G,k = GVG,kΣ

−1
G,k = Ṽosn

k .

Since Ṽopt
k = Ṽosn

k and Σ̃opt
k = Σ̃osn

k , two approximate principal components are the same

Φ>Ũopt
k = Ṽopt

k Σ̃opt
k = Ṽosn

k Σ̃osn
k = Φ>Ũosn

k .

B.3 The Proof of Corollary 1

Corollary 1 Minimizing NRE(Ũk) is equivalent to minimizing the ε1(Ũk) defined in Def 2,
thus

Ũosn
k = argmin

Ũk

ε1(Ũk) subject to Ũ>k Ũk = Ik, Ũk = WAk.

Proof. For any k ≤ rank(K),

NRE(Ũk) =

√
ck + ε1(Ũk)

tr(K)
,

where ck = tr(K)− tr(Kk). We finish the proof, since tr(K) and tr(Kk) are constant given
K.

B.4 The Proof of Proposition 1

Proposition 1 Let W1 and W2 be the matrix consisting of s1 samples and s2 samples
respectively. If two column spaces col(W1) and col(W2) are the same, then the outputs
of the one-shot Nyström method are also the same regardless of difference between set of
samples.

Proof. As we proved in Lem 2, Ũnys
k = UW,k and Ũosn

k = UWVGW ,k. Ũnys
k can differ

depending on scaling of W, since the columns of UW,k are the top k left singular vectors
corresponding to the top k sigular values of W. That is, even if two subspaces are the
same, col(UW1,k) and col(UW2,k) may be different to each other. However, under the same
condition, UW1 can be represented as UW2Bk, where Bk is a rank(W1) × k matrix such
that B>k Bk = Ik. Using the (BkZk)

>BkZk = Ik for Z>k Zk = Ik, we can easily show that
the sample based KPCA problem for W1 and for W2 are equivalent for col(W1) = col(W2)
as follows

maximize
Zk

tr(Z>k G>1 G1Zk) subject to Z>k Zk = Ik

⇐⇒maximize
Zk

tr(Z>k G>2 G2Zk) subject to Z>k Zk = Ik,

where G1 = Φ>UW1 and G2 = Φ>UW2 .
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Proposition 1 tells us that accuracies from the one-shot Nystrom method including the
NRE(Ũosn

k ) and the ε1(Ũosn
k ) are invariant to the scaling of samples, but depend on only

subspace spanned by samples.

C Analysis in Section 4

C.1 The Proof of Theorem 2

Theorem 2 Let Ũk be a matrix consisting of k approximate principal directions computed
by the Nyström methods given the sample matrix W ∈ Rd×s with rank(W) ≥ k. Suppose
that ε0(Ũk) = d(col(Uk), col(Ũk)), then the NRE is bounded by

NRE(Ũk) ≤ NRE(Uk) +
√

2ε0,

where NRE(Uk) is the optimal NRE for rank-k. The error of the approximate kernel matrix
is bounded by

‖K− K̃k‖F ≤ ‖K−Kk‖F +
√

2ε0 tr(K),

where ‖K−Kk‖F is the optimal error for rank-k.

Proof. For any Ũk, we have following inequalities

NRE(Ũk)−NRE(Uk)

≤ ‖(UkU
>
k − Ũk(Ũk)

>)Φ‖F /‖Φ‖F
≤ ‖UkU

>
k − Ũk(Ũk)

>‖F .

The square of the last term in the above inequality is

‖UkU
>
k − Ũk(Ũk)

>‖2F = 2k − 2 tr(UkU
>
k Ũk(Ũk)

>).

Since

PE2(Ũk,Uk) = k − tr(UkU
>
k Ũk(Ũk)

>),

we finalize the proof with ‖UkU
>
k − Ũk(Ũk)

>‖2F = 2PE2(Ũk,Uk).
Similarly,

‖K− K̃k‖F − ‖K−Kk‖F = ‖Φ>Φ−Φ>Ũk(Ũk)
>Φ‖F − ‖Φ>Φ−Φ>UkU

>
k Φ‖F

≤ ‖(Φ>Φ−Φ>Ũk(Ũk)
>Φ)− (Φ>Φ−Φ>UkU

>
k Φ)‖F

= ‖(Φ>(UkU
>
k − Ũk(Ũk)

>)Φ)‖F
≤ ‖UkU

>
k − Ũk(Ũk)

>‖F ‖Φ‖2F
=
√

2PE(Ũk,Uk) tr(K).
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C.2 The Proof of Lemma 4

Lemma 4 Suppose that k-th eigengap is nonzero given Gram matrix K, i.e., γk = λk −
λk+1 > 0. Then, given the Ũk ∈ Rd×k and Ṽk ∈ Rn×k such that Ũ>k Ũk = Ik and Ṽ>k Ṽk =
Ik, the subspace distance is bounded by√

ε1(Ũk)

λ1
≤ d(col(Uk), col(Ũk)) ≤

√
ε1(Ũk)

γk
,√

ε2(Ṽk)

λ1
≤ d(col(Vk), col(Ṽk)) ≤

√
ε2(Ṽk)

γk
,

where ε2(Ṽk) = tr(V>k Φ>ΦVk)− tr(Ṽ>k Φ>ΦṼk).

Proof. First, we prove an upper bound of subspace distance between col(Uk) and col(Ũk).
Without loss of generality, assume that Ũk = UkPk + Ud

k+1Qk, where Uk be the matrix

consisting of the first k principal directions which are eigenvectors of ΦΦ>, Ud
k+1 be the

matrix consisting of other (d−k) eigenvectors of ΦΦ>, Λk and Λd
k+1 are diagonal matrices

consisting of corresponding eigenvalues. Then,

ε1(Ũk) = tr(U>k ΦΦ>Uk)− tr(Ũ>k ΦΦ>Ũk)

= tr(Λk)− tr(ΛkPkP
>
k )− tr(Λd

k+1QkQ
>
k )

= tr(Λk(Ik −PkP
>
k ))− tr(Λd

k+1QkQ
>
k )

≥ λk tr(Ik −PkP
>
k )− tr(Λd

k+1QkQ
>
k ).

Since tr(Ik) = tr(P>k Pk + Q>k Qk), we have

ε1(Ũk) ≥ λk tr(Ik −PkP
>
k )− tr(Λd

k+1QkQ
>
k )

= λk tr(QkQ
>
k )− tr(Λd

k+1QkQ
>
k )

= tr((λkId−k −Λd
k+1)QkQ

>
k )

≥ (λk − λk+1) tr(QkQ
>
k ).

We finish this proof with PE2(Uk, Ũk) = tr(QkQ
>
k ) and PE(Uk, Ũk) = d(col(Uk), col(Ũk)).

Similarly, we can provide a lower bound of d(col(Uk), col(Ũk)).

ε1(Ũk) = tr(U>k ΦΦ>Uk)− tr(Ũ>k ΦΦ>Ũk)

= tr(Λk(Ik −PkP
>
k ))− tr(Λd

k+1QkQ
>
k )

≤ λ1 tr(Ik −PkP
>
k )− tr(Λd

k+1QkQ
>
k )

≤ λ1 tr(QkQ
>
k ).

Since PE2(Uk, Ũk) = tr(QkQ
>
k ), we have

√
ε1(Ũk)
λ1

≤ PE(Uk, Ũk).

Next, we prove upper and lower bound of d(col(Vk), col(Ṽk)). Without loss of generality,
suppose that Ṽk = VkPk + Vn

k+1Qk, where Vk be the matrix consisting of the first k
eigenvectors of K, Vn

k+1 be the matrix consisting of other (n − k) eigenvectors of K, Λk

and Λn
k+1 are diagonal matrices consisting of corresponding eigenvalues. Then, the rest of

the proof is similar to the case of d(col(Uk), col(Ũk)).
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C.3 The Proof of Lemma 5

Before showing the proof of Lem 5, we provide the following two lemmas.

Lemma 6. A ∈ Rd×n, Ũk ∈ Rd×k, Ṽk ∈ Rn×k be given, where k ≤ min{d, n} and Ũk, Ṽk

have orthonormal columns. Then σi(Ũ
>
k AṼk) ≤ σi(A).

Lem 7 comes directly from Lem 6.

Lemma 7. Let Ṽk be a submatrix consisting of k columns of Ṽ`, and Ũk be a submatrix
consisting of k columns of Ũ`, where Ũ>` Ũ` = I` and Ṽ>` Ṽ` = I`. Then, given kernel
matrix K, we have

ε1(Ũk) ≤ ε2(Ũ`)

ε2(Ṽk) ≤ ε2(Ṽ`).

Now, we provide Lem 5.

Lemma 5 Suppose that ` samples are columns of ΦṼ`, i.e.W = ΦṼ`, and Ṽk is a
submatrix consisting of k columns of Ṽ`, where Ṽ>` Ṽ` = I`. Then, for any k ≤ rank(W),
Ũnys
k and Ũosn

k satisfy

ε1(Ũosn
k ) ≤ ε1(Ũnys

k ) ≤ ε2(Ṽk) ≤ ε2(Ṽ`),

where Ũnys
k and Ũosn

k are defined in Lem 2.

Proof. Given Ṽ`, without loss of generality, we can arrange columns of Ṽ` as descending
order corresponding to the diagonal entry of KW = Ṽ>` Φ>ΦṼ`. Let Ṽk be the matrix
consisting of the first k columns of Ṽ`, then by Lem 7,

ε2(Ṽk) = tr(V>k Φ>ΦVk)− tr(Ṽ>k Φ>ΦṼk) ≤ tr(V>` Φ>ΦV`)− tr(Ṽ>` Φ>ΦṼ`) = ε2(Ṽ`).

The next goal is showing

ε1(ŨW,k) = tr(U>k ΦΦ>Uk)− tr((UW,k)
>ΦΦ>UW,k) ≤ tr(V>k Φ>ΦVk)− tr(Ṽ>k Φ>ΦṼk),

where UW,k consists of the first k columns of UW . Since tr(V>k Φ>ΦVk) = tr(U>k ΦΦ>Uk),
we will show that

tr(Ṽ>k Φ>ΦṼk) ≤ tr(U>W,kΦΦ>UW,k).

The matrix Ṽ>k Φ>ΦṼk is a principal submatrix of Ṽ>` Φ>ΦṼ`, thus by Lem 6,

tr(Ṽ>k Φ>ΦṼk) ≤ tr((Ṽ>` Φ>ΦṼ`)k) = tr(Σ2
W,k).

We give an alternative form for the same quantity of tr(Σ2
W,k) as follows

tr(Σ2
W,k) = tr(VW,kΣ

2
W,kV

>
W,k)

= tr(W>UW,kU
>
W,kW)

= tr(Ṽ>` Φ>UW,kU
>
W,kΦṼ`).

13



Since tr(Ṽ>` Φ>UW,kU
>
W,kΦṼ`) ≤ tr(Φ>UW,kU

>
W,kΦ), we finish the proof for the inequality

tr(Ṽ>k Φ>ΦṼk) ≤ tr(U>W,kΦΦ>UW,k).

We proved ε1(UW,k) = tr(U>k ΦΦ>Uk) − tr(U>W,kΦΦ>UW,k) ≤ ε2(Ṽk). Meanwhile,

Ũnys
k is the UW,k as we proved in Lem 2, and Ũosn

k minimizes the ε1 among Ũk obtained
from any sample-based KCPA methods including Nyström methods as we also proved in
Cor 1. Thus,

ε1(Ũosn
k ) ≤ ε1(Ũnys

k ) = ε1(UW,k) ≤ ε2(Ṽk).

C.4 The Proof of Theorem 3

Theorem 3 Suppose that the k-th eigengap γk is nonzero given K. If we set W = ΦṼ`

with Ṽ>` Ṽ` = I`, then by the standard and one-shot Nyström methods, NRE and MRE are
bounded as follows:

NRE(Ũk) ≤ NRE(Uk) +

√
2ε2(Ṽk)

γk

≤ NRE(Uk) +

√
2λ1

γk
PE(Vk, Ṽk),

‖K− K̃k‖F ≤ ‖K−Kk‖F +

√
2ε2(Ṽk)

γk
tr(K)

≤ ‖K−Kk‖F +

√
2λ1

γk
PE(Vk, Ṽk) tr(K),

where Ṽk is any submatrix consisting of k columns of Ṽ`.

Proof. The proof of this theorem comes directly from Thm 2, Lem 4 and Lem 5.

C.5 The Proof of Proposition 2

Proposition 2 Given spanning set S consisting of s representative points, suppose that
we set W = ΦṼ` and Ṽ>` Ṽ` = I` with the constraint col(W) ⊂ col(S). Then, under that
condition, the problem of minimizing the ε2(V`) can be equivalently expressed as

minimize
A`

ε2(Ṽ`) subject to Ṽ` = TSA`,A
>
` A` = I`, (17)

and the output of step 3 in Alg 2 with rank-` SVD minimizes the ε2(V`), i.e.,

VS,` = argmin
A`

ε2(Ṽ`) subject to Ṽ` = TSA`,A
>
` A` = I`,

where KS = VSΣ2
SV>S .
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Proof. The condition is equivalently expressed as W = ΦṼ` = SA` and Ṽ` = TSA`, where
A>` A` = I`, and then the problem of minimizing the ε2(Ṽ`) becomes Eqn (17). Next, we
can directly show that

minimize
A`

ε2(Ṽ`) subject to Ṽ` = TSA` and A>` A` = I`

⇐⇒minimize
A`

tr(V>k Φ>ΦVk)− tr(A>` T>SΦ>ΦTSA`) subject to A>` A` = I`.

Since S = ΦTS and KS = T>SΦ>ΦTS ,

VS,` = argmin
A`

tr(V>k Φ>ΦVk)− tr(A>` T>SΦ>ΦTSA`) subject to A>` A` = I`,

C.6 The Proof of Remark 1

C.6.1 The Kernel K-means Sampling

In this section, we insist that kernel K-means sampling for Nyström methods can in-
duce more accurate approximation rather than normal K-means sampling (Zhang & Kwok,
2010). To show that, we will provide theoretical analysis of kernel K-means sampling for
Nyström methods, and compare it with analysis of normal K-means sampling for standard
Nyström method.

The normal K-means sampling (Zhang & Kwok, 2010) is heuristically good, but its
motivation is weak due to ignoring kernel function κ(xi,xj) for computing landmark points
in sampling step, even if the final goal is computing an approximate kernel matrix. In
addition, suggested analysis displayed in Proposition 3 does not show any connection to the
optimal error ‖K−Kk‖F for rank-k.

Proposition 3. (Zhang & Kwok, 2010) Given the original dataset X defined in Section 2,
suppose that a clustering result from normal K-means on dataset X is represented by its
centroids zj =

∑
i βijxi = Xβj, where βj is the j-th L1 cluster membership vector such that

1 =
∑

i βij. By using βj, if we set ` sample vectors for standard Nyström method as wj =
Φβj for j = 1, ..., `, where ` = K, then the error of the standard Nyström approximation is
bounded by

‖K− K̃nys‖F ≤ 4n1

√
CκXKn1D + CκXKn1D‖K†W ‖F ,

where ni is the number of instances in i-th cluster, n1 = maxi |ni|, c(i) = argminj=1,2,...,K ‖xi−
zj‖, D is the normal K-means cost s.t. D =

∑n
i=1 ‖xi−zc(i)‖22, and CκX is the unknown con-

stant for the given kernel function κ s.t. (κ(xa,xb)−κ(xc,xd))
2 ≤ CκX ‖xa−xc‖22+‖xb−xd‖22.

Now, we show why kernel K-means sampling for Nyström methods is able to induce a
small approximation error. First, we can easily show that the cost of kernel K-means is
(ε2(ṼK) + tr(K−Kk)), and provide Lem 8.
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Lemma 8. Let columns of ṼK ∈ Rn×K be L2 normalized membership vectors. Then ṼK

satisfies the condition Ṽ>KṼK = IK , and the objective of kernel K-means is minimizing the
ε2(ṼK) defined in Lem 4 for k = K.

Proof. It is well known that objective of kernel K-means is

minimize
ṼK

tr(K)− tr(ṼKΦ>ΦṼK), (18)

where columns of ṼK ∈ Rn×K are L2 normalized membership vectors. Since tr(K) is a
constant for the given kernel matrix K, we can also consider the ε2(ṼK) as its objective
function.

Thus, if the cost of kernel K-means is low, then kernel K-means sampling will induce
small ε2(ṼK) and ε2(Ṽk). Using Lem 7, Lem 8 and Thm 3, we prove that if we consider
L2 normalized membership vector ṼK of kernel K-means of a low cost and set W = ΦṼk

for Nyström methods, then the approximation error will be small.

Corollary 3. Suppose that the k-th eigengap γk is nonzero given K. Assume that given
the cost of kernel K-means is (ε2 + tr(K −Kk)), and columns of ṼK are L2 normalized
membership vector of given the clustering. If we set ` = K and W = ΦṼK , then the
standard and one-shot Nyström methods induce the NRE and the MRE as

NRE(Ũk) ≤ NRE(Uk) +

√
2ε2
γk

‖K− K̃k‖F ≤ ‖K−Kk‖F +

√
2ε2
γk

tr(K).

Remark 3. Our analysis urges that L2 normalized membership vectors should be set as
ṼK for W = ΦṼK instead of L1 normalized membership vectors. In fact, using L2 or
L1 normalized membership does not affect the one-shot Nyström approximation, however it
brings out the difference in standard Nyström method.

Remark 4. By Lem 8 and Cor 3, kernel K-means algorithm is suited for minimizing
the ε2 to reduce the error of the Nyström methods. If we consider L2 membership vec-
tors of the normal K-means, then the normal K-means could be considered as approximate
kernel K-means sampling, since its objective function tr(K) − tr(ṼKX>XṼK) is simi-
lar with Eqn (18), however it does not apply kernel function. Thus, kernel K-means for
Nyström methods may induce more accurate approximations rather than normal K-means
for Nyström methods, except that both of their clustering results are similar, i.e., kernel
function is ineffective.

Remark 5. Our analysis is distinct from the work suggested by Zhang & Kwok (2010),
First, our proposed error bounds in Cor 3 include the optimal error term and can converge
to the optimum for any rank k, but the other can not. Second, there is also a difference
between approaches for using the cluster structure. For example, suppose that we have the
same clustering result from normal K-means. Then, based on our analysis, we prefer to use
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L2 membership vectors of clustering for obtaining ṼK and W = ΦṼK , and construct C
and KW by using W = ΦṼK . However, the other method uses the centroids of clustering
to directly compute C and KW by applying kernel function κ(·, ·). The latter is fast, but
the former can be more accurate. To resolve the scalability issue, we can use scalable kernel
K-means.

C.6.2 The Leverage Score Sampling

In this section, our goal is showing that leverage score sampling may induce a short subspace
distance PE(Vk, Ṽk), consequently a small approximation error from Nyström methods.

The i-th leverage score of the columns of K for rank-k is defined as

levi = (VkV
>
k )(i,i),

which is the i-th diagonal element of VkV
>
k , where columns of Vk ∈ Rn×k are the true k

eigenvectors of K. Since the leverage scores are squared L2 norm of each row of Vk, if we
consider Ṽk which consists of k vectors of row indices, then we can provide an alternative
form of PE(Vk, Ṽk) by using leverage scores.

Lemma 9. Let columns of Vk be the true k eigenvectors of K and columns of Ṽk be
vectors of row indices corresponding to index set I, where |I| = k. Then, PE(Vk, Ṽk) can
be characterized by leverage scores

PE(Vk, Ṽk) =

√
k −

∑
i∈I

levi, (19)

where levi be the i-th leverage score.

Proof. Given Ṽk, PE(Vk, Ṽk) = ‖Vk − ṼkṼ
>
k Vk‖F . Since columns both of Vk and Ṽk

are orthonormal,

PE2(Vk, Ṽk) = ‖Vk − ṼkṼ
>
k Vk‖2F = tr(Ik − Ṽ>k VkV

>
k Ṽk).

Therefore, PE(Vk, Ṽk) =
√
k −

∑
i∈I levi.

Now we provide directly Cor 4, which states that the upper bounds of approximation
errors induced by Nyström methods from using any row (or column) index sampling can be
characterized by sum of leverage scores.

Corollary 4. Let Ṽ` be vectors of row indices corresponding to index set J where |J | = `,
and Ṽk be a submatrix which consists of k columns of Ṽ` corresponding to index set I of
I ⊂ J . If we set input vectors for the standard and one-shot Nyström methods as W = ΦṼ`,
then

NRE(Ũk) ≤ NRE(Uk) +

√
2λ1(K)(k −

∑
i∈I levi)

γk

‖K− K̃k‖F ≤ ‖K−Kk‖F +

√
2λ1(K)(k −

∑
i∈I levi)

γk
tr(K).
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Remark 6. To reduce upper bounds both of the NRE(Ũk) and the ‖K−K̃k‖F in Cor 4, the
probability of sampling indices has to induce a low expected value of maxI⊂J(k−

∑
i∈I levi),

or equivalently a high expected value of maxI⊂J
∑

i∈I levi. The simple idea which leads
to high E[maxI⊂J(k −

∑
i∈I levi)] is the leverage score sampling which selects indices for

rank-k approximation with probability pi = levi
k . Thus, the leverage score sampling has an

effect which reduces the expectation of minṼk
PE(Vk, Ṽk), and may induce a small error of

Nyström approximation.

18


