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A. Remarks
Before going through the proofs, we review some useful facts about the Kronecker (Tensor) product. Those properties are
commonly used for solving Sylvester equations. More details can be found in The Matrix Cookbook.
Remark 1. (AC)⊗ (BD) = (A⊗B) (C ⊗D)

Remark 2. (A⊗B)
>
= A> ⊗B>

Remark 3. vec
(
BCA>

)
=
(
B ⊗A

)
vec (C) 1

B. Spectral Graph Products
Let us verify that both the Tensor and Cartesian graph products are members of the Spectral Graph Product (SGP) family.
For any graph G, we use ΛG to denote the diagonal matrix consisting of the eigenvalues of its adjacency matrixG.

B.1. Tensor Graph Product

Suppose x ◦ y = xy. According to Definition 5, we have

[ΛG◦H](i,j),(i,j) = [λG ]i ◦ [λH]j = [λG ]i [λH]j (1)

which implies ΛG◦H = ΛG ⊗ΛH. Therefore

G ◦H =(UG ⊗UH)ΛG◦H (UG ⊗UH)>

=(UG ⊗UH) (ΛG ⊗ΛH) (UG ⊗UH)>

=((UGΛG)⊗ (UHΛH))
(
U>G ⊗U

>
H

)
=
(
UGΛGU

>
G

)
⊗
(
UHΛHU

>
H

)
=G⊗H

(2)

B.2. Cartesian Graph Product

Now suppose x ◦ y = x + y, it is not hard to see ΛG◦H = ΛG ⊗ In + Im ⊗ΛH. By similar analysis as above we have
G ◦H = G⊗ In + Im ⊗H = G⊕H .

C. Proof of Proposition 1

Optimization (7) is equivalent to (1) when ◦ is the Cartesian graph product, C0 = C1 + 2C2 and κ (z) =
(
1− C2

C0
z
)−1

.

1The “vec” operator concatenates the rows of a matrix into a single vector.
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Proof. In this case, κ (G ◦H) =
(
I − C2

C0
(G⊕H)

)−1
.

We assume that both G and H have been symmetrically normalized during preprocessing, i.e. LG = I −G and LH =
I −H . Consider the regularization term in (1)

C0

2
vec (F )

>
[κ (G ◦H)]

−1
vec (F )

=
C0

2
vec (F )

>
(
I − C2

C0
(G⊕H)

)
vec (F )

=
C0

2
‖F ‖2F −

C2

2
vec (F )

>
(G⊕H) vec (F )

=
C0

2
‖F ‖2F −

C2

2
vec (F )

>
(G⊗ In + Im ⊗H) vec (F )

=
C0

2
‖F ‖2F −

C2

2

[
tr
(
F>GF

)
+ tr

(
FHF>

)]
=
C1

2
‖F ‖2F +

C2

2

[
2‖F ‖2F − tr

(
F>GF

)
− tr

(
FHF>

)]
=
C1

2
‖F ‖2F +

C2

2

[
tr
(
F> (I −G)F

)
+ tr

(
F (I −H)F>

)]
=
C1

2
‖F ‖2F +

C2

2
tr
(
F>LGF

)
+
C2

2
tr
(
FLHF>

)
Plugging back the above expression to optimization (1) closes the proof.

D. Proof of Lemma 1
If ◦ defines a spectral graph product (SGP), then

ϕ◦,κ (F ) := vec−1
(
[κ (G ◦H)]

−1
vec(F )

)
= UG

[
Σ◦,κ ∗

(
U>GFUH

)]
U>H (3)

where ∗ is the matrix Hadamard (a.k.a. element-wise) product, Σ◦,κ is a m× n matrix with each element defined as

[Σ◦,κ]ij = 1
/
κ
(
[λG ]i ◦ [λH]j

)
(4)

Proof. First, let us derive the eigendecomposition of [κ (G ◦H)]
−1.

According to Definition 5,G◦H has the eigendecomposition (UG ⊗UH)ΛG◦H (UG ⊗UH)> where [ΛG◦H](i,j),(i,j) =
[λG ]i ◦ [λH]j . Since κ is a spectral transformation, we can directly apply it to the eigenvalues ofG ◦H . Therefore

[κ (G ◦H)]
−1

=
[
κ
(
(UG ⊗UH)ΛG◦H (UG ⊗UH)>

)]−1
=
[
(UG ⊗UH)κ (ΛG◦H) (UG ⊗UH)>

]−1
=(UG ⊗UH) [κ (ΛG◦H)]−1

(
U>G ⊗U

>
H

)
=(UG ⊗UH) diag (vec (Σ◦,κ))

(
U>G ⊗U

>
H

)
(5)

The last equality follows the definition of Σ◦,κ in (4).
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Now, let us derive the expression for vec (ϕ◦,κ (F ))

vec (ϕ◦,κ (F )) = [κ (G ◦H)]
−1

vec (F )

= (UG ⊗UH) diag (vec (Σ◦,κ))
(
U>G ⊗U

>
H

)
vec (F )

= (UG ⊗UH) diag (vec (Σ◦,κ)) vec
(
U>GFUH

)
=(UG ⊗UH) vec

[
Σ◦,κ ∗

(
U>GFUH

)]
=vec

(
UG

[
Σ◦,κ ∗

(
U>GFUH

)]
U>H

)
(6)

The lemma follows by applying vec−1 to both sides of the equation above.

E. Proof of Theorem 1
For brevity we write Σ◦,κ as Σ.

Suppose ◦ is a spectral graph product. Let
∑rank(Σ)
k ckukv

>
k be the eigendecomposition of Σ, and r (G,u) be matrix G

with its eigenvalues replaced by some other vector u. We have

ϕ◦,κ (F ) =

rank(Σ)∑
k=1

ckr (G,uk)F r (H,vk) (7)

Proof. From Lemma 1 we have

ϕ◦,κ (F ) =UG

[
Σ ∗

(
U>GFUH

)]
U>H

=UG

rank(Σ)∑
k=1

ckukv
>
k

 ∗ (U>GFUH)
U>H

=

rank(Σ)∑
k=1

ckUG

[(
ukv

>
k

)
∗
(
U>GFUH

)]
U>H

=

rank(Σ)∑
k=1

ckUG

[
diag (uk)

(
U>GFUH

)
diag (vk)

]
U>H

=

rank(Σ)∑
k=1

ck

(
UGdiag (uk)U

>
G

)
F
(
UHdiag (vk)U

>
H

)

=

rank(Σ)∑
k=1

ckr (G,uk)F r (H,vk)

(8)

F. Proof of Corollary 1
If there exists σ1, σ2 such that for all x, y ∈ R, 1

κ(x◦y) ≡ σ1 (x)σ2 (y). Then

ϕ◦,κ (F ) = σ1 (G)Fσ2 (H) (9)

If there exits σ1, σ2 such that for all x, y ∈ R, 1
κ(x◦y) ≡ σ1 (x) + σ2 (y). Then

ϕ◦,κ (F ) = σ1 (G)F + Fσ2 (H) (10)
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Proof. Define σ1 (λ) := (σ1 (λ1) , . . . σ1 (λm)) and σ2 (µ) := (σ2 (µ1) , . . . σ2 (µn)). Notice

• r (G,1) ≡ 1.

• r (G, σ (u)) ≡ σ (G) if u is the eigenvalues ofG.

The first condition 1
κ(x◦y) ≡ σ1 (x)σ2 (y) implies that Σ = 1 · σ1 (λ)σ2 (µ)>, and the conclusion follows Theorem 1

with rank (Σ) = 1, c1 = 1, u1 = σ1 (λ) and v1 = σ2 (µ).

The second condition 1
κ(x◦y) ≡ σ1 (x) + σ2 (y) implies that Σ = 1 · σ1 (λ)1>n + 1 · 1mσ2 (µ)>. The conclusion follows

Theorem 1 with rank (Σ) = 2, c1 = c2 = 1, u1 = σ1 (λ), v1 = 1n, u2 = 1m and v2 = σ2 (µ).


