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Abstract
The Cross Domain Collaborative Filtering
(CDCF) exploits the rating matrices from mul-
tiple domains to make better recommendations.
Existing CDCF methods adopt the sub-structure
sharing technique that can only transfer linearly
correlated knowledge between domains. In this
paper, we propose the notion of Hyper-Structure
Transfer (HST) that requires the rating matrices
to be explained by the projections of some more
complex structure, called the hyper-structure,
shared by all domains, and thus allows the non-
linearly correlated knowledge between domains
to be identified and transferred. Extensive exper-
iments are conducted and the results demonstrate
the effectiveness of our HST models empirically.

1. Introduction

Collaborative Filtering (CF) (Hofmann, 2004; Hu et al.,
2008; Koren et al., 2009) is a major technique used by the
recommender systems to find out items interesting to a user.
The problem of CF can be defined as follows: given a rat-
ing matrix X ∈ Rn×m whose each entry Xi,j denotes
either the rating (or other similar feedback) from the user
i to the item j if i has interacted with j or blank other-
wise, fill the blanks in X so that a recommender systems
can recommend to the user i those items having the top
filled/predicted values in the row Xi,:. One common ap-
proach to CF is to approximate X by a dense matrix Y
whose entries can be explained by some common knowl-
edge such as latent factors. Traditionally, CF methods fo-
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cus on items in one domain. For example, a video-rental
recommender system like Netflix may regard items as all
its available videos. In practice, the rating matrix in a sin-
gle domain can be too sparse to learn satisfactory latent
factors (Su & Khoshgoftaar, 2009). Furthermore, with the
popularity of e-commerce systems (e.g., Amazon, TripAd-
visor, etc.) and social media (e.g., Facebook, Twitter, etc.),
users can provide feedbacks to items in multiple domains
(e.g., books, DVDs, music, electronics, etc. in Amazon).
It is desirable to have a cross-domain recommender system
that is able to recommend items in different domains to a
user, helping cross-selling the products and/or discovering
new customers.

The above motivates recent studies on the Cross Domain
Collaborative Filtering (CDCF) (Li, 2011) problem: given
d rating matrices X(k) ∈ Rn(k)×m(k)

, 1 ≤ k ≤ d, each
corresponding to n(k) users1 and m(k) items in a specific
domain k, fill the blanks in X(k)’s jointly. The CDCF
methods are expected to improve the quality of recommen-
dations because blanks in each X(k) can be predicted based
on not only the knowledge/latent factors in that domain,
but also the correlated knowledge transferred from other
domains. The correlation is less obscured by the sparsity
since it can be inferred from multiple X(k)’s. Further-
more, with plenty domains available in an e-commerce sys-
tem and social media, CDCF methods are also expected to
further improve the quality of recommendations as d in-
creases.

However, we find that in practice, existing CDCF meth-
ods usually give limited improvement in performance, and
sometimes, adding new domains even results in worse per-
formance. This is mainly due to how the correlation be-
tween domains is captured. To transfer knowledge be-
tween domains, most existing CDCF methods employ a

1Users in different domains can overlap.



Non-Linear Cross-Domain Collaborative Filtering via Hyper-Structure Transfer

technique called the sub-structure sharing which factorizes
each Y (k) into multiple matrices and in the meanwhile re-
quires some of them, denoted as S(k), to be shared by all
domains. For example, it is common to tri-factorize each
Y (k) ∈ Rn(k)×m(k)

into Y (k) = U (k)B(k)V (k)>, where
U (k) ∈ Rn(k)×p(k)

is a user-cluster matrix whose each
entry U

(k)
i,s denotes how much the user i belongs to the

user-cluster/latent factor s, V (k) ∈ Rm(k)×q(k)

is an item-
cluster matrix whose each entry V

(k)
j,t denotes how much

the item j is assigned to the item-cluster t, and B(k) ∈
Rp(k)×q(k)

a rating pattern matrix (or codebook) describ-
ing the linear relationship between clusters in U (k) and
V (k). Then, to transfer knowledge, one can either share
the S(k) = {U ,V } (Pan et al., 2010) or S(k) = B (Gao
et al., 2013b;a; Li et al., 2009; Long et al., 2012) across all
domains. The shared S(k) captures the correlation between
domains and is used as a bridge via which the knowledge
in Y (k)\S(k) can be transferred. But sharing S(k) also
create linear dependency between all Y (k)\S(k)’s. Con-
sider S(k) = {U ,V }. For any two domains k and l,
we have Y (k) = UB(k)V > and Y (l) = UB(l)V >.
By Y (k)V (B(k))−1 = U = Y (l)V (B(l))−1, we obtain
B(k) = LB(l) for some L ∈ Rp×p. That is, Y (k)\S(k) =

B(k) and Y (l)\S(l) = B(l), which denote the knowledge
to be transferred, are linearly dependent with each other.
This linear dependency exists in most current CDCF meth-
ods. Therefore, only the linearly correlated knowledge be-
tween domains can be identified and transferred.

In the real world, the correlation of knowledge between do-
mains is usually non-linear. For example, consider two
domains “books” and “movies.” Suppose the ratings in
X(movies) in the “movies” domain can be explained by
(but not limited to) a latent factor f (movies)

hit denoting the
“box office hit,” and the ratings in X(books) in the “books”
domain can be explained by two latent factors f

(books)
visibility

and f
(books)
curiosity representing the “visibility of the book”

and “user’s curiosity about the story” respectively. The
f

(movies)
hit and f

(books)
visibility may be linearly correlated, as the

more a movie adapted from a book is played, the more the
original book is visible to users. If so, these two latent
factors and their correlation will be captured by Y (movies)

and Y (books) using existing CDCF methods. Neverthe-
less, it is likely that the f

(movies)
hit and f

(books)
curiosity are non-

linearly correlated, as users may be highly curious about
the story in the original book either when the box office
record of the adapted movie is high due to the public praise
of screenplay, or when the box office record is low due to
the criticism of unfaithful adaptation. In this case, the fac-
tor f

(books)
curiosity will be missed by existing CDCF methods,

resulting in degraded Y (books).

Figure 1. Different Y (k)’s share the projections of a hyper-
structure H. So, a pattern (e.g., the blue line) in some projection
can be non-linearly dependent with that of another (e.g., the green
curve).

In this paper, we propose a new knowledge transfer
technique for CDCF, called the Hyper-Structure Transfer
(HST), that captures the non-linear correlation of knowl-
edge between domains. As in the sub-structure sharing,
HST factorizes each Y (k) into multiple matrices. But in-
stead of fixing S(k) across domains, HST requires S(k)

in each domain to be a projection of some more complex
structureH, called the hyper-structure, shared between do-
mains. HST enables the knowledge transfer by usingH as a
bridge. Furthermore, since S(k)’s of different domains are
projections of a more complex structure, they can be non-
linearly dependent with each other, and so are the domain-
specific matrices Y (k)\S(k)’s. Figure 1 shows an example.
Hence, HST allows the non-linearly correlated knowledge
between domains to be identified and transferred.

HST brings new challenges: how to define H and the pro-
jections? And how to solve Y (k)’s (and H) using the
sparse ratings in X(k)’s? We study these problems in depth
and propose an HST model, called the Minimal Orthogo-
nal Tensor Approximation with Residuals (MOTAR) that
can accommodate arbitrarily complex hyper-structure in
the tensor form. We then show that the MOTAR objective
can be transformed into a Canonical Polyadic (CP) decom-
position problem (Kiers et al., 1999; Kolda & Bader, 2009;
Bader & Kolda, 2006) of tensors and solved using existing
techniques. Extensive experiments are conducted on both
real and synthetic datasets and the results show that MO-
TAR can achieve up to 50% improvement in prediction ac-
curacy as compared with the state-of-the-art CDCF meth-
ods. In addition, MOTAR always give better performance
when taking into account new domains (i.e., increasing d).

Further Related Work. In addition to the studies men-
tioned above, there are CDCF methods (Cao et al., 2010;
Shi et al., 2011; Zhang et al., 2012) that model Y (k) using
random variables. In these models, some random variables
are assumed to be identical in distribution across domains,
thus creating linear dependency, in probability, between the
rest variables.
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To exploit the data in large recommender systems (such
as Amazon and Facebook) where users are allowed to
rate different items in different domains/categories, some
extensions of the above factorization methods are pro-
posed, including the TrAnsfer Learning for MUltiple Do-
mains (TALMUD) (Moreno et al., 2012), the extended
Cluster-level Latent Factor Model (CLFM) (GAO ET AL.,
2013B;A) and the Cross-Domain Triadic Factorization
(CDTF) (Hu et al., 2013). These work target d > 2.

In this paper, we focus on CDCF across multiple domains
(d > 2). We do not assume the availability of any side in-
formation (e.g., tags (Chen et al., 2013), implicit feedbacks
(Moreno et al., 2012), etc.). We also make no assumption
about the distributions of latent representation of users and
items as in (Cao et al., 2010; Shi et al., 2011; Zhang et al.,
2012).

2. Challenges and Evidence

In this section, we give evidence of limitations of existing
CDCF methods.

2.1. Linear Knowledge Transfer

Despite the correlation of knowledge between domains is
usually non-linear, existing CDCF methods can only trans-
fer the linearly correlated knowledge between domains.
Thus, they may give little help or even result in negative
transfer (Rosenstein et al., 2005), where the availability
of new domains degrades performance. Traditional stud-
ies (Argyriou et al., 2008; Bakker & Heskes, 2003; Ben-
David & Schuller, 2003) aim to lower the chance of neg-
ative transfer by 1) grouping the domains such that the
domains in a group are more likely to have transferable
knowledge, and then 2) performing separate learning task
for each group. However, this significantly limits the data
available in each group, and the transferability of knowl-
edge inside each group can still be limited by the linearity.

To give a clear case of the above limitation, we con-
duction experiments using DBLP citation dataset (Tang
et al., 2008) and MovieLens rating dataset2 to demon-
strate the non-linearity of the correlation between domains.
We measure the non-linearity by (1) tri-factorizing each
Y (k) into Y (k) = U (k)B(k)V (k)> independently to ob-
tain the overall approximation score a =

∑d
k=1 ‖X

(k) −
U (k)B(k)V (k)>‖2F where ‖ · ‖F denotes the Frobenius
norm, and (2) tri-factorizing Y (k)’s jointly by sharing
B(k) = B to obtain another approximation score b, and
(3) derive a ratio, named Non-Linearity Ratio (NLR), by
(b − a)/b. The larger the NLR, the more approximation
error is introduced due to the shared linear explanation B

2http://grouplens.org/datasets/movielens/.

in step (2), implying that the correlation between datasets
tends to be zero or non-linear.

The NLRs of domain 1 over different domain pairs3 in the
DBLP and MovieLens datasets are summarized in Table
1. As we can see, the NLRs are approximately between
[0.34 ∼ 0.5] in all domain pairs, which are very high.

2.2. Maladaptive Bridge

The above limitation can be amplified by a suboptimal
bridge. Existing CDCF methods across multiple domains
(d > 2) rely on either the pairwise or all-intersectional
extensions of the sub-structure sharing technique. In the
former (e.g, TALMUD (Moreno et al., 2012)), each pair
(Y (k),Y (l)) shares a bridge that can be different from that
of the other pairs; while in the latter (e.g., CDTF (Hu et al.,
2013) and extended CLFM (Gao et al., 2013a)), all Y (k)’s
share the same bridge. We argue that neither of the bridges
in these two extensions is good enough to capture the cor-
relation between multiple domains. Consider four domains
“books,” “movies,” “music,” and “electronics.” Suppose
there is a pattern that users who have watched a movie and
listened to its soundtrack (showing interests in related prod-
ucts) are usually welling to buy its original book also. Note
that this pattern involves only partial domains (no “elec-
tronics”), and it cannot be captured by the above bridges,
no matter how dense the rating matrices X(k)’s are, be-
cause the bridges of pairwise extensions are too weak to
capture any correlation between more than two domains,
yet the bridge of all-intersectional extensions are too strong
to capture any correlation between partial domains. The
strength of the bridge should be adaptive to capture the cor-
relation between any domain combination.

To show the impacts of maladaptive bridges to perfor-
mance, we test the error rates of existing CDCF exten-
sions to multiples domains against different d’s, as shown
in Figures 4 and 5. In TALMUD, the decrease in error
rate marginalizes quickly as d grows. Since only the cor-
relation between domain pairs can be captured, this shows

3The DBLP citation dataset contains 180,640 authors (users),
141,507 papers (items) and 1,495,081 citation relations. Each pa-
per is associated with authors, year, venue, and citations. We
use the categories listed in Microsoft Academic Search to divide
the venues into different domains: Algorithm & Theory (A&T),
Data Mining (DM), Databases (DB), Distribution & Parallel
Computing (D&PC), Human-Computer Inter- action (HCI), Ma-
chine Learning & Pattern Recognition (ML&PR), Artificial Intel-
ligence (AI), Natural Language & Speech (NL&S), Programming
Language (PL), Software Engineering (SE), World Wide Web
(WWW). The MovieLens rating dataset contains 69,878 users,
10,677 movies (items), and 10,000,054 ratings. We categorize
the movies into the following domains: Action (ACT), Adven-
ture (ADV), Animation (ANI), Children (CHI), Comedy (COM),
Crime (CRI), Drama (DRA), Horror (HOR), Sci-Fi (S&F), and
Thriller (THR).
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that there are many patterns that involve more than two do-
mains, and these patterns are missed during the knowledge
transfer. We can also see that the all-intersectional meth-
ods (CDTF and extended CLFM) may lead to the nega-
tive transfer when adding new domains. Since these meth-
ods only capture the correlation between all domains, this
shows that a domain can be correlated to only parts of the
rest domains. So, adding a new domain prevents the all-
intersectional correlation between the rest domains from
being captured.

Given the above limitations, it is crucial to have a new
CDCF technique that is able to transfer non-linearly corre-
lated knowledge between domains, via an adaptive bridge.

3. Hyper-Structure Transfer

In this section, we propose the notion of Hyper-Structure
Transfer (HST) and its models that allows the non-linearly
correlated knowledge between domains to be transferred.

3.1. General Model
A general model of Hyper-Structure Transfer (HST) can be
written as:

argmin
U(k),V (k),H

L
(
U(k), V (k), H

)
,

L =
∑d

k=1

∥∥∥(X(k) −U(k) × proj(k) (H)× V (k)>
)
◦W (k)

∥∥∥2
F

,
(1)

subject to constraints U (k) ≥ O, U (k)1 = 1, V (k) ≥ O,
and V (k)1 = 1, where d is the number of participating
domains, X(k) ∈ Rn(k)×m(k)

is the rating matrix to ap-
proximate, U (k) ∈ Rn(k)×p(k)

is the user-cluster matrix
whose each entry u

(k)
i,s denote how much the user i belong

to the cluster/latent factor s, V (k) ∈ Rm(k)×q(k)

is the item-
cluster matrix,H is a high-order structure, called the hyper-
structure, whose dimension is higher than p(k)×q(k) for all
k, and proj(k)(·) is some projection map onto Rp(k)×q(k)

,
◦ is the entry-wise product, and W (k) ∈ Rn(k)×m(k)

is the
indicator matrix of X(k) whose each entry is defined as:

W
(k)
ij =

{
1, if X(k)

ij 6= 0,

0, otherwise,

and ‖ · ‖F is the Frobenius norm. Note that the hyper-
structure H is fixed across domains. Basically, HST
approximates each X(k) by a dense Y (k) = U (k) ×
proj(k) (H) × V (k)>such that they look similar at the po-
sitions where the ratings are available. Similar to the ex-
isting methods we have seen in Section 1, each Y (k) is
tri-factorized into U (k)B(k)V (k)> for some rating pattern
matrix B(k) ∈ Rp(k)×q(k)

. But instead of fixing B(k) = B
across domains, HST allows B(k)’s to be different projec-
tions ofH.

HST enables the knowledge transfer by using H as a

bridge. Furthermore, the B(k)’s can capture the non-
linearly correlation between domain. For example, suppose
in domain k there is a rating pattern that can be depicted as
a blue line in Figure 1. Suppose there is another pattern, a
curve, in domain l. Traditional CDCF methods cannot cap-
ture these patterns due to their non-linear correlation, so
any user/item clusters that can only be linked through these
patterns will be missed. On the other hand, the correlation
between these two patterns can be captured in HST by a
more complex structure—a high-order curve. Therefore,
HST can achieve better approximation.

The idea of learning from data in a space more complex
than where the original data reside has appeared in the
machine learning field. For example, a kernel machine
(Schölkopf & Smola, 2002) employs a kernel function to
lift the observed data instances (users/items) to a high-
order space (called the feature space), and then performs
the learning task in that space. However, HST differs from
the kernel machines in that the target of the lifting is not
observed (it is the unknown correlation between rating pat-
terns to be lifted). Therefore, we cannot simply pass the
correlation into the kernel function to obtain H. The pre-
cise definitions of H and the projection function remains
open.

3.2. MOTAR

The H and the projection function proj(·) in Eq. (1) can
be specified by domain experts if some priors knowledge
about the correlation is available. However, it is hard to
know all priors. Next, we present the Minimal Orthogonal
Tensor Approximation with Residuals (MOTAR), a special
case of HST that allows H to capture arbitrarily complex
correlation in the tensor form without the need for priors.
In MOTAR, theH and proj(·) are defined as

H = B ∈ Rp(1)×q(1)×···×p(d)×q(d) (2)

and

proj(k) (B)s,t =

p(l),q(l)∑
i(l)=1,j(l)=1,∀l 6=k

Bi(1),j(1),··· ,s,t,··· ,i(d),j(d)

(3)
respectively. Basically, MOTAR assumes that the hyper-
structure H is a tensor B with 2d modes, and each
proj(k) (B) ∈ Rp(k)×q(k)

is a projection of B onto some
two modes. The projections are orthogonal to each other as
they target distinct modes. By definition of proj(·) in Eq.
(3), 2d is the minimum number of modes that allows B to
be orthogonally projected onto the rating pattern matrices
in different domains, yet B is large enough to capture any
correlation (in tensor form) of arbitrarily complexity:

Theorem 1. Let C be a tensor with c modes, c > 2d, that
denotes the correlation between the ratting patterns of dif-
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ferent domains. MOTAR can capture C by letting

Bs(1),t(1),··· ,s(d),t(d) =∑
i(1),··· ,i(c−2d) Cs(1),t(1),··· ,s(d),t(d),i(1),··· ,i(c−2d) .

The above theorem can be easily proved by showing that
proj(k)(B) = proj(k)(C).

3.3. Residuals for Adaptive Bridge

When multiple domains are available (d > 2), a correla-
tion pattern may involve only partial domains (an example
is given in Section 2.2). The bridge for knowledge trans-
fer needs to be adaptive to capture the patterns involving
arbitrary domain combinations.

MOTAR has another advantage in that the bridge B defined
in Eq. (2) can be readily extended to be adaptive, by creat-
ing one extra dimension in each mode, i.e.,

B ∈ R(p(1)+1)×(q(1)+1)×···×(p(d)+1)×(q(d)+1), (4)

such that each the rating pattern matrix proj(k) (B) ∈
R(p(k)+1)×(q(k)+1) relates one extra user-cluster and one
extra item-cluster, called the residual clusters. MOTAR re-
quires the columns corresponding to the residual clusters in
the user-cluster and item-cluster matrices to be 0, i.e.,

Y (k) =
[
U (k),0

]
proj(k) (B)

[
V (k),0

]>
,

so the values of Y (k) will not be affected by the extension
of proj(k) (B). This allows the new values in proj(k) (B) to
reflect some partial structure of B that only affects the other
domains. In other words, the residual clusters in each do-
main denote “the latent factors which cannot be explained
by X(k) in this domain.” Therefore, the bridge B, which
links any combination of the user-clusters, item-clusters,
and their negation across different domains, is adaptive.

Finally, we obtain the objective of MOTAR as follows:

argmin
U(k),V (k),B

L
(
U(k), V (k), B

)
,

L =
∑d

k=1

∥∥∥∥(X(k) −
[
U(k), 0

]
proj(k) (B)

[
V (k), 0

]>)
◦W (k)

∥∥∥∥2
F

,

(5)

subject to constraints U (k) ≥ O, U (k)1 = 1, V (k) ≥ O,
and V (k)1 = 1. Note that the l1 normalization constraints
on each row of U (k) and V (k) keeps the objective well-
defined (Gu et al., 2011).

4. Objective Solving

One way to solve Eq. (5) is to randomly initialize B, and
repeat until convergence the process of updating B for each
domain k such that the proj(k)(B) lead to a better approx-
imation. However, this approach is very inefficient (either

Figure 2. An example cubicization of B over domain 1.

in space and time, and may even be infeasible) due to the
huge number of variables to solve in B in each iteration.

Instead of updating B directly in the above iterating pro-
cess, we propose updating proj(k)(B) for each domain al-
ternately to improve the overall approximation. This can
significantly reduces the number of variables to solve for
each update (from Πlp

(l)q(l) to p(k)q(k)). However, it cre-
ates another challenge: after updating proj(k)(B) in the
current iteration, how to obtain proj(l)(B) to be updated
in the next iteration? We link proj(k)(B) and proj(l)(B)
based on a key observation, as described below.

Let’s first define a cubicization of B over some domain k,
denoted by B̃(k) ∈ Rp(k)×q(k)×Πl6=kp

(l)q(l) , a 3-mode tensor
whose the first and second modes are the modes of domain
k in B and the third mode is the concatenation of the rest
modes in B, as sown in Figure 2. Note that

proj(k)(B) =
∑
h

B̃(k)

:,:,h,

where B̃(k)

:,:,h ∈ Rp(k)×q(k)

denotes the h-th slice of B̃(k)

along the third mode. By CP decomposition, we have

B̃(k)
=

∑z
r=1 ar � er � cr for some ar ∈ Rp(k)

, er ∈
Rq(k)

, cr ∈ RΠl6=kp
(l)q(l) and hyperparameter z, as shown

in Figure 3. Let A(k) = [a1, · · · ,az] ∈ Rn(k)×z , E(k) =

[e1, e2, · · · ] ∈ Rm(k)×z , and C(k) = [c1, c2, · · · ] ∈
RΠl 6=kp

(l)q(l)×z , we have B̃(k)

i,j,h =
∑z

r=1 A
(k)
i,r E

(k)
j,rC

(k)
h,r,

and we can write the h-th slice of B̃(k)
along the third mode

as
B̃(k)

:,:,h = A(k)Φ
(k)
h E(k)>, (6)

where Φ
(k)
h = diag(C

(k)
h,: ) ∈ Rz×z is a diagonal matrix.

This leads to

proj(k)(B) =
∑

h B̃
(k)

:,:,h

=
∑

h A
(k)Φ

(k)
h E(k)>

= A(k)Ψ(k)E(k)>,

(7)

where Ψ(k) =
∑

h Φ
(k)
h is diagonal.

Eq. (7) implies that, during each iteration, we can simply
update proj(k)(B) by updating A(k) and E(k). Further-
more, if we fix Ψ(k) (and Φ

(k)
h , ∀h), we can use Eq. (6) to
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Figure 3. The CP decomposition of a three-order tensor

reconstruct B and then obtain the proj(l)(B) to be updated
in the next iteration by using Eq. (7) again. The number of
variables to solve in A(k) and E(k) is much smaller than
that in B.

With the above observation, we can employ the multiplica-
tive gradient descent method (Ding et al., 2006) to update

the Ũ
(k)

= [U (k),0], Ṽ
(k)

= [V (k),0], A(k), and E(k) in
each iteration using the update rules described in Section 1
of the supplementary material.

5. Experiment

In this section, we conduct experiments over both synthetic
and real datasets to compare the performance of MOTAR
with that of the state-of-the-art CDCF techniques.

Metric. We adopt a widely used metric for the CF
problems—the Mean Absolute Error (MAE) (Su & Khosh-
goftaar, 2009)—to evaluate the prediction quality of Y (k)

MAE(Y (k);Z(k)) =
∑

Z
(k)
i,j is not blank

|Z(k)
i,j − Y

(k)
i,j |

‖Z(k)‖
,

where Z(k) ∈ Rn(k)×m(k)

denotes the ratings that are held
out from X(k) during the training process, and ‖Z(k)‖ is
the number of ratings in Z(k). The smaller the MAE, the
higher the accuracy. We hold out data by time. Specifically,
we cut the elder 90% ratings to X(k) and the later 10% to
Z(k). And we tune the parameters by randomly selecting
some ratings from X(k) as the validation set.

Baselines. We compare MOTAR with the TALMUD
(Moreno et al., 2012), CDTF (Hu et al., 2013) and CLFM
(Gao et al., 2013a). Note that the CDTF assumes the
users in different domains are identical, so we preprocess
the datasets accordingly to allow the comparison. Gener-
ally, the objectives of in existing CDCF methods (includ-
ing MOTAR) are not convex thus the solutions are subject
to local minimum. We overcome this by randomly initial-
izing the variables to solve 20 times and pick the resulting
Y (k)’s that achieve the lowest objective score. These strat-
egy works well for all the methods considered.

We employ two real datasets: the DBLP citation dataset
and the MovieLens movie rating dataset.
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Figure 4. Performance comparison over multiple domains in the
DBLP dataset.

DBLP Citation Dataset (Tang et al., 2008). The DBLP
citation dataset contains 180,640 authors (users), 141,507
papers (items) from the year 1960 to 2010. We regard
each rating X

(k)
i,j as 1 if the user i has ever cited the pa-

per j. Based on this definition, there are 1,495,081 ratings
in this datasets. We then partition these ratings into differ-
ent X(k)’s by using the categories listed in the Microsoft
Academic Search website.

MovieLens Rating Dataset.4 The MovieLens rating
dataset contains 69,878 users, 10,677 movies (items), and
10,000,054 ratings from the year 1970 to 2009. We use cat-
egories listed in its official website to divide the ratings into
different domains. Some statistics of the above datasets are
given in Table 1 of the supplementary material.

Note that some baseline methods such as CDTF require
the users from different domains to be identical. So we
prune users that give ratings in only a single domain (this
setting is in favor of baselines). Also, we observe that
users who have few publications/reviews tend to give rat-
ings to random items. With these users, all algorithms give
very poor performance because the test set contains random
pulls mostly. Therefore, we also prune users who have few
publications/reviews.

5.1. Results over Two Domains

Table 1 shows the MAEs of different CDCF methods
over different domain pairs in the DBLP and MovieLens
datasets. We randomly select 9 pairs of domains from
each of the datasets respectively and report the MAEs in
domain 1. The results show that MOTAR outperforms
the baselines in almost all cases. The last column of

4http://grouplens.org/datasets/movielens/.
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Domain 1 Domain 2 NLR of domain 1 MOTAR TALMUD CDTF CLFM
D

B
L

P
A&T DM 0.430629 0.118268 0.174754 0.181608 0.479545
A&T NL&S 0.439931 0.132746 0.252289 0.242860 0.488257

DP&C DB 0.411229 0.116443 0.388081 0.244012 0.537190
D&PC AI 0.394680 0.114169 0.428092 0.259215 0.541288

HCI DM 0.494192 0.130390 0.437423 0.316056 0.693805
HCI WWW 0.540556 0.125405 0.436462 0.280759 0.706178

NL&S AI 0.393302 0.104989 0.333125 0.189784 0.493210
NL&S ML&PR 0.379950 0.090102 0.291277 0.185565 0.491606
NL&S DB 0.413516 0.088783 0.356582 0.202629 0.498284

M
ov

ie
L

en
s

ACT COM 0.364349 0.316164 0.327645 0.494919 0.597450
ADV THR 0.464158 0.288821 0.337397 0.501841 0.622482
ANI COM 0.516600 0.306506 0.395720 0.516925 0.623446
CHI ACT 0.540419 0.304316 0.440897 0.593867 0.635377

COM ACT 0.518781 0.380733 0.402398 0.638214 0.616576
CRI THR 0.344379 0.275506 0.332996 0.480467 0.536740
DRA THR 0.430730 0.327201 0.386229 0.591035 0.628440
HOR THR 0.445017 0.254903 0.385203 0.552813 0.590041
S&F THR 0.450324 0.293761 0.397893 0.579108 0.628371

Table 1. Performance comparison over two domains.

Table 1 shows the degrees of non-linearity (mentioned
in Section 2) between different domain pairs. In gen-
eral, the degree of non-linearity between each pair of do-
mains are about 0.35~0.5, and we can see how the non-
linearity affects the performance—the higher the degree of
non-linearity, the more the MAE in the baseline methods.
This shows that the performance of existing CDCF meth-
ods are largely limited by the sub-structure sharing tech-
nique, which can only transfer linearly correlated knowl-
edge across domains. MOTAR, on the other hand, avoid
this problem by sharing the hyper-structure.

5.2. Results over Multiple Domains

Now, we evaluate the performance of MOTAR over mul-
tiple domains (d > 2). We randomly select some pairs of
domains in the DBLP and MovieLens datasets, then we run
different algorithms and show their average MAEs as well
as the standard deviation in Figures 4 and 5.

From the results, we can see that MOTAR significantly out-
performs the other baselines in all cases due to the non-
linear knowledge transfer. Note that when the number of
domain is 1, all algorithms are reduced to the standalone
tri-factorization, so all of them have the same error. Fur-
thermore, we can also see that MOTAR gives more per-
formance gain as the number d of domains increases. The
more domains available, the more complex their correla-
tion patterns can be. Thus, MOTAR has a higher chance to
capture those patterns than the others when d is large.

Another important observation is that MOTAR does not
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Figure 5. Performance comparison over multiple domains in the
MovieLens dataset.

tend to result in the negative knowledge transfer as we
have discussed in Section 2.2. We can see from the figures
that the MAE of MOTAR decreases monotonously as d in-
creases. This is because that MOTAR employs an adaptive
bridge that can capture the correlation patterns involving
any domain combination.

5.3. Effects of Non-linearity

To validate that MOTAR can capture arbitrarily complex
correlations between domains, we create a synthetic dataset
with known B in the ground truth to simulate the non-linear
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Figure 6. The effects of non-linearity.

condition. We then obtain the MAEs of MOTAR over this
datatset by varying the number of modes of B in the ground
truth. We focus on two domains only to set aside the prob-
lem of maladaptive bridges (to be discussed in the supple-
mentary material).

To create the dataset, we first define the number of users
n(k) (resp. items m(k)), the number of user-clusters p(k)

(resp. item-clusters q(k)) in k domains. And to control
the non-linear correlation, we introduce extra modes in B.
The number of the extra modes is denoted by exM and the
number of dimensions in each extra modes is denoted by
r(l), where 1 ≤ l ≤ exM . We define the latent factors of
users (resp. items) for each domain in ground truth, and
randomly assign the latent factors to each user (resp. item)
in the same domain.

Here we fix each n(k) = 20, m(1) = 40, m(2) = 50 and
each p(k) = q(k) = r(k) = 6, and varies exM to simu-
late the non-linear complexity. And we generate the rating
matrices by using X(k) = U (k) proj(k) (B)V (k). Figure.
6 shows the accuracy achieved by MOTAR model under
different degree of the non-linearity. As we can see, the
performance of MOTAR is unaffected by the extra modes
in B. This justifies that MOTAR can capture arbitrarily
complex correlations between domains.

6. Conclusions and Future Work

We propose the notion of Hyper-Structure Transfer (HST)
and its model called the Minimal Orthogonal Tensor Ap-
proximation with Residuals (MOTAR) that transfers non-
linearly correlated knowledge between domains in the tasks
of Cross-Domain Collaborative Filtering (CDCF). To the
best of our knowledge, this is the first work that enables
non-linear knowledge transfer. Empirical results show that
MOTAR can achieve up to 50% reduction in prediction er-
ror rate as compared with the state-of-the-art CDCF meth-
ods. In addition, MOTAR always give better performance
when taking into account new domains.

HST opens up numerous research directions in the future.
First, there are many other ways to select H and the pro-
jection function proj(·) in Eq. (1). For example, H could
be some manifold in a high-order geometric space and the

proj(k)(H)’s could be its local patches (overlapping with
each other). Second, one can develop new regularizers
for HST/MOTAR that best suite the targeted recommender
systems where some particular side information (e.g., tags,
implicit feedbacks, etc.) is available. Third, the in-depth
studies about the non-linear correlation between domain
knowledge will be valuable. Theoretical guarantee about
the non-linear transferability wold be important too. Last
but not the least, we find that the CP decomposition is the
major performance bottleneck when solving the MOTAR
objectives (despite that the training Algorithm shown in the
supplementary material converges after only tens of outer-
iterations in most cases). Alternatives to CP decomposition
will be valuable for large-scale settings.
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