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Abstract
With a growing need to understand large-scale
networks, factorial relational models, such as
binary matrix factorization models (BMFs), have
become important in many applications. Al-
though BMFs have a natural capability to uncov-
er overlapping group structures behind network
data, existing inference techniques have issues of
either high computational cost or lack of model
selection capability, and this limits their appli-
cability. For scalable model selection of BMFs,
this paper proposes stochastic factorized asymp-
totic Bayesian (sFAB) inference that combines
concepts in two recently-developed techniques:
stochastic variational inference (SVI) and FAB
inference. sFAB is a highly-efficient algorithm,
having both scalability and an inherent model
selection capability in a single inference frame-
work. Empirical results show the superiority
of sFAB/BMF in both accuracy and scalability
over state-of-the-art inference methods for over-
lapping relational models.

1. Introduction
Relational modeling has been an actively-studied research
topic due to its increasing significance in such important
applications as social network analyses (Kim et al., 2012),
recommendation systems (Hsu, 2005), and bioinformatics
(Jaimovich et al., 2006). Relational modeling has two main
purposes: (1) to reveal latent group structures underlying
the networks (partition entities into several groups on the
basis of their connectivities) and (2) to predict unseen links
on the basis of known links (i.e. link prediction). With
respect to (1), identification of the appropriate number of
groups (a.k.a. model selection) is one of the most important
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challenges in the learning of relational models.

Recently, research interests have been particularly focused
on overlapping relational data (a single entity may belong
to multiple groups), which is a natural property commonly
observed in real-world relational networks. One pioneer-
ing work proposes mixed-membership stochastic block-
models (MMSB) (Airoldi et al., 2008; Gopalan et al., 2012)
that express “overlaps” using multinomial distributions.
Analogous models like mixed membership relational clus-
tering (Long et al., 2007) and modular structures (Azizi
et al., 2014) take node information into consideration.
For model selection, state-of-the-art algorithms usually
follow non-parametric Bayesian frameworks by employing
infinite priors such as hierarchical Dirichlet processes (Kim
et al., 2013) and Chinese restaurant processes (Koutsoure-
lakis & Eliassi-Rad, 2008), which automatically select the
effective number of groups from among “infinite groups”.

An alternative approach for expressing overlapping group
structures is factorial modeling. Unlike multinomial mod-
eling, in which individual entities are essentially generated
from one group (similar to the situation in which each
sample belongs to a single component in standard mixture
models), factorial models express entities by combining
multiple binary latent features, and, therefore, they can lit-
erally express overlapping structures. Binary matrix factor-
ization models (BMFs) (Meeds et al., 2007) are powerful
factorial relational models. Although they provide natural
overlapping structures, their high computational cost of
model selection, arising from non-parametric Bayesian
priors, restricts their applicability to large-scale datasets.

To address the problem of Bayesian modeling on massive
data, stochastic variational inference (SVI) has been re-
cently developed (Hoffman et al., 2012) and has already
been extended to several applications, such as topic models
(Wang & Blei, 2012; Ranganath et al., 2013), time series
modeling (Johnson & Willsky, 2014), multinomial relation-
al models (Gopalan & Blei, 2013; Kim et al., 2013), and
matrix factorization (Hernández-Lobato et al., 2014). SVI
relies on external mechanisms for model selection (such as
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non-parametric Bayesian priors and an outer loop for cross
validation, which substantially increase computational cost
in general), and it would be an interesting challenge to
develop an SVI-type algorithm with model selection in a
single inference framework in which model selection itself
would be part of the optimization objective.

This paper proposes a scalable model selection algorithm
for BMFs that combines two recently developed tech-
niques: factorized asymptotic Bayesian (FAB) (Eto et al.,
2014; Fujimaki & Morinaga, 2012; Fujimaki & Hayashi,
2012; Hayashi & Fujimaki, 2013; Hayashi et al., 2015)
inference and SVI. FAB inference is a VB-like inference
but has an inherent model selection mechanism in its infer-
ence procedure. Starting from a sufficient number of latent
features, FAB inference automatically prunes away useless
features by maximizing a factorized information criterion
(FIC). We first derived FIC/FAB inference for BMFs.
Inspired by SVI, we then derived stochastic FAB (sFAB)
inference that enables us to perform model selection of
BMFs on large-scale networks. sFAB introduces natural
regularization that eliminates redundant latent features dur-
ing stochastic optimization. This “shrinkage” mechanism
significantly improves the computational efficiency of s-
FAB over standard SVI when model selection is required.
Empirical results show the superiority of sFAB/BMF in
both accuracy and scalability over state-of-the-art inference
methods for overlapping relational modeling.

2. Related Work
BMF (Meeds et al., 2007) is the most well-studied facto-
rial relational model because it naturally and expressively
reveals overlapping group structures on dyadic data. It
employs Beta-Bernoulli priors on latent features to support
overlapping modeling, and it also can easily be extended
to an infinite model by adopting Indian buffet process
(IBP) priors to support automatic model selection for BMF.
Latent feature relational models (LFRMs) (Miller et al.,
2009) extend BMFs by incorporating covariates (i.e., entity
attributes, multiple relations) for link prediction. As a
family of LFRMs, max-margin nonparametric latent fea-
ture models (MNLFs) (Zhu, 2012) minimize hinge loss,
which is a measure of the quality of link prediction, under
the principle of maximum entropy discrimination. These
BMF families employ non-parametric Bayesian priors for
model selection, and Markov Chain Monte Carlo (MCMC)
or mean-field variational inference is used for model in-
ference. The biggest challenge is their heavy computation
cost, especially on large-scale data.

Recently, more advanced factorial relational models have
been proposed. Infinite latent attribute (ILA) models (Palla
et al., 2012; 2014) use hierarchical structures to reveal over-
lapping, where entities are characterized by latent feature
vectors, and each feature is partitioned into disjoint sub-

clusters. Infinite multiple relational models (Morup et al.,
2013) utilize IBP priors to associate entities with a subset of
groups. However, these models allow for neither arbitrary
feature interactions nor negative feature correlations, and
thus provide less capability to explain data.

SVI has been introduced to relational modeling for
Bayesian inference on massive data. SVINET applies SVI
to a multinomial-mixture type relational model, though it
has no explicit model selection capability (Gopalan & Blei,
2013). A hierarchical Dirichlet processes relational model,
which is also multinomial, has been built on SVINET and
automatically prunes away useless communities by means
of hierarchical Dirichlet processes (Kim et al., 2013). To
the best of our knowledge, no existing study has directly
extended SVI to factorial models, while there is a study
on SVI for probabilistic matrix factorization (Hernández-
Lobato et al., 2014) handling continuous latent features.

3. FAB Inference for BMFs
3.1. Binary Matrix Factorization
BMF is a probabilistic model for an I × J data matrix
X (Meeds et al., 2007), where I and J are the number
of rows and columns, respectively. The (i, j)-th entry
xij can be binary, count-valued, or continuous-valued. A
row latent feature is denoted by U ∈ {0, 1}I×K , whose
i-th row ui· indicates features associated with the i-th
row of X. Similarly, a column latent feature is denoted
by V ∈ {0, 1}J×L, whose j-th row vj· corresponds to
the j-th column of X. A weight matrix W ∈ RK×L
is introduced to represent the primary parameters. Then
the data matrix X is drawn from a stochastic process
characterized by UWVT , i.e., a Bernoulli distribution
with mean fσ(UWVT ) for binary data. Here fσ(x) =
1/(1+exp(−x)) is the logistic sigmoid function. Although
a previous study used BMFs with Gaussian distribution to
model continuous pixel intensity (Meeds et al., 2007), in
this paper we extend BMFs to the Bernoulli distribution
because many real-world relational matrices are binary.

The likelihood function of BMFs is described as follows:

p(X|U,V,W) =

I∏
i=1

J∏
j=1

p(xij |ui·,vj·,W) (1)

=

I∏
i=1

J∏
j=1

fσ(ui·WvTj·)
xij
(

1− fσ(ui·WvTj·)
)1−xij

.

We use fully-factorized Bernoulli priors for U and V,
namely uik ∼ B(αk) and vjl ∼ B(βl), that is,

p(U|α) =
I∏
i=1

K∏
k=1

α
uik
k (1− αk)1−uik , (2)

p(V|β) =

J∏
j=1

L∏
l=1

β
vjl
l (1− βl)1−vjl . (3)
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The parameter set P is defined as P ≡ {α,β,W}. The
joint marginal likelihood is described as p(X,U,V|P) =
p(U|α)p(V|β)p(X|U,V,W). We assume a “log-flat”
prior on P (i.e., (log p(P)) /N → 0, which is asymptot-
ically ignored in the following FIC derivation, as is done in
other FAB methods1 (Fujimaki & Morinaga, 2012; Hayashi
& Fujimaki, 2013).

3.2. FIC for BMFs
Consider the following marginal log-likelihood:

log p (X|M) = max
q

{∑
U,V

q (U,V) log
p (X,U,V|M)

q (U,V)

}
,

(4)
where p (X,U,V|M) =

∫
p (X,U,V|P) p (P|M) dP .

M and P are a model and its parameters. The
Laplace method (Wong, 2001) is individually applied
to log p (U|α), log p (V|β), and log p (X|U,V,W). It is
worth noting that we follow the asymptotic analysis of the
Hessian matrix of log-likelihood in (Hayashi & Fujimaki,
2013) and obtain

log
∣∣FW ∣∣ =

K∑
k=1

L∑
l=1

log

((
I∑
i=1

J∑
j=1

uikvjl

)
/ (IJ)

)
+Op(1),

(5)
where | • | is the determinant of •, and FW =
− 52 log p (X|U,V,W) /(IJ). By applying the
Laplace method and introducing (5) to (4), we obtain the
following FIC of BMF:

FICBMF (X) ≡ max
q

Eq
[

log p(X,U,V|P̂) (6)

− 1

2

K∑
k=1

L∑
l=1

log

(
I∑
i=1

J∑
j=1

uikvjl

)]
− Dα

2
log I

− Dβ
2

log J − DW −KL
2

log(IJ) +Hq(U,V),

where q is an arbitrary joint distribution on U
and V, Hq(•) is the entropy of •, D? is the
dimensionality of the subscribed parameter ?, and
P̂ = arg maxP log p(X,U,V|P). Like other FICs
(Fujimaki & Morinaga, 2012; Hayashi & Fujimaki,
2013), it is easy to show the asymptotic consistency
of FICBMF with marginal log-likelihood, i.e.,
FICBMF (X) = log p(X) + Op(1) under certain
regularity conditions2.

Unlike previously-studied FIC for “single” latent
variable models, FIC/BMF has the regularization term
Eq[− 1

2

∑K
k=1

∑L
l=1 log(

∑I
i=1

∑J
j=1 uikvjl)], which

comes from the approximation of the Hessian matrix
of log-likelihood in (5). It is worth noting that we can

1This assumption is necessary for asymptotic ignorance of
priors in the FIC derivation.

2We can skip the proof. We followed the proof in (Hayashi &
Fujimaki, 2013).

see an explicit dependency between two latent features,
U and V, in the regularization term, which yields an
effect of pruning away redundant features during the
EM-like iterative optimization process. This indicates that
FIC/BMF naturally captures a unique characteristic of
relational models (i.e., “multiple” latent variables) in its
regularization mechanism.

Note that FIC has the regularization effect despite its
asymptotic ignorance of priors on p(P). In this sense,
its model selection mechanism is essentially different from
other prior-based Bayesian model selection such as non-
parametric Bayesian methods, automatic relevance deter-
mination (Wipf & Nagarajan, 2007), etc.

3.3. FAB algorithm for BMFs
For efficient maximization of (6), we introduce approxi-
mations to find a tractable lower bound. First, a mean-
field approximation on U and V is introduced with the
factorized forms of q(U) and q(V) as follows:

q(U) =

I∏
i=1

K∏
k=1

q(uik)uik (1− q(uik))1−uik , (7)

q(V) =

J∏
j=1

L∏
l=1

q(vjl)
vjl (1− q(vjl))1−vjl . (8)

Second, we replace P̂ with P because, from the def-
inition of P̂ , log p(X,U,V|P̂) ≥ log p(X,U,V|P)
holds for any P . Third, log(

∑
i

∑
j uikvjl) ≤ log r̃kl +

(
∑
i

∑
j uikvjl− r̃kl)/r̃kl is applied using the concavity of

logarithm functions with parameters r̃kl. The above three
approximations have already been applied in existing FAB
methods, but for BMFs, Eq [log p (xij |ui·,vj·,W)] is still
intractable. We address this by borrowing the Gaussian
lower bound technique of (Jaakkola & Jordan, 1997) as
follows:

Eq[log p(xij |ui·,vj·,W)] ≥ xijui·WvTj· + log fσ(ξ̃ij)

+ λ(ξ̃ij)((ui·WvTj·)
2 − ξ̃2ij)−

1

2
(ui·WvTj· − ξ̃ij) (9)

:= g(xij ,ui·,vj·,W, ξ̃ij) (10)

where λ(ξ̃ij) = (0.5− fσ(ξ̃ij))/(2ξ̃ij), and ξ̃ij is a newly
introduced parameter.

By utilizing above approximations, a tractable lower bound
of FICBMF (X) is derived as follows:

L(q, R̃, Ξ̃,P,X) = Eq
[

log p(U|α) + log p(V|β) (11)

+

I∑
i=1

J∑
j=1

g(xij ,ui·,vj·,W, ξ̃ij)

− 1

2

K∑
k=1

L∑
l=1

(
log r̃kl +

∑I
i=1

∑J
j=1 uikvjl − r̃kl
r̃kl

)]
− Dα

2
log I − Dβ

2
log J +Hq(U) +Hq(V),
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where R̃ = {r̃kl}K,Lk,l=1 and Ξ̃ = {ξ̃ij}I,Ji,j=1.

An EM-style alternating optimization w.r.t. q, P , R̃, and Ξ̃
is derived with the stopping condition (L(t)−L(t−1)) < δ.
Here the superscription (t) denotes the t-th update, and δ is
optimization tolerance.

FAB E-step: The FAB E-step optimizes q(U) and q(V)
by fixing the parameter set {P, R̃, Ξ̃}. Because q(U) and
q(V) do not have a closed form solution jointly, alternating
updates of q(U) and q(V) are carried out several times
in a single E-step. The update equation is found in
Appendix A.1.

FAB M-step: The FAB M-step optimizes {P, R̃, Ξ̃} by
fixing q(U) and q(V). The update equations are found in
Appendix A.2.

FAB Shrinkage step: The FAB E-step induces the
sparseness of latent features (for details, please
see Appendix A.1). In practice, we apply the
following simple thresholding to eliminate redundant
features: If

∑I
i=1 quik

(∑J
j=1

∑L
l=1 qvjl

)
< ε (or∑J

j=1 qvjl

(∑I
i=1

∑K
k=1 quik

)
< ε), then the k-th (l-th)

feature will be eliminated with a pre-set threshold value ε.
The FAB shrinkage step is carried out after the FAB E-step
and removes irrelevant features. This reduces the model
complexity, which means that the FIC lower bound will
increase, and that we can mitigate over-fitting. Moreover,
reducing irrelevant features during the EM iteration leads
to less computational cost and makes FAB/BMF efficient,
as we empirically show in our experiments.

4. Stochastic FAB Inference
Although FAB inference is a computationally efficient
inference framework, the batch algorithm is still computa-
tionally too expensive to handle huge real-world network-
s. To address this computational bottleneck, we propose
stochastic FAB (sFAB) inference, extending SVI (Hoff-
man et al., 2012) and its application to relational models
(Gopalan & Blei, 2013; Kim et al., 2013). Although sFAB
looks similar at first glance to existing SVI methods (e.g.,
SVINET), the former has an essential and important advan-
tage over the latter, i.e., sFAB has an intrinsic model selec-
tion mechanism that eliminates redundant features during
the stochastic optimization. This is particularly important
in co-clustering scenarios in which model identification is
one of the most significant interests (since we have many
alternative methods for link prediction scenarios, such as
probabilistic matrix factorization). Existing SVI meth-
ods achieve model identification with an external model
selection mechanism. One simple way would be to use
an outer loop for model selection, but this would require
additional computational cost. Another way would be

the incorporation of non-parametric Bayesian priors (Kim
et al., 2013), but this would make the model more complex
and also generally require additional computational cost.

Unlike SVI which is designed to be a stochastic optimiza-
tion of evidence lower bounds (ELBO, a.k.a. variational
free energy), our objective function is the FIC lower bound
described in (11). Let i′ and j′, respectively, denote
the indices of a row and column entities drawn from
X uniformly; i′ ∼ U(1, · · · , I), j′ ∼ U(1, · · · , J),
where U(·) represents the uniform distribution. We can
then derive an approximative (stochastic) FIC lower bound
whose expectation is equal to that of (11) as follows:

Li′j′(q, R̃, Ξ̃,P, xi′j′) = I
(
Eq[log p(ui′·|α)] (12)

− Eq[log q(ui′·)]
)

+ J (Eq[log p(vj′·|β)]− Eq[log q(vj′·)])

+ IJEq
[
g
(
xi′j′ ,ui′·,vj′·,W, ξ̃i′j′

)]
− Eq

[
1

2

K∑
k=1

L∑
l=1

(
log r̃kl +

IJui′kvj′l − r̃kl
r̃kl

)]
+ const.

Next, sFAB is performed in a four-step iteration: (i) ran-
domly subsample an entry xi′j′ from the data matrix; (ii)
update the variational distributions of associated latent fea-
ture vectors ui′· and vi′·; (iii) prune away the useless fea-
tures using the thresholding described in Section 3.3; (iv)
incrementally update model parametersP = {α,β,W} in
accord with the updated ui′· and vi′·. The only difference
from the standard stochastic approximative ELBO is the
last term −Eq[ 12

∑K
k=1

∑L
l=1(log r̃kl +

IJui′kvj′l−r̃kl

r̃kl
)],

but this term yields the essential difference between SVI
and sFAB, i.e., model selection capability in stochastic
inference.

sFAB E-step The optimization of (12) w.r.t. q(t)(ui′·)
results in (19) (in Appendix A.3) and so is q(t)(vj′·). After
single sampling of i′ and j′, we iterate updating ui′· and
updating vj′· several times. Different sampling strategies,
such as node sampling and link sampling (Gopalan &
Blei, 2013) are applicable as long as the expectation of an
approximative FIC lower bound becomes equivalent to that
of the original FIC lower bound (our sampling is similar to
“pair sampling” proposed in (Gopalan & Blei, 2013)).

sFAB M-step We first compute the intermediate model
parameter P(t−1/2) by optimizing (12) w.r.t. P . The
update equation is found in Appendix A.4. Then we use
a weighted average of P(t−1) and P(t−1/2) to update the
model parameters. We denote the weight as ρ, which will
provably leadP to converge to a local optimum if appropri-
ately chosen. In each iteration, the parameter Ξ̃ also needs
to be updated in a timely fashion to make the approximative
lower bound tight because g

(
xij ,ui·,vj·,W, ξ̃ij

)
is close

to log p (xij |ui·,vj·,W) when ui·WvTj· ∈
[
−ξ̃ij , ξ̃ij

]
.

The updated P might deviate significantly if information
on single-edge distributions were used in individual iter-
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Algorithm 1 stochastic FAB for BMFs
1: Initialize {q(U),q(V),P ,R̃,Ξ̃,ρ}.
2: while convergence criteria or a fixed number of maximum

iterations is not met do
3: Randomly sample a subset Sr of row entities and a subset

Sc of column entities.
4: for m = 1, · · · ,M do
5: Optimize q(t,m)(ui·), ∀i ∈ Sr using (19).
6: Optimize q(t,m)(vj·), ∀j ∈ Sc accordingly.
7: Update R̃ and update ξ̃ij , ∀i ∈ Sr , ∀j ∈ Sc using (15)

and (18).
8: end for
9: Prune away the useless features using the thresholding

described in Section 3.3.
10: Update R̃ and Ξ̃ using (15) and (18).
11: α(t) = (1− ρ(t))α(t−1) + ρ(t)

∑
i∈Sr

q(ui·)

|Sr|

12: β(t) = (1− ρ(t))β(t−1) + ρ(t)
∑

j∈Sc
q(vj·)

|Sc|

13: Optimize W(t−1/2) based on q(t)(ui·) and q(t)(vj·),
∀i ∈ Sr , ∀j ∈ Sc using (20).

14: W(t) = (1− ρ(t))W(t−1) + ρ(t)W(t−1/2)

15: Update ξ̃ij , ∀i ∈ Sr , ∀j ∈ Sc
16: end while

ations, so a mini-batch {xij |i ∈ Sr, j ∈ Sc} is adopted
to generate a more informative parameter estimation, as
is shown in Algorithm 1. We can easily apply a mini-
batch strategy by little changes in the update equations in
Appendix A.3 and A.4. Assuming the subsampling ratio to
be γ, the speed of sFAB will be scaled up to 1/(γ2) times
over that with the batch algorithm.

5. Experiments
In the following experiments, we utilized 10-fold cross
validation, each time holding out a different 10% of the
data (links and non-links).

5.1. Baseline Methods
We compared the following four state-of-the-art methods
with sFAB/BMF and FAB/BMF as baselines: 1) BMF with
variational Bayesian inference (VB/BMF) (Miller, 2011),
2) BMF with Gibbs sampling (MCMC/BMF) (Meeds et al.,
2007), 3) ILA with Gibbs sampling (Palla et al., 2014), and
4) SVINET (mixed membership stochastic block model
with SVI) (Gopalan et al., 2012). The first two methods
were selected to verify the superiority of the sFAB infer-
ence for relational modeling against the other inference
methods. The third was selected as the latest and the most
advanced factorial relational model and for a comparison
with prior-based model selection (ILA uses IBP for model
selection). The fourth was selected as state-of-the-art SVI-
based relational modeling.

We used the latest implementations provided by the authors

for SVINET (in C++)3 and ILA (in MATLAB)4, and
implemented VB/BMF and MCMC/BMF in MATLAB on
our own. sFAB/BMF and FAB/BMF were implemented
in C++ to compare their computational time with that
of SVINET. For model selection, ILA and MCMC/BMF
select the model using IBP or Beta-Bernoulli priors, while
SVINET and VB/BMF employ an outer loop of cross
validation. sFAB/BMF and FAB/BMF select the feature
numbers automatically using the shrinkage effect, as we
have explained in Sections 3.2 and 3.3.

Prediction accuracy, clustering accuracy, and computa-
tional efficiency were evaluated using test log-likelihood,
normalized mutual information (NMI), and elapsed time,
respectively. We defined log-likelihood on test data as
the test log-likelihood. The learning rate for sFAB/BMF
was set to 0.5 for small datasets (N < 1000) and 0.2
for large datasets (N ≥ 1000), in consideration of the
balance between accuracy and efficiency. SVINET set the
mini-batch to the entire set of links and used a learning
rate of 1. That means its learning rate depended on the
sparsity of a given network. We followed the experimental
setting of the original paper of ILA (Palla et al., 2012)
and ran 500 MCMC iterations for ILA and 1000 iterations
for MCMC/BMF. sFAB/BMF, FAB/BMF, and SVINET all
employed δ = 1× 10−5 as the optimization tolerance.

5.2. Description of Datasets
We adopted the “benchmark” tool (Lancichinetti &
Fortunato, 2009) that was utilized in the SVINET
paper (Gopalan & Blei, 2013) to generate synthetic
“overlapping” networks with different scales, different
group numbers, and different densities (dense and sparse).
Further, eight real network datasets (namely, Zachary’s
Karate Club (Zachary, 1977), summer school survey
network5, U.S. Political Books6, NIPS coauthorship
network (Globerson et al., 2007), Facebook, autonomous
systems, the collaboration network of Arxiv Astro Physics
(AstroPh for short), and Arxiv High Energy Physics
(HepPh for short)7) with different scales (node numbers
ranged from 34 to 10K) were used to evaluate sFAB/BMF
and FAB/BMF. The number of nodes and edges are
summarized in Table 1. With the exception of the summer
school survey network, these real networks were all
undirected. For the NIPS coauthorship network, we
extracted a subset of the 234 most connected authors from
the overall network, in accord with previous studies (Miller
et al., 2009; Palla et al., 2012). We also extracted a subset
with 10K nodes from AstroPh and HepPh since SVINET

3https://github.com/premgopalan/svinet.
4http://mlg.eng.cam.ac.uk/konstantina/ILA/
5http://clique.ucd.ie/data
6http://www.orgnet.com
7http://snap.stanford.edu/data
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Table 1. Comparisons for Test Log-likelihood on Real Networks. Standard deviations are showed in parentheses. The best and second
best results for each dataset are highlighted in bold and italic respectively.

data nodes edges sFAB/BMF FAB/BMF VB/BMF MCMC/BMF SVINET ILA
Z.K.Club 34 78 −0 .259(.0229) −0.230(.0419) −0.264(.0568) −0.269(.0712) −0.400(.0556) −0.323(.0778)

SumSchool 73 1138 −0.265(.0279) −0.248(.0201) −0 .253(.0128) −0.270(.0333) – −0.344(.0243)
PolBooks 105 441 −0 .206(.0208) −0.186(.0052) −0.256(.0317) −0.268(.0427) −0.260(.0144) −0.494(.0465)

NIPS 234 832 −0 .066(.0056) −0.060(.0054) −0.100(.0195) −0.106(.0271) −0.084(.0099) −0.108(.0095)
Facebook 4.0K 88.2K −0 .026(.0003) −0.024(.0003) – – −0.027(.0001) –

as-733 5.2K 10.5K −0 .007(.0001) −0.005(.0002) – – −0.008(.0000) –
AstroPh 10K 144K −0.0143(.0001) −0.0135(.0002) – – −0 .0138(.0001) –
HepPh 10K 116K −0 .008(.0001) −0.007(.0003) – – −0.010(.0001) –

would have required an unrealistically long time for
execution.

5.3. Synthetic Data
In all the simulation experiments below, we set the initial
K as 40 for sFAB/BMF and FAB/BMF, and performed
inference with K = 2, · · · , 40 for VB/BMF and SVINET.
ILA was excluded due to its huge computational cost. In
terms of network densities, the probability of generating
a link within a community (pin) was about 0.7 for dense
networks, and about 0.35 for sparse networks. For both
dense and sparse networks, the probability of having a
link between two nodes belonging to different communities
(pout) was roughly 0.01.

We first investigated the performance of sFAB/BMF,
FAB/BMF, VB/BMF, MCMC/BMF, and SVINET on
the synthetic networks with 500 nodes. The left-hand
column in Figure 1 shows prediction accuracy (a) and
clustering accuracy (b) in four different settings (K=10,30
× dense/sparse). In terms of difference in (batch)
inference methods, FAB/BMF outperformed the other
methods (VB and MCMC) and the same results were
obtained in model selection (see Table 2 (top)). The two
stochastic inference methods, sFAB/BMF and SVINET,
performed competitively, but we should also note that the
model in the benchmark tool (Lancichinetti & Fortunato,
2009) is a multinomial relational model and that this
setting is rather advantageous to SVINET. Compared
to FAB/BMF, sFAB/BMF suffered a little accuracy loss
but still performed reasonably well. We have omitted
comparisons in terms of computational speed on the
small synthetic networks due to the inconsistency among
implementation language platforms used for the various
algorithms.

Next we evaluated sFAB/BMF, FAB/BMF, and SVINET
on the synthetic networks with 5000 nodes. The right-
hand column in Figure 1 shows prediction accuracy (c),
clustering accuracy (d), and elapsed time (e) for four
different settings (K=10,30 × dense/sparse). In terms of
prediction accuracy, sFAB/BMF, FAB/BMF, and SVINET
appeared comparable, and SVINET sometimes performed
slightly better (again, this setting is rather advantageous
to SVINET). On the other hand, we can also see a clear
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Figure 1. Comparisons on synthetic networks.

advantage for sFAB/BMF and FAB/BMF over SVINET in
terms of clustering performance (NMI). One explanation is
that SVINET assigns one node to a group when one link
of the node belongs to that group, and that it overestimates
the overlaps existing in the network. On the other hand,
(s)FAB/BMF provide clear grouping assignments by esti-
mating feature matrices. Comparison of sFAB/BMF with
FAB/BMF shows that sFAB/BMF significantly reduced the
computational cost without losing much accuracy. Further,
sFAB/BMF is much more computationally efficient than
SVINET. This is because 1) the shrinkage mechanism
in sFAB/BMF automatically eliminates redundant features
and eventually accelerates the algorithm over EM itera-
tions, and 2) SVINET does not have an intrinsic model
selection mechanism and needs an outer loop for model
selection. Results here (particularly for clustering accuracy
and efficiency) indicate that sFAB/BMF is more powerful
than SVINET in detecting overlapping group structures
(clustering).

The top half in Table 2 shows comparisons w.r.t. model se-
lection. MCMC/BMF performed unstably (over- or under-
estimation, depending on data). sFAB/BMF, FAB/BMF,
and SVINET performed competitively and slightly better
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Table 2. Comparisons for Model Selection Capability on synthet-
ic data (top) and real-world data (bottom). Estimated feature
numbers are shown with the standard deviations in parentheses.

N K Density BMF SVINETsFAB FAB VB MCMC
500 10 dense 11(1) 11(1) 10(1) 14(3) 10(0)
500 10 sparse 11(1) 10(1) 9(2) 9(1) 10(0)
500 30 dense 31(1) 31(1) 27(2) 21(5) 31(2)
500 30 sparse 33(1) 32(3) 27(3) 10(1) 32(2)
5000 10 dense 14(1) 12(1) – – 10(0)
5000 10 sparse 16(1) 13(1) – – 14(1)
5000 30 dense 30(0) 30(0) – – 33(2)
5000 30 sparse 34(1) 31(2) – – 31(1)

data BMF ILA SVINETsFAB FAB VB MCMC
Z.K.Club 3(0) 5(1) 7(2) 5(1) 31(7) 3(1)

SumSchool 15(1) 15(1) 6(2) 6(1) 35(9) –
PolBooks 8(1) 9(1) 11(2) 9(3) 73(8) 5(1)

NIPS 14(1) 15(1) 9(0) 14(3) 27(7) 18(2)
Facebook 62(2) 64(2) – – – 75(11)

as-733 31(1) 28(4) – – – 2(0)
AstroPh 96(2) 87(5) – – – 100(0)
HepPh 83(4) 88(5) – – – 93(4)

than VB/BMF. SVINET performed comparably with
FAB/BMF and slightly better than sFAB/BMF. Overall,
FAB/BMF and sFAB/BMF outperformed the other meth-
ods on the synthetic data despite the fact that the “true”
model assumes multinomial relations.

5.4. Real-world Data
We evaluated the performance of sFAB/BMF, FAB/BMF,
VB/BMF, MCMC/BMF, SVINET, and ILA on the small
real networks (N < 1000) and compared the performance
for sFAB/BMF and FAB/BMF with that for SVINET on
the large real networks (N ≥ 1000). On the small real
networks, we set the initial K as 20 for sFAB/BMF and
FAB/BMF, and performed inference with K = 2, · · · , 20
for VB/BMF and SVINET. On the large networks, the
upper bound of K was extended to 100. SVINET software
supported undirected networks, and we omitted it on the
summer school survey network, which is directed.

We have summarized in Table 1 the test log-likelihood
for each algorithm as an evaluation metric for prediction
accuracy . As can be seen, FAB/BMF outperformed all
the other methods on all of the datasets. Combining
results in Table 3, we find that sFAB/BMF sacrificed some
precision for time, though the loss of precision was not
large for those large-scale datasets. sFAB/BMF performed
the second best after FAB/BMF on datasets other than the
summer school survey network and AstroPh. VB/BMF
and MCMC/BMF achieved comparable performance on
the small networks, while SVINET was more suitable for
the large networks. Results shown in Table 2 (bottom)
suggest that ILA may have suffered from over-fitting, as
its feature dimensionality is much larger than those of
the others. Our experience indicates that non-parametric
Bayesian priors prefer more complicated models than do
true ones8, and IBP in ILA might be the relevant factor. As

8There are theoretical studies for the case of mixture models
(Miller & Harrison, 2013; 2014).

Table 3. Comparisons for Elapsed Time on Real Networks. Stan-
dard deviations are shown in parentheses. s, h, d, and m denote
second, hour, day, and month respectively.

data sFAB/BMF FAB/BMF SVINET
Z.K.Club 1.07s(0.43s) 1.00s(0.46s) 228s(159s)

SumSchool 6.24s(2.17s) 7.68s(5.11s) –
PolBooks 5.89s(2.85s) 8.76s(1.61s) 129s(50.5s)

NIPS 27.5s(10.8s) 113s(12.1s) 118s(14.0s)
Facebook 12.0h(1.29h) 87.7h(10.0h) 156h(2.13h)

as-733 13.0h(0.61h) 65.8h(2.37h) 75.7h(0.51h)
AstroPh 7.93d(0.89d) 22.1d(5.01d) > 1m
HepPh 6.35d(0.17d) 21.7d(0.77d) > 1m

Table 2 shows, in most cases, sFAB/BMF and FAB/BMF
chose the smallest number of features and provided the
most compact and precise models. Further, sFAB/BMF and
FAB/BMF tended to choose similar model complexities.
This indicates that FAB model selection capability works
well to mitigate over-fitting and can be integrated perfectly
with stochastic optimization. Finally, we compared the
elapsed time of sFAB/BMF , FAB/BMF, and SVINET, as
is shown in Table 3. It is rather surprising that FAB/BMF
performed even faster than SVINET. We observed two
reasons for this. First, FAB/BMF performs model selection
in a single EM iteration loop and therefore is significantly
advantageous over SVINET which requires an outer loop
for model selection. Note that, although the outer loop of
SVINET can be parallelized, the computational cost is still
lower bounded by the maximum K value. Second, SVINET
took far more iterations for convergence. Intuitively speak-
ing, (s)FAB/BMF can eliminate “poorly-fitted” latent fea-
tures during EM iteration, and this accelerates convergence.
Finally, sFAB/BMF significantly improved computational
efficiency, particularly on large-scale networks.

6. Summary and Concluding Remarks
This paper has proposed a scalable inference method with
model selection for large-scale BMFs, created by com-
bining two recently developed technologies: FAB and
SVI. sFAB is a highly-efficient algorithm, having both
scalability and an inherent model selection capability in
a single inference framework. Experimental results on
both simulation and real datasets show that sFAB inference
outperforms other inference technologies, such as VB
and MCMC, and is more computationally efficient than
SVINET when model selection is needed. A number of in-
teresting areas remain for future work. For web-scale rela-
tional modeling, distributed stochastic optimization might
be required. Also, SVI has been extended for streaming
scenarios (Tamara et al., 2013). Extending sFAB’s model
selection capability to such streaming scenarios would be
another interesting possibility to explore.

A. Appendix: Update Equations
A.1. FAB E-step
Let us consider the update of q(U) as an example. The notation
U−ik refers to the set of entries in the matrix U other than uik.
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For convenience, let quik and qvjl denote q(uik) and q(vjl),
respectively. Then, taking the gradient of Lw.r.t. quik and setting
it to zero, we can obtain its closed-form solution:
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where the superscription (t,m) denotes the m-th update of the t-
th E-step. The update of qvjl is obtained in a similar manner. The
last term of the R.H.S. of (13) originates from the regularization
term in (6), i.e., Eq[− 1

2

∑K
k=1

∑L
l=1 log(

∑I
i=1

∑J
j=1 uikvjl)].

We obtain r̃kl = IJαkβl according to (14) and (15). Roughly
speaking, the smaller αk is, the smaller quik becomes (and vice
versa), and this induces sparseness of latent features (many αks
go zero during the EM iteration).

A.2. FAB M-step
The update equations for α, β and R̃ are obtained as follows:
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Also, the update equation of weight matrix W is obtained as
follows:
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where W−kl denotes the entries in the matrix W other than wkl.
Given {q(U), q(V),P, R̃}, Ξ̃ is optimized by setting

ξ̃
(t)
ij =
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 1
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(18)

A.3. sFAB E-step
Let us consider the update of q(ui′·) as an example. Taking the
gradient of Li′j′ in (12) w.r.t. qui′k and setting it to zero, we can
obtain the closed-form solution:
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where the superscription (t,m) denotes the m-th update of the
t-th E-step. The update of qvj′l is obtained in a similar manner.

A.4. sFAB M-step
We compute the intermediate model parameter P(t−1/2) by
taking the noisy gradient of Li′j′ in (12) w.r.t. P and setting it
to zero. As a result, the update equation of intermediate weight
matrix W(t−1/2) is as follows:
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