A. Proofs

A.1. Proof of Theorem 1

Let $R=\left\{(i, j): Y_{i j}^{*}=b_{1}\right\}$. Let \mathcal{P}_{R} be the projection operator on matrices such that $\left(\mathcal{P}_{R} Z\right)_{i j}=Z_{i j}$ if $(i, j) \in R$ and $\left(\mathcal{P}_{R} Z\right)_{i j}=0$ otherwise.
Recall that $Y^{*}=U S V^{\top}$ where $U=U_{C} U_{B}$ and $V=$ $V_{C} V_{B}$. We use the index p_{i} to refer to the cluster to which node i belong. Note that

$$
\begin{align*}
& \left(U U^{\top}\right)_{i j}=\frac{\left\langle U_{B}^{p_{i}}, U_{B}^{p_{j}}\right\rangle}{\sqrt{K_{p_{i}} K_{p_{j}}}} \leq \frac{u_{1}}{K} \tag{2}\\
& \left(V V^{\top}\right)_{i j}=\frac{\left\langle V_{B}^{q_{i}}, V_{B}^{q_{j}}\right\rangle}{\sqrt{L_{q_{i}} L_{q_{j}}}} \leq \frac{u_{2}}{L} \tag{3}
\end{align*}
$$

and

$$
\begin{equation*}
\left(U V^{\top}\right)_{i j}=\frac{\left\langle U_{B}^{p_{i}}, V_{B}^{q_{j}}\right\rangle}{\sqrt{K_{p_{i}} L_{q_{j}}}} \leq \max \left\{\frac{u_{1}}{K}, \frac{u_{2}}{L}\right\} \tag{4}
\end{equation*}
$$

Furthermore, if U_{B} is orthogonal, we have $\left(U U^{\top}\right)_{i j}=$ $\frac{1}{K_{p_{i}}}$ if $p_{i}=p_{j}$ and $\left(U U^{\top}\right)_{i j}=0$ otherwise. Similarly, if V_{B} is orthogonal, we have $\left(V V^{\top}\right)_{i j}=\frac{1}{L_{q_{i}}}$ if $q_{i}=q_{j}$ and $\left(V V^{\top}\right)_{i j}=0$ otherwise.
Define the projection operators

$$
\begin{equation*}
\mathcal{P}_{T} Z:=U U^{\top} Z+Z V V^{\top}-U U^{\top} Z V V^{\top} \tag{5}
\end{equation*}
$$

and

$$
\mathcal{P}_{T^{\perp}} Z:=Z-\mathcal{P}_{T} Z
$$

For any matrix X such that $\|X\| \leq \lambda, U V^{\top}+\frac{1}{\lambda} \mathcal{P}_{T^{\perp}} X$ is a subgradient of $\|\cdot\|_{*}$ at Y^{*}. For any feasible Y, we therefore have

$$
\|Y\|_{*} \geq\left\|Y^{*}\right\|_{*}+\left\langle U V^{\top}+\frac{1}{\lambda} \mathcal{P}_{T^{\perp}} X, Y-Y^{*}\right\rangle
$$

which gives
$\left\langle X, Y^{*}-Y\right\rangle+\lambda\left(\|Y\|_{*}-\left\|Y^{*}\right\|_{*}\right) \geq\left\langle\mathcal{P}_{T} X-\lambda U V^{\top}, Y^{*}-Y\right\rangle$.
Lemma 1. Suppose that B is full-rank. For any $n_{1} \times n_{2}$ matrix Z, we have

$$
\begin{align*}
\left(\mathcal{P}_{T} Z\right)_{i j}= & \frac{1}{K_{p_{i}}} \sum_{i^{\prime} \in C_{p_{i}}} Z_{i^{\prime} j}+\sum_{t=1}^{n_{2}} \frac{\left\langle V_{B}^{q_{t}}, V_{B}^{q_{j}}\right\rangle}{\sqrt{L_{q_{t}} L_{q_{j}}}} Z_{i t} \\
& -\frac{1}{K_{p_{i}}} \sum_{i^{\prime} \in C_{p_{i}}}\left(\sum_{t=1}^{n_{2}} \frac{\left\langle V_{B}^{q_{t}}, V_{B}^{q_{j}}\right\rangle}{\sqrt{L_{q_{t}} L_{q_{j}}}} Z_{i^{\prime} t}\right) \tag{7}
\end{align*}
$$

if $r_{1} \leq r_{2}$ and

$$
\begin{align*}
\left(\mathcal{P}_{T} Z\right)_{i j}= & \sum_{t=1}^{n_{1}} \frac{\left\langle U_{B}^{p_{i}}, U_{B}^{p_{t}}\right\rangle}{\sqrt{K_{p_{i}} K_{p_{t}}}} Z_{t j}+\frac{1}{L_{q_{j}}} \sum_{j^{\prime} \in D_{q_{j}}} Z_{i j^{\prime}} \\
& -\frac{1}{L_{q_{j}}} \sum_{j^{\prime} \in D_{q_{j}}}\left(\sum_{t=1}^{n_{1}} \frac{\left\langle U_{B}^{p_{i}}, U_{B}^{p_{t}}\right\rangle}{\sqrt{K_{p_{i}} K_{p_{t}}}} Z_{t j^{\prime}}\right) \tag{8}
\end{align*}
$$

if $r_{2} \leq r_{1}$.
Proof. By the assumption that B is full rank, it has to be that either U_{B} is $r_{1} \times r_{1}$ orthogonal (when $r_{1} \leq r_{2}$) or V_{B} is $r_{2} \times r_{2}$ orthogonal (when $r_{2} \leq r_{1}$). Suppose $r_{1} \leq r_{2}$, then we obtain (7) from (2), (3) and (5). Similarly, for the case when $r_{2} \leq r_{1}$, we obtain (8).

Lemma 2. With probability at least $1-n^{-\beta}$ the followings hold:

$$
\begin{equation*}
\|W-\mathbb{E} W\| \leq \lambda \tag{9}
\end{equation*}
$$

and for all i, j

$$
\begin{equation*}
\left|\left(\mathcal{P}_{T}(W-\mathbb{E} W)\right)_{i j}\right| \leq \lambda \max \left\{\frac{u_{1}}{K}, \frac{u_{2}}{L}\right\} \tag{10}
\end{equation*}
$$

where

$$
\lambda=c_{1}(b \beta \log n+\sqrt{\beta V n \log n})
$$

Proof. For (9), consider $W-\mathbb{E} W$ as the sum of independent, zero-mean random matrices:

$$
W-\mathbb{E} W=\sum_{i, j} X_{i, j}
$$

where

$$
X_{i, j}=W_{i j} e_{i} e_{j}^{\top}-\mathbb{E} W_{i j} e_{i} e_{j}^{\top}
$$

and e_{i} denotes the i-th vector of the standard basis. Note that

$$
\left\|X_{i, j}\right\| \leq 2 b \quad \forall i, j
$$

and

$$
\max \left\{\left\|\sum_{i, j} \mathbb{E} X_{i j} X_{i j}^{\top}\right\|,\left\|\sum_{i, j} \mathbb{E} X_{i j}^{\top} X_{i j}\right\|\right\} \leq V n
$$

By applying matrix Bernstein inequality, we obtain (9).
For (10), let $Z=W-\mathbb{E} W$ be a zero-mean random matrix where we have $\left|Z_{i j}\right| \leq 2 b, \forall(i, j)$. Suppose $r_{1} \leq r_{2}$, then $\left(\mathcal{P}_{T} Z\right)_{i j}$ is given by (7). Note that $u_{1}=1$ in this case. The first summation term in (7) is the average of $K_{p_{i}}$ independent random variables $Z_{i^{\prime} j}$. By applying standard Bernstein inequality, we have that

$$
\left|\frac{1}{K_{p_{i}}} \sum_{i^{\prime} \in C_{p_{i}}} Z_{i^{\prime} j}\right| \leq c \frac{b \beta \log n+\sqrt{K V \beta \log n}}{K} \leq \lambda \frac{u_{1}}{K}
$$

with probability at least $1-n^{-\beta}$. The second summation term in (7) is the sum of n_{2} zero-mean random variables \tilde{Z}_{t} with

$$
\tilde{Z}_{t}=\frac{\left\langle V_{B}^{q_{t}}, V_{B}^{q_{j}}\right\rangle}{\sqrt{L_{q_{t}} L_{q_{j}}}} Z_{i t}
$$

We have that $\left|\tilde{Z}_{t}\right| \leq 2 \frac{u_{2} b}{L}$ and $\operatorname{Var} \tilde{Z}_{t} \leq \frac{u_{2}^{2}}{L^{2}} V$. Again, by standard Bernstein inequality, we have that

$$
\left|\sum_{t=1}^{n_{2}} \tilde{Z}_{t}\right| \leq c \frac{u_{2} b \beta \log n+u_{2} \sqrt{\beta V n_{2} \log n}}{L} \leq \lambda \frac{u_{2}}{L}
$$

with probability at least $1-n^{-\beta}$. The last summation term of (7) can be bounded similarly by noting that the magnitude of the average is no larger than the magnitude of the individual terms.

The case of $r_{2} \leq r_{1}$ can be bounded similarly for each corresponding term of (8). The proof is completed by applying a union bound over all i, j.

We show that with probability at least $1-n^{-\beta}$ the following holds for all feasible $Y \neq Y^{*}$:

$$
\left\langle W, Y^{*}-Y+\lambda\left(\|Y\|_{*}-\left\|Y^{*}\right\|_{*}\right)\right\rangle>0
$$

which implies that Y^{*} is the unique solution of program (1):

$$
\begin{aligned}
&\left\langle W, Y^{*}-Y\right\rangle+\lambda\left(\|Y\|_{*}-\left\|Y^{*}\right\|_{*}\right) \\
&=\left\langle\mathbb{E} W, Y^{*}-Y\right\rangle+\left\langle W-\mathbb{E} W, Y^{*}-Y\right\rangle+\lambda\left(\|Y\|_{*}-\left\|Y^{*}\right\|_{*}\right) \\
& \geq \min \left\{E_{1}, E_{0}\right\}\left\|Y^{*}-Y\right\|_{1}+\left\langle W-\mathbb{E} W, Y^{*}-Y\right\rangle+ \\
& \lambda\left(\|Y\|_{*}-\left\|Y^{*}\right\|_{*}\right) \\
& \stackrel{(a)}{\geq} \min \left\{E_{1}, E_{0}\right\}\left\|Y^{*}-Y\right\|_{1}+ \\
&\left\langle\mathcal{P}_{T}(W-\mathbb{E} W)-\lambda U V^{\top}, Y^{*}-Y\right\rangle \\
& \stackrel{(b)}{\geq} \min \left\{E_{1}, E_{0}\right\}\left\|Y^{*}-Y\right\|_{1}-\lambda \max \left\{\frac{u_{1}}{K}, \frac{u_{2}}{L}\right\}\left\|Y^{*}-Y\right\|_{1} \\
&=\left(\min \left\{E_{1}, E_{0}\right\}-\lambda \max \left\{\frac{u_{1}}{K}, \frac{u_{2}}{L}\right\}\right)\left\|Y^{*}-Y\right\|_{1} \\
&> 0
\end{aligned}
$$

where we apply (6) and (9) in (a). In (b), we apply (10) and (4).

A.2. Proof of Theorem 2

We shall apply Theorem 1 and establish an upper-bound for $\max \left\{u_{1} / K, u_{2} / L\right\}$.

Since $r_{1} \leq r_{2}, B$ is at most rank- r_{1}. By Theorem 1.1 of (Rudelson \& Vershynin, 2009), the smallest singular value of B is at least $c_{1}\left(\sqrt{r_{2}}-\sqrt{r_{1}-1}\right)$ for some universal constant $c_{1},\left(0<c_{1}<1\right)$ with probability at least $1-\frac{1}{2} n^{-\beta}$ provided $r_{1} \geq \frac{\beta \log r_{1}}{c}$. This implies that B is full rank with $\operatorname{rank}(B)=r_{1}$.

Recall that we defined $U_{B} S_{B} V_{B}^{\top}$ as an SVD of $\mathcal{K} B \mathcal{L}$. Since \mathcal{K} and \mathcal{L} do not change the rank of B, we have that U_{B} is orthogonal and therefore $u_{1}=1$. Furthermore, the smallest singular value of S_{B} is at least $c_{1} \sqrt{K L}\left(\sqrt{r_{2}}-\right.$ $\left.\sqrt{r_{1}-1}\right)$.
We upper-bound u_{2} by using the lower-bound on the singular value of $\mathcal{K} B \mathcal{L}$. First, note that the (p, q)-entry of $\mathcal{K} B \mathcal{L}$ is either $+\sqrt{K_{p} L_{q}}$ or $-\sqrt{K_{p} L_{q}}$, we therefore have

$$
\begin{aligned}
n_{1} L_{q} & =\sum_{p=1}^{r_{1}} K_{p} L_{q} \\
& =\left\|(\mathcal{K} B \mathcal{L}) e_{q}\right\|^{2} \\
& =\left\|U_{B} S_{B} V_{B}^{\top} e_{q}\right\|^{2} \\
& =\left\|S_{B} V_{B}^{\top} e_{q}\right\|^{2} \\
& \geq c_{1}^{2} K L\left(\sqrt{r_{2}}-\sqrt{r_{1}-1}\right)^{2}\left\|V_{B}^{q}\right\|^{2}
\end{aligned}
$$

Define γ such that $L=\gamma K$. Continuing from the above, we have

$$
\begin{aligned}
\left\|V_{B}^{q}\right\|^{2} & \leq \frac{n_{1} L_{q}}{c_{1}^{2} K L\left(\sqrt{r_{2}}-\sqrt{r_{1}-1}\right)^{2}} \\
& \leq \frac{r_{1}}{c_{1}^{2} \phi \psi\left(\sqrt{r_{2}}-\sqrt{r_{1}-1}\right)^{2}} \\
& \stackrel{(a)}{\leq} \frac{2 \gamma}{c_{1}^{2} \phi \psi\left(\sqrt{\frac{\psi n_{2}}{n_{1}}}-\sqrt{\gamma}\right)^{2}}
\end{aligned}
$$

where in (a) we use the relationship $r_{2} \geq \frac{\psi n_{2}}{L}=\frac{\psi n_{2}}{\gamma K} \geq$ $\frac{\psi n_{2}}{\gamma n_{1}} r_{1} \geq \frac{\psi n_{2}}{\gamma n_{1}}\left(r_{1}-1\right)$ and that $\frac{r_{1}}{r_{1}-1} \leq 2$. Since the above bound for $\left\|V_{B}^{q}\right\|^{2}$ holds for all q, we now have

$$
\begin{aligned}
\frac{u_{2}}{L}=\frac{u_{2}}{\gamma K} & \leq \frac{1}{K} \min \left\{\frac{1}{\gamma}, \frac{2}{c_{1}^{2} \phi \psi\left(\sqrt{\frac{\psi n_{2}}{n_{1}}}-\sqrt{\gamma}\right)^{2}}\right\} \\
& \leq\left(\frac{8 n_{1}}{c_{1}^{2} \phi \psi^{2} n_{2}}\right) \frac{1}{K}
\end{aligned}
$$

where the last inequality can be obtained by considering the case of $\gamma<\frac{c_{1}^{2} \phi \psi^{2} n_{2}}{8 n_{1}}$ and $\gamma \geq \frac{c_{1}^{2} \phi \psi^{2} n_{2}}{8 n_{1}}$ respectively.
Applying Theorem 1 with failure probability $\frac{1}{2} n^{-\beta}$ and a union bound completes the proof.

A.3. Proofs of Theorem 3 and Theorem 4

We refer the reader to (Lim et al., 2014) for the proofs of the analogous results in clustering. Theorem 3 corresponds to Theorem 2 and Corollary 1 in (Lim et al., 2014), while Theorem 4 corresponds to Theorem 4 in (Lim et al., 2014). An additional element of Theorem 3 in the present paper is the introduction of u_{1} and u_{2}. These present no difficulty by simply observing their respective range $\frac{1}{r_{1}} \leq u_{1} \leq 1$ and $\frac{1}{r_{2}} \leq u_{2} \leq 1$.

