Supplementary Material for Bipartite Edge Prediction via Transductive Learning over Product Graphs

Hanxiao Liu
Carnegie Mellon University, Pittsburgh, PA 15213 USA
HANXIAOL@CS.CMU.EDU

Yiming Yang
Carnegie Mellon University, Pittsburgh, PA 15213 USA
YIMING@CS.CMU.EDU

A. Remarks

Before going through the proofs, we review some useful facts about the Kronecker (Tensor) product. Those properties are commonly used for solving Sylvester equations. More details can be found in The Matrix Cookbook.

Remark 1. \((AC) \otimes (BD) = (A \otimes B)(C \otimes D)\)

Remark 2. \((A \otimes B)^\top = A^\top \otimes B^\top\)

Remark 3. \(\text{vec} \left(BCA^\top \right) = (B \otimes A) \text{vec} (C)\)

B. Spectral Graph Products

Let us verify that both the Tensor and Cartesian graph products are members of the Spectral Graph Product (SGP) family. For any graph \(G\), we use \(\Lambda_G\) to denote the diagonal matrix consisting of the eigenvalues of its adjacency matrix \(G\).

B.1. Tensor Graph Product

Suppose \(x \circ y = xy\). According to Definition 5, we have

\[
[\Lambda_{G \circ H}]_{(i,j),(i,j)} = [\lambda_G]_i \circ [\lambda_H]_j = [\lambda_G]_i [\lambda_H]_j
\]

which implies \(\Lambda_{G \circ H} = \Lambda_G \otimes \Lambda_H\). Therefore

\[
G \circ H = (U_G \otimes U_H) \Lambda_{G \circ H} (U_G \otimes U_H)^\top \\
= (U_G \otimes U_H) (\Lambda_G \otimes \Lambda_H) (U_G \otimes U_H)^\top \\
= ((U_G \Lambda_G) \otimes (U_H \Lambda_H)) \left(U_G^\top \otimes U_H^\top\right) \\
= \left(U_G \Lambda_G U_G^\top\right) \otimes \left(U_H \Lambda_H U_H^\top\right) \\
= G \otimes H
\]

B.2. Cartesian Graph Product

Now suppose \(x \circ y = x + y\), it is not hard to see \(\Lambda_{G \circ H} = \Lambda_G \otimes I_n + I_m \otimes \Lambda_H\). By similar analysis as above we have

\[
G \circ H = G \otimes I_n + I_m \otimes H = G \oplus H.
\]

C. Proof of Proposition 1

Optimization (7) is equivalent to (1) when \(\circ\) is the Cartesian graph product, \(C_0 = C_1 + 2C_2\) and \(\kappa (z) = \left(1 - \frac{C_2}{\kappa_0} z \right)^{-1}\).

\(^1\)The “vec” operator concatenates the rows of a matrix into a single vector.
Proof. In this case, \(\kappa (G \circ H) = \left(I - \frac{C_2}{C_0} (G \oplus H) \right)^{-1} \).

We assume that both \(G \) and \(H \) have been symmetrically normalized during preprocessing, i.e. \(\mathcal{L}_G = I - G \) and \(\mathcal{L}_H = I - H \). Consider the regularization term in (1)

\[
\frac{C_0}{2} \text{vec}(F)^\top \left[\kappa (G \circ H) \right]^{-1} \text{vec}(F)
\]

\[
= \frac{C_0}{2} \|F\|^2_F - \frac{C_2}{C_0} \text{vec}(F)^\top (G \oplus H) \text{vec}(F)
\]

\[
= \frac{C_0}{2} \|F\|^2_F - \frac{C_2}{2} \text{vec}(F)^\top (G \otimes I_n + I_m \otimes H) \text{vec}(F)
\]

\[
= \frac{C_1}{2} \|F\|^2_F + \frac{C_2}{2} \left[\|F\|^2_F + \text{tr} \left((I - G) F \right) + \text{tr} \left(F (I - H) F^\top \right) \right]
\]

Plugging back the above expression to optimization (1) closes the proof. \(\square \)

D. Proof of Lemma 1

If \(\circ \) defines a spectral graph product (SGP), then

\[
\varphi_{o,\kappa}(F) := \text{vec}^{-1} \left(\left[\kappa (G \circ H) \right]^{-1} \text{vec}(F) \right) = U_G \left[\Sigma_{o,\kappa} \right] (U_G^\top F U_H)^\top U_H^\top
\]

(3)

where \(\ast \) is the matrix Hadamard (a.k.a. element-wise) product, \(\Sigma_{o,\kappa} \) is a \(m \times n \) matrix with each element defined as

\[
\left[\Sigma_{o,\kappa} \right]_{i,j} = 1/\kappa \left(|\lambda_G|_i \circ |\lambda_H|_j \right)
\]

(4)

Proof. First, let us derive the eigendecomposition of \(\left[\kappa (G \circ H) \right]^{-1} \).

According to Definition 5, \(G \circ H \) has the eigendecomposition \((U_G \otimes U_H) \Lambda_{G \circ H} (U_G \otimes U_H)^\top \) where \(\Lambda_{G \circ H}(i,j),(i,j) = |\lambda_G|_i \circ |\lambda_H|_j \). Since \(\kappa \) is a spectral transformation, we can directly apply it to the eigenvalues of \(G \circ H \). Therefore

\[
\left[\kappa (G \circ H) \right]^{-1} = \left[\kappa \left((U_G \otimes U_H) \left(\Lambda_{G \circ H} (U_G \otimes U_H)^\top \right) \right) \right]^{-1} = \left[(U_G \otimes U_H) \kappa \left(\Lambda_{G \circ H} (U_G \otimes U_H)^\top \right) \right]^{-1} = (U_G \otimes U_H) \left[\kappa \left(\Lambda_{G \circ H} \right) \right]^{-1} \left(U_G^\top \otimes U_H^\top \right)
\]

(5)

The last equality follows the definition of \(\Sigma_{o,\kappa} \) in (4).
Now, let us derive the expression for $\text{vec}(\varphi_{o,\kappa}(F))$

$$\text{vec}(\varphi_{o,\kappa}(F)) = (U_G \otimes U_H) \text{ diag}(\text{vec}(\Sigma_{o,\kappa})) \left(U_G^T \otimes U_H^T \right) \text{ vec}(F)$$

$$= (U_G \otimes U_H) \text{ diag}(\text{vec}(\Sigma_{o,\kappa})) \left(U_G^T FU_H \right)$$

$$= \text{ vec} \left(U_G \left[\Sigma_{o,\kappa} * \left(U_G^T FU_H \right) \right] U_H^T \right)$$

The lemma follows by applying vec^{-1} to both sides of the equation above.

\[\square \]

E. Proof of Theorem 1

For brevity we write $\Sigma_{o,\kappa}$ as Σ.

Suppose \circ is a spectral graph product. Let $\sum_{k=1}^{\text{rank}(\Sigma)} c_k u_k v_k^T$ be the eigendecomposition of Σ, and $r(G, u)$ be matrix G with its eigenvalues replaced by some other vector u. We have

$$\varphi_{o,\kappa}(F) = \sum_{k=1}^{\text{rank}(\Sigma)} c_k r(G, u_k) F r(H, v_k)$$

Proof. From Lemma 1 we have

$$\varphi_{o,\kappa}(F) = U_G \left[\Sigma * \left(U_G^T FU_H \right) \right] U_H^T$$

$$= U_G \left[\sum_{k=1}^{\text{rank}(\Sigma)} c_k u_k v_k^T * \left(U_G^T FU_H \right) \right] U_H^T$$

$$= \sum_{k=1}^{\text{rank}(\Sigma)} c_k U_G \left[\left(u_k v_k^T \right) * \left(U_G^T FU_H \right) \right] U_H^T$$

$$= \sum_{k=1}^{\text{rank}(\Sigma)} c_k U_G \left[\text{ diag}(u_k) \left(U_G^T FU_H \right) \text{ diag}(v_k) \right] U_H^T$$

$$= \sum_{k=1}^{\text{rank}(\Sigma)} c_k \left(U_G \text{ diag}(u_k) U_G^T \right) F \left(U_H \text{ diag}(v_k) U_H^T \right)$$

$$= \sum_{k=1}^{\text{rank}(\Sigma)} c_k r(G, u_k) F r(H, v_k)$$

\[\square \]

F. Proof of Corollary 1

If there exists σ_1, σ_2 such that for all $x, y \in \mathbb{R}$, $\frac{1}{\kappa(x \circ y)} \equiv \sigma_1(x) \sigma_2(y)$. Then

$$\varphi_{o,\kappa}(F) = \sigma_1(G) F \sigma_2(H)$$

(9)

If there exists σ_1, σ_2 such that for all $x, y \in \mathbb{R}$, $\frac{1}{\kappa(x \circ y)} \equiv \sigma_1(x) + \sigma_2(y)$. Then

$$\varphi_{o,\kappa}(F) = \sigma_1(G) F + F \sigma_2(H)$$

(10)
Proof. Define $\sigma_1 (\lambda) := (\sigma_1 (\lambda_1), \ldots, \sigma_1 (\lambda_m))$ and $\sigma_2 (\mu) := (\sigma_2 (\mu_1), \ldots, \sigma_2 (\mu_n))$. Notice

- $r (G, 1) \equiv 1$.
- $r (G, \sigma (u)) \equiv \sigma (G)$ if u is the eigenvalues of G.

The first condition $\frac{1}{\kappa (x \circ y)} \equiv \sigma_1 (x) \sigma_2 (y)$ implies that $\Sigma = 1 \cdot \sigma_1 (\lambda) \sigma_2 (\mu)^\top$, and the conclusion follows Theorem 1 with $\text{rank} (\Sigma) = 1, c_1 = 1, u_1 = \sigma_1 (\lambda)$ and $v_1 = \sigma_2 (\mu)$.

The second condition $\frac{1}{\kappa (x \circ y)} \equiv \sigma_1 (x) + \sigma_2 (y)$ implies that $\Sigma = 1 \cdot \sigma_1 (\lambda) 1_n^\top + 1 \cdot 1_m \sigma_2 (\mu)^\top$. The conclusion follows Theorem 1 with $\text{rank} (\Sigma) = 2, c_1 = c_2 = 1, u_1 = \sigma_1 (\lambda), v_1 = 1_n, u_2 = 1_m$ and $v_2 = \sigma_2 (\mu)$.

\qed