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Abstract
This paper addresses the problem of predicting
the missing edges of a bipartite graph where each
side of the vertices has its own intrinsic struc-
ture. We propose a new optimization framework
to map the two sides of the intrinsic structures
onto the manifold structure of the edges via a
graph product, and to reduce the original prob-
lem to vertex label propagation over the product
graph. This framework enjoys flexible choices in
the formulation of graph products, and supports
a rich family of graph transduction schemes with
scalable inference. Experiments on benchmark
datasets for collaborative filtering, citation net-
work analysis and prerequisite prediction of on-
line courses show advantageous performance of
the proposed approach over other state-of-the-art
methods.

1. Introduction
Machine learning applications to many important problems
involve predicting the missing edges in a bipartite graph
based on heterogeneous sources of information about both
the vertices and the edges. In recommendation systems,
for example, observed user-item interactions can be repre-
sented as the (weighted) edges in a bipartite graph where
the users are the vertices on the left and the items are ver-
tices on the right. In order to predict the unobserved user-
item interactions successfully, inference needs to be made
not only based on the observed edges, but also based on
additional information about the vertices, such as demo-
graphic data of users and textual descriptions about items.
The induced intrinsic structures within those vertices would
also be informative for inference, such as the graph of
user-user similarities and the graph of item-item similari-
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ties. The challenging question in context-aware collabora-
tive filtering (Melville et al., 2002; Basilico & Hofmann,
2004; Gu et al., 2010) therefore is how to jointly leverage
the rich and heterogeneous information about both the ob-
served edges and the vertices in the bipartite graph.

Other examples include citation network analysis (with
publications as the vertices on both sides of the bipartite
graph), multi-label text classification (with documents on
the left sides and categories on the right side of the bipartite
graph), question-answer mapping, host-pathogen interac-
tion modeling, prerequisite linkage within online courses,
and more. All of those problems can be viewed as Bipartite
Edge Prediction (BEP), whose success crucially depends
on how to jointly leverage the observed edges and the in-
trinsic structures within vertices.

A representative approach to BEP is matrix completion,
which has been intensively studied in recent machine learn-
ing (Mnih & Salakhutdinov, 2007; Candès & Recht, 2009).
Using a sparse matrix to record the observed edges in a bi-
partite graph, the prediction of the missing entries in this
matrix (i.e., the missing edges in the graph) is accom-
plished via dimensionality reduction. That is, by finding
a lower-dimensional vector space for the observed data,
the missing entries can be estimated by approximation. A
major weakness of such a matrix completion approach is
that the inference is based on observed edges only, ignor-
ing other information about vertices or the intrinsic mani-
folds among them. As a consequence, such methods cannot
effectively handle the cold-start problems in collaborative
filtering, for example, where new users or new items do not
have enough observed interactions for reliable inference.

Other representative works in BEP include a family of
tensor-kernel based approaches (Basilico & Hofmann,
2004; Yu et al., 2006; Brunner et al., 2012), which makes
a combined use of observed edges and additional informa-
tion about vertices. E.g., the tensor kernel can be used to
combine a matrix of user-user similarities based on demo-
graphic data of users and a matrix of item-item similarities
based text descriptions of items, and to obtain the induced
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kernel matrix of edge-edge similarities. Then a kernelized
supervised learning algorithm (such as Support Vector Ma-
chine or perceptron) can be used to obtain a statistical map-
ping from any missing edge to the class labels or graded rel-
evance with estimated confidence scores based on a train-
ing set of labeled edges. Yet another representative ap-
proach is referred to as Graph Regularized Matix Complec-
tion (Cai et al., 2011; Gu et al., 2010), which extends con-
ventional matrix completion with additional graph regular-
ization terms in the objective for optimization, and the reg-
ularization terms are defined based on the manifold struc-
tures among the vertices on each side of the bipartite graph.

Although the tensor kernels and graph-regularized matrix
completion methods are more powerful than matrix com-
pletion as they jointly exploit both the observed edges and
the intrinsic structures within vertices, they still have a fun-
damental limitation. That is, none of those methods explic-
itly model the intrinsic manifold among edges (observed
and unobserved) for transductive semi-supervised learning
in the prediction of missing edges. Recall that transduc-
tive graph learning has been intensively studied for solving
vertex classification or vertex label propagation problems
(Zhu et al., 2003; Zhu, 2005; Agarwal, 2006), where the
intrinsic manifold among unlabeled vertices is proven to
be useful for improving the prediction accuracy based on
some smoothness or manifold assumption within the ho-
mogeneous graph. Transductive learning should also be
useful for missing edge prediction in bipartite graphs, we
believe; however, such a potential has not been studied for
BEP so far.

Improving the current state of the art by proposing a new
transductive learning approach to BEP is our goal in this
paper. Specifically, we accomplish this goal with the fol-
lowing technical contributions:

(1) A unified optimization framework to establish a princi-
pled mapping from the original BEP problem to a ver-
tex label propagation problem over an induced prod-
uct graph, and to maximally leverage both the observed
(labeled) edges and unobserved (unlabeled) edges via
transductive semi-supervised learning (Sections 2);

(2) The principled solutions for constructing graph prod-
ucts (via a family of graph product operations), where
each edge in the original bipartite graph is mapped onto
a vertex in the product graph, and the intrinsic struc-
tures within the original vertices are used to define the
structure of vertices in the product graph (Section 3);

(3) A rich family of kernel mapping schemes which al-
low the graph transduction to be carried out in various
forms over different product graphs (Section 4);

(4) The scalable algorithms for transductive learning over
product graphs (Section 5);
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Figure 1. Two interactive graphs G (left) and H (right) with ver-
tex sets VG = {1, 2} and VH = {a, b, c}. Each graph is equipped
with its own intrinsic structure denoted by the dark curved lines.
Their interactions are modeled by the straight lines in the middle,
i.e. the edge set EB of the complete bipartite graph B. Given two
labeled (red) edges (1, a) and (2, b), our goal is to make predic-
tions on the unlabeled (gray) edges (1, b), (1, c), (2, a), (2, c).

(5) Thorough experiments with our approach and other
representative BEP methods on benchmark data sets in
collaborative filtering, citation network analysis, and
prerequisite prediction over online courses (Section 6).

2. The Unified Framework for BEP
Let us formally define the Bipartite Edge Prediction prob-
lem (BEP) first, and then show how to reduce BEP to a
vertex label propagation problem over an induced product
graph, and to optimize the transductive learning over the
product graph.

2.1. Bipartite Edge Prediction

For any graph G, we denote by VG , EG and G its vertex set,
edge set and adjacency matrix. Let UG and {[λG ]i}

|VG |
i=1

be
the eigenvectors and eigenvalues of G, respectively.

Given two graphs G and H, let B be a complete bipartite
graph with VB = {VG , VH} and EB = VG × VH. Suppose
EB can be partitioned into ElB and EuB where only edges in
ElB are labeled with T =

{
yij ∈ Y | (i, j) ∈ ElB

}
.

The bipartite edge prediction problem is defined as

Problem 1 (Bipartite Edge Prediction). Given G, H and
T , learn f : EB 7→ Y such that f accurately predicts the
labels over EuB.

This is illustrated in Figure 1.

2.2. Vertex Label Propagation over Product Graphs

Since the edges to label EuB are given, we consider a trans-
ductive learning strategy that propagates the labels T over
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Figure 2. The (Cartesian) product graph of G andH. Each vertex
corresponds to an edge of the complete bipartite graph B in Figure
1, and each edge encodes the similarity between two edges in B.
Now our task becomes: given two labeled (red) vertices (1, a) and
(2, b), to predict the remaining unlabeled (gray) vertices.

ElB to EuB. To enable such graph propagation, it would be
desirable to have the graph structure of EB, i.e. some graph
whose vertices are EB, and whose edge strengths code the
similarities among the elements in EB. Though such edge-
level graph manifold structure is not directly provided, it
can be induced by taking the graph product of G andH.

Definition 1 (Graph Product). Given some graph product
operator “◦”, the graph product of G and H, denoted by
G ◦H, is a graph with the vertex set VG◦H = VG × VH and
adjacency matrix G ◦H .

Note we have assumed that the graph product operator “◦”
also defines a matrix operator. Different realizations of “◦”
(i.e. different ways of computing the matrix G◦H) will be
discussed in detail in Section 3.

Once the product graph G ◦H is constructed, VG◦H ≡ EB,
and the affinity between any two edges (i, j) and (i′, j′) of
B is quantified by [G ◦H](i,j),(i′,j′). The labeled and un-
labeled edges in B, i.e. ElB and EuB are mapped onto V lG◦H
and V uG◦H, respectively. Only vertices in V lG◦H are labeled
with T =

{
yij ∈ Y | (i, j) ∈ V lG◦H

}
.

This suggests that BEP over B can be reduced to the fol-
lowing vertex label propagation problem over G ◦ H:

Problem 2 (Vertex Label Propagation). Given G ◦ H and
T , learn f : VG◦H 7→ Y such that f accurately predicts the
labels over V uG◦H.

This is illustrated in Figure 2.

2.3. Optimization Objective

For brevity we let m = |VG | and n = |VH|.

Denote by F ∈ Rm×n our estimation matrix where fij is
the function value of f evaluated on vertex (i, j) in VG◦H.
Given Problem 2, we consider the following graph regular-

ization framework over the product graph G ◦ H

min
F

LT (F ) +
C

2
vec (F )

>
[κ (G ◦H)]

−1
vec (F ) (1)

where vec : Rm×n 7→ Rmn concatenates the rows of F
into a single vector, LT : Rm×n 7→ R denotes some loss
function measuring the discrepancy between our estima-
tion matrix F and the ground truth T , κ : Rmn×mn 7→
Rmn×mn maps the adjacency matrix of the product graph,
i.e. G◦H , to a kernel matrix related to graph transduction.

In this paper, we restrict our attention to a representative
family of κ’s called the Spectral Transformation (ST).

Definition 2 (Spectral Transformation). Given some adja-
cency matrix A with eigendecomposition

∑
i λiuiu

>
i and

a scalar-valued function κ. The ST of A w.r.t. κ, denote by
κ (A), is defined as κ (A) =

∑
i κ (λi)uiu

>
i .

That is, the kernel mapping κ is a spectral transformation
if applying κ to an adjacency matrix amounts to applying
κ to each of its eigenvalues.

Graph transduction is crucial for leveraging unlabeled ver-
tices in vertex label propagation, and many famous graph
transduction schemes can be encoded with ST (Smola &
Kondor, 2003; Kunegis & Lommatzsch, 2009). As will be
discussed in more detail in Section 4, specifying different
κ in optimization (1) is equivalent to carrying out different
forms of graph transduction over the vertices of the product
graph G ◦ H, i.e. the edges of the bipartite graph B.

3. Constructing the Product Graph
As we can see from the previous section, the graph struc-
ture among the edges of B is coded in the adjacency matrix
G ◦H , which is a function of the graph product operator
“◦”. Here we are going to discuss about different kinds of
graph products and their intuitions.

We are going to start from two basic graph products: the
Tensor graph product (TGP) and the Cartesian graph prod-
uct (CGP). Then, we generalize TGP and CGP to a family
of graph products called the spectral graph product (SGP).

3.1. Tensor Graph Product

Definition 3 (TGP). The Tensor Graph Product of G and
H, denoted by G ⊗ H, has the adjacency matrix G ⊗H ,
where “⊗” is the Kronecker (Tensor) product.

Namely, for all (i, j) and (i′, j′) in VG⊗H:

[G⊗H](i,j),(i′,j′) := Gi,i′Hj,j′ (2)

Therefore, TGP defines the edge-level similarity in B (left-
hand side) as the product of two vertex-level similarities in
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G and H (right-hand side). In other words, TGP takes the
similarity between two edges (i, j) and (i′, j′) in B as the
similarity between two vertices i and i′ in G multiplied by
the similarity between two vertices j and j′ inH.

3.2. Cartesian Graph Product

Definition 4 (CGP). The Cartesian Graph Product of G
andH, denoted by G⊕H, has the adjacency matrix G⊕H ,
where “⊕” is the Kronecker sum.

Namely, for all (i, j) and (i′, j′) in VG⊕H:

[G⊕H](i,j),(i′,j′) := Gi,i′1{j=j′} + 1{i=i′}Hj,j′ (3)

where the indicator function 1{·} equals to one if the con-
dition inside the brackets is satisfied and equals to zero oth-
erwise. Hence CGP considers two edges in B to be similar
only when they share at least one mutual vertex in G orH.

3.3. Random Walk Interpretations

For any graph G, let us assume its adjacency matrix G has
been normalized as the transition matrix of a random walk
over G, i.e. G is doubly stochastic. In this case Gi,i′ is
the probability for the random walker on G to travel from a
state (vertex) i to another state i′.

According to (2), it is not hard to see that the random
walk over G ⊗ H amounts to two “synchronized” random
walks on G and H (Vishwanathan et al., 2010). In each
move, walkers on G and H simultaneously and indepen-
dently travel to their next state. Each joint state of the two
walkers corresponds to a vertex in the product graph G⊗H,
i.e. an edge in the bipartite graph B we concern about.

When self-loops are added to every vertex in G and H be-
fore computing their TGP, the two random walks on both
graphs become “lazy” (Zhou & Schölkopf, 2004). This ad-
ditional self-reinforcement can be crucial—otherwise ac-
cording to (2), and since Gi,i ≡ 0 and Hj,j ≡ 0, any two
edges in B with a mutual vertex will have zero similarity.

By similar analysis, the random walk over G ⊕H amounts
to two “asynchronized” random walks over G and H. In
each move, one of G and H is chosen with equal proba-
bility, and only the random walker on the chosen graph is
allowed to travel. If G is chosen, only G’s random walker
will travel from i to i′ with probability Gi,i′ ; otherwise,
onlyH’s random walker will travel from j to j′ with prob-
ability Hj,j′ .

3.4. The Generalization: Spectral Graph Products

Now let us generalize TGP and CGP to a broader family of
graph products. The family gives a unified characterization
of the graph products which we are interested in, and can
lead to efficient optimization (Section 5).

Definition 5 (SGP). “◦” is called the spectral graph prod-
uct if for any G andH, the adjacency matrix of the product
graph G ◦ H has the eigendecomposition

G ◦H := (UG ⊗UH)ΛG◦H (UG ⊗UH)
> (4)

where ΛG◦H is a diagonal matrix in Rmn×mn with
[ΛG◦H](i,j),(i,j) = [λG ]i ◦ [λH]j; “◦” is overloaded to be
a scalar-valued binary operator ◦ : R+ × R+ 7→ R+ such
that i) x ◦ y ≡ y ◦x, ii) x ◦ y is nondecreasing in both x, y.

Note that both TGG and CGP are special cases of SGP—it
is not hard to verify that (4) leads to TGP when x◦y = xy,
and CGP when x ◦ y = x+ y. This also suggests that TGP
and CGP are fundamental in that they can be viewed as the
arithmetic multiplication and addition in the SGP family.

If both G and H are positive semidefinite, by Definition 5
we conclude that G◦H must also be positive semidefinite.
In this case, (1) is always a desirable convex optimization
problem, provided that LT is a convex loss function and κ
preserves positive semidefiniteness.

4. Transduction over Product Graphs
Recall that our optimization framework (Section 2) has two
key ingredients: the graph product operator ◦ and the ker-
nel mapping κ. The former specifies how a product graph
(edge manifold) should be induced, and the later specifies
how the graph transduction should be carried out over such
a product graph. In this section, we show how to take dif-
ferent combinations of graph product operations and κ’s
to define a rich family of transductive learning models for
BEP, starting from the kernel mapping schemes (restricted
to the spectral transformation family).

4.1. Kernel Mapping Schemes

The regularization term in the optimization objective of for-
mula (1) can be viewed as a Gaussian prior over the esti-
mation matrix F , i.e.,

vec (F ) ∼ N (0mn, κ (G ◦H)) (5)

where 0mn is an all-zero vector in Rmn. Given ◦, κ speci-
fies the covariance matrix in the Gaussian prior. Choosing
different κ allows us to inject our beliefs into the formula-
tion of transduction over a product graph.

Let us use the exponential kernel κ (z) := exp (z) as a con-
crete example. In this case, κ (G ◦H) = exp (G ◦H) =∑∞
t=0

1
t! (G ◦H)

t. If G◦H encodes the transition proba-
bilities across the edges in bipartite graphB, this essentially
entails the infinite random walk (Kondor & Lafferty, 2002)
over the intrinsic manifold within the edges. Other repre-
sentative kernel mapping schemes we study in this paper
are listed in Table 1 (column 3), including:



Bipartite Edge Prediction via Transductive Learning over Product Graphs

• fixed-step random walk, where α specifies the number
of steps and (G ◦H)

α are the transition probabilities;

• von-Neumann kernel for graph-Laplacian based man-
ifold regularization (to be discussed in Section 4.3);

• sigmoid kernel, which can be viewed as a composition
of the exponential and the von-Neumann kernel.

4.2. Graph-product based Transduction Models

In Table 1 we list some examples of the transduction mod-
els with different combinations of graph products (columns
1&2) and kernel mapping schemes (columns 3&4), and
important factors (columns 5&6) for the algorithm design
of each model (Section 5). In the next two sections, we
pick two Cartesian-product based models to illustrate their
interpretations, including the connection to representative
works in vertex label propagation 1.

4.3. Cartesian product with von-Neumann Kernel

This corresponds to the transduction model in the fourth
row of Table 1. Now we show that this combination is re-
lated to Laplacian-based manifold regularization, and is the
generalization (for BEP problems) of typical approaches to
vertex label propagation (Zhu, 2005; Zhu et al., 2003).

Given any graph G with adjacency matrix G, let D be a di-
agonal degree matrix with dii =

∑
kGi,k. The normalized

graph Laplacian of G is defined asLG := I−D−
1
2GD−

1
2 .

For simplicity we will assume G has already been symmet-
rically normalized during preprocessing, thus LG = I−G.

Recall that F is an estimation matrix where fij corresponds
to the function value of f evaluated on edge (i, j) in EB.
Reinforcing a smooth transition of f across the vertices in
G requires the following quantity to be set small:∑

i∈VG

∑
i′∈VG

Gi,i′‖F i,: − F i′,:‖22 ≡ tr
(
F>LGF

)
(6)

where F i,: stands for the i-th row of our estimation matrix
F about edges (i.e. strengths for the out-links of vertex i in
G). The similar analysis applies to graphH.

To reinforce smooth transductions over both G andH, con-
sider the following manifold regularization objective

min
F

LT (F ) +
C1

2
‖F ‖2F

+
C2

2
tr
(
F>LGF

)
+
C2

2
tr
(
FLHF>

) (7)

1Although we choose to only focus on a few interesting com-
binations of graph products and κ’s in this paper, our framework
is more general for many other combinations. We leave those op-
portunities for future research

Comparing the objective in (7) to those in typical manifold-
based vertex label propagation problems, the only differ-
ences are that each vertex is associated with a vector value
(the column or row of F ) instead of a scalar, and we have
the regularization terms for two graphs (G and H) instead
of a single graph (G).

The following indicates optimization (7) can be equivalent
to (1) with κ specified to be the von-Neumann kernel.
Proposition 1. Optimization (7) is equivalent to optimiza-
tion (1) if ◦ is the Cartesian graph product (i.e. x ◦ y ≡
x+ y), C = C1 + 2C2 and κ (z) =

(
1− C2

C z
)−1

.

4.4. Cartesian product with Exponential Kernel

This corresponds to the transduction model in the second
row of Table 1. The following shows that this model con-
nects together the Cartesian and the Tensor graph product.

Applying the exponential kernel to the Cartesian product
graph amounts to setting the covariance matrix of the Gaus-
sian prior to exp (G⊕H). Notice that the following nice
equivalence holds (Neudecker, 1969)

exp (G⊕H) = exp (G)⊗ exp (H) (8)

In other words, an infinite random walk over the Cartesian
product graph is equivalent to the Tensor graph product of
the two infinite random walks over G and H , respectively.

5. Optimization Algorithms
Although our proposed framework enjoys the nice property
of allowing various forms of edge-level graph transduction,
the induced product graph is typically extremely large thus
leads to nontrivial optimization.

In this section, we focus on speeding up the gradient com-
putation of the criterion function in optimization (1), which
is the building block for many optimization routines. Af-
ter examining the bottleneck of gradient computation, we
show that the gradient can be computed much more effi-
ciently when ◦ belongs to the SGP family. Then, we give a
generic characterization about in what cases (i.e. for which
combinations of ◦ and κ) the gradient can be concisely ex-
pressed, and in what cases the optimization efficiency can
be further boosted by restricting the rank of F .

5.1. Bottleneck of Gradient Computation

The gradient of (1) can be expressed as

∇F = ∇LT (F ) + Cϕ◦,κ (F ) (9)

where we have used ϕ◦,κ (F ) as a shorthand for the gradi-
ent of the graph regularization term

ϕ◦,κ (F ) := vec−1
(
[κ (G ◦H)]

−1
vec (F )

)
(10)
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Table 1. Graph-product based Transduction Models

GRAPH PRODUCT x ◦ y := z TRANSDUCTION κ (z) rank (Σ) ϕ◦,κ (F )

TENSOR xy RANDOM WALK zα 1 G−αFH−α

CARTESIAN x+ y EXPONENTIAL exp (αz) 1 exp (−αG)F exp (−αH)
TENSOR xy VON-NEUMANN (1− αz)−1 2 F − αGFH
CARTESIAN x+ y VON-NEUMANN (1− αz)−1 3 F − αGF − αFH
CARTESIAN x+ y SIGMOID (1 + exp (−αz))−1 2 F + exp (−αG)F exp (−αH)

One has to compute ϕ◦,κ (F ) in order to compute the gra-
dient ∇F . Unfortunately, computing ϕ◦,κ (F ) according
to (10) is prohibitively expensive in both space and time,
due to the huge mn ×mn size of G ◦H , the presence of
κ (which can lead to a fully dense mn×mn kernel matrix
κ (G ◦H) even when G◦H is sparse), and the presence of
matrix inverse operation. More specifically, each gradient
step will consume O

(
m2n2

)
in both time and space, as-

suming [κ (G ◦H)]
−1 is already somehow precomputed.

5.2. Efficient Gradient Computation with SGP

The following lemma indicates that ϕ◦,κ (F ) can be com-
puted much more efficiently if ◦ is a spectral graph product.
Lemma 1. If ◦ defines a SGP, then

ϕ◦,κ (F ) = UG

[
Σ◦,κ ∗

(
U>GFUH

)]
U>H (11)

where ∗ is the matrix Hadamard (a.k.a. element-wise) prod-
uct, Σ◦,κ is am×nmatrix with each of its elements defined

as [Σ◦,κ]ij = 1
/
κ
(
[λG ]i ◦ [λH]j

)
.

Lemma 1 indicates as long as the eigensystems of G and H
are precomputed and ◦ defines a SGP, the computation of
ϕ◦,κ (F ) does not require the explicit construction of G ◦
H . It allows us to compute ϕ◦,κ (F ) in O (mn (m+ n))

time and O
(
(m+ n)

2
)

space, far more efficient than the

O
(
m2n2

)
complexity using the naive approach.

In (11) we see Σ◦,κ := Σ play as the key quantity, since
it summarizes all the information about our choices of the
graph product ◦ and the kernel mapping κ. In the extreme
case where Σ is a constant matrix, ϕ◦,κ (F ) will degener-
ate to the gradient of the squared Frobenius norm of F .

Theorem 1. If ◦ is a SGP, let
∑rank(Σ)
k ckukv

>
k be the

eigendecomposition of Σ, and r (G,u) be matrix G with
its eigenvalues replaced by some other vector u. We have

ϕ◦,κ (F ) =

rank(Σ)∑
k=1

ckr (G,uk)F r (H,vk) (12)

Theorem 1 provides an alternative approach to compute
ϕ◦,κ (F ). The summation might appear to be cumbersome

at the first glance. However, interestingly, we observe that
the rank of Σ, i.e. rank (Σ), is bounded by a very small in-
teger (typically ≤ 3) for many different combinations of ◦
and κ. For those listed in Table 1, we put their correspond-
ing rank (Σ) and the expression of ϕ◦,κ (F ) derived from
Theorem 1 in the last two columns.

Corollary 1. If there exists σ1, σ2 such that for all x, y ∈
R, 1

κ(x◦y) ≡ σ1 (x)σ2 (y). Then

ϕ◦,κ (F ) = σ1 (G)Fσ2 (H) (13)

Similarly, if there exits σ1 and σ2 such that for all x, y ∈ R,
1

κ(x◦y) ≡ σ1 (x) + σ2 (y). Then

ϕ◦,κ (F ) = σ1 (G)F + Fσ2 (H) (14)

Corollary 1 provides us some useful insights about under
what cases ϕ◦,κ (F ), and therefore ∇F , can be expressed
concisely. As an example, consider the SGP x◦y = xp+yq

and the kernel mapping κ (z) = exp (z), we have 1
κ(x◦y) ≡

(ex)
−p

(ey)
−q . According to the corollary

ϕ◦,κ (F ) = [exp (G)]
−p

F [exp (H)]
−q (15)

5.3. Optimization with Rank Constraint

So far we have been discussing about how to jointly exploit
the structures in both G and H. Sometimes, we believe
that the true labels over the edges of B are also structured.
For example, a popular assumption is that F should have
a low-rank nature, i.e. rank (F ) ≤ d � min (m,n). This
additional constraint has the following two advantages:

First, in the extreme case where neither G nor H is infor-
mative (e.g. G and H are identity matrices), we still have
the hope to recover the missing edges in B according to
the theory of low-rank matrix recovery (Candès & Recht,
2009). This suggests that the low-rank structural informa-
tion in F , to some extent, is orthogonal to the graph struc-
tural information in G andH. Thus this additional low-rank
assumption can be used to enhance our BEP framework.

Second, by assuming F = UV > where U ∈ Rm×d and
V ∈ Rn×d, the number of free variables to be optimized
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in problem (1) is substantially reduced. As in existing fast
matrix factorization approaches (Rennie & Srebro, 2005),
alternatively optimizing w.r.t. thin matrices U and V may
lead to improved computational efficiency.

Ideally, the cost of gradient computation should decrease as
d decreases, namely as U and V become thinner. However,
this is not true if we computeϕ◦,κ (F ) according to Lemma
(1), due to the presence of the Hadamard product.

Fortunately, Theorem 1 allows the gradient computation to
benefit from the rank constraint over F , by which the com-
plexity for ϕ◦,κ (F ) is O

(
d
(
m2 + n2

)
rank (Σ)

)
. Notice

rank (Σ) is typically a very small constant (Table 1), we
have O

(
d
(
m2 + n2

)
rank (Σ)

)
≈ O

(
d
(
m2 + n2

))
�

O (mn (m+ n)), hence we can get huge computation sav-
ings via (12) by restricting d to be small.

6. Experiments
We conducted experiments with various kinds of BEP (Bi-
partite Edge Prediction) problems, including those in col-
laborative filtering, citation network analysis, and prereq-
uisite prediction for online courses.

6.1. Tasks and Datasets

• Collaborative Filtering: We used MovieLens-100K,
a benchmark data set in collaborative filtering where
the task is to predict the unknown ratings for new user-
movie pairs. The bipartite graph B in this case has the
vertex sets VG , VH and the edge set EB correspond-
ing to 943 users, 1682 movies and 105 ratings, respec-
tively. Each user is provided with a binary vector indi-
cating his/her gender and occupation, and each movie
is provided with a binary vector indicating its genre.

• Citation Network Analysis: We also used Cora (Sen
et al., 2008), including 2708 publication records and
5429 citation links, which has been commonly used in
citation network analysis where the task is to predict
the relevance of unknown citations for each “query”
publication. The bipartite graph in this case has iden-
tical VG and VH, i.e., both correspond to the publica-
tion (document) set, and the edge set EB corresponds
to the citation links. Each document is also provided
with a binary vector, indicating the within-document
presence or absence of each word in the vocabulary.

• Prerequisite Prediction: Courses2 (Yang et al., 2015)
is a new set of course descriptions and prerequisite
links we collected from the web sites of Massachusetts
Institute of Technology (2322 courses, 1173 links),
California Institute of Technology (1048 courses, 761
links), Princeton University (56 courses, 90 links)

2http://nyc.lti.cs.cmu.edu/teacher/dataset/

and Carnegie Mellon University (83 courses and 150
links). For each institution, the bipartite graph B has
identical vertex sets VG and VH, corresponding to the
courses, and the edges inEB indicate the perquisite re-
lations among courses. Each course is provided with
a bag-of-words representation based on the course de-
scription. The task is to predict the strength for each
unknown edge in EB.

All the above data were used in 5-fold cross validation set-
tings: we used 60% of the data for training, 20% for pa-
rameter tuning, and 20% for testing. By rotating the 5-
fold training/validating/test subsets we measure the perfor-
mance of each method on average.

Based on the features of the vertices, we construct G andH
as sparse, symmetrized kNN graphs under cosine similar-
ity. The value of k is tuned during cross validation.

6.2. Evaluation Metrics

For evaluating BEP methods in citation network analysis
and prerequisite prediction, each vertex on the left side of
the bipartite graph is treated as a query, and the system-
produced ranked list of unknown edges in EB is evaluated
using the standard metrics of the Mean Average Precision
(MAP), the Area Under the Curve (AUC) of ROC, and
the Normalized Discounted Cumulative Gain (NDCG). All
those metrics have been commonly used in the benchmark
evaluations of ranked lists.

For evaluating BEP methods in collaborative filtering,
MAP and AUC do not apply because they are defined for
binary relevance judgments but MovieLens has multi-scale
ratings (1-5). On the other hand, NDCG is well-defined
for multi-scale relevance judgments which has been com-
monly used in collaborative filtering evaluations (Weimer
et al., 2007; Rendle et al., 2009; Balakrishnan & Chopra,
2012), and therefore is our choice of metric for this task.

6.3. Results of Proposed Methods

We conducted controlled experiments with all the proposed
models in Table 1. For collaborative filtering we use mean
squared error (MSE) as the loss function, and for other two
tasks we use the pairwise ranking loss.

In our result summary (Table 2), we name these methods
as BEP with a subscript (for the type of graph product) and
superscript (for the formulation of the kernel mapping κ).
For example, BEPexp⊕ means BEP with an exponential ker-
nel over the Cartesian product graph.

From Table 2 we see that BEPexp⊕ , i.e. exponential kernel
over the Cartesian product graph, yields the best overall
performance. This empirically justifies the effectiveness of
the infinite random walk we discussed in Section 4.
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Table 2. Results of our methods
Dataset Method MAP AUC ndcg@3

Courses
BEPrw⊗ 0.488 0.827 0.461
BEPexp⊕ 0.518 0.872 0.500
BEPvon⊗ 0.472 0.861 0.449
BEPvon⊕ 0.366 0.531 0.359
BEPsig⊕ 0.443 0.617 0.431

Cora
BEPrw⊗ 0.222 0.764 0.205
BEPexp⊕ 0.256 0.884 0.232
BEPvon⊗ 0.230 0.853 0.211
BEPvon⊕ 0.218 0.633 0.212
BEPsig⊕ 0.192 0.443 0.188

MovieLens
BEPrw⊗ - - 0.7695
BEPexp⊕ - - 0.7702
BEPvon⊗ - - 0.7720
BEPvon⊕ - - 0.7624
BEPsig⊕ - - 0.7650

6.4. Comparison with Baseline Methods

We further conducted experiments with other representa-
tive methods in the literature as strong baselines, including:

• Matrix Completion (MC) has been a common ap-
proach to the prediction of the missing entries in a
sparse input matrix via matrix factorization (Mnih &
Salakhutdinov, 2007; Kapicioglu et al., 2014). Those
methods do not exploit any intrinsic structure within
the vertex sets of G orH as a common limitation.

• Graph Regularized Matrix Completion (GRMC)
extends conventional matrix completion with addi-
tional graph regularization based on the manifold
structures of G and H (Cai et al., 2011; Gu et al.,
2010). The GRMC approach is similar to ours in the
sense of simultaneously leveraging the manifold infor-
mation on each side of the bipartite graph. The main
difference is that we combine the manifolds of G and
H into a single product graph, and leverage the in-
duced manifold structure of edges in B to enable edge-
based graph transduction across edges, while GRMC
does not explicitly model the manifold of edges or the
transduction over the edges.

• Tensor Kernel (TK) constructs the kernel matrix for
the edges in B by taking the tensor product of the ker-
nel matrices of G’s and H’s (Basilico & Hofmann,
2004; Yu et al., 2006; Brunner et al., 2012). The ten-
sor kernel is then used in supervised learning of edge
weight prediction (e.g., using a perceptron algorithm)
or edge classification (e.g., using SVM). Although this
approach explicitly constructs the similarity measure
among B’s edges, it does not leverage transductive
learning among those edges.

For fair comparisons, we adapted all the baseline methods
to use the same loss function as our proposed method. Ta-
ble 3 summarizes the results of the baselines and our best
method, i.e., BEPexp⊕

3.

Table 3. Results of the baseline methods and our method
Dataset Method MAP AUC ndcg@3

Courses
MC 0.319 0.758 0.294

GRMC 0.366 0.777 0.343
TK 0.449 0.810 0.446

BEPexp⊕ 0.490 0.838 0.473

Cora
MC 0.101 0.697 0.086

GRMC 0.115 0.702 0.101
TK 0.248 0.872 0.231

BEPexp⊕ 0.268 0.894 0.243

MovieLens
MC - - 0.748

GRMC - - 0.752
TK - - 0.718

BEPexp⊕ - - 0.765

According to Table 3, TK outperforms GRMC on Courses
(link sparsity: 0.33%) and Cora (link sparsity: 0.074%),
but not on MovieLens (link sparsity: 6.3%). This suggests
that MC-based approaches tend to work better when the
observed edges in the bipartite graph B is relatively dense.

In Table 3 we also see our proposed method BEPexp⊕ con-
sistently outperforms other baselines in all the tasks under
all three metrics. This justifies our intuition that transduc-
tive learning over the manifold (induced via graph product)
of edges in the bipartite graph is useful for BEP problems.

7. Conclusion
We presented a novel approach to bipartite edge prediction
by reducing the original problem to a vertex label propa-
gation problem over product graphs. It enables us to si-
multaneously exploit both the partially labeled edges and
the intrinsic structures within the vertices on both sides of
the bipartite graph in a principled manner, and to effec-
tively leverage both labeled edges and unlabeled edges via
transductive learning over the product graphs. We showed
that the optimization can be efficiently implemented for
rich combinations of graph products and graph transduc-
tion schemes. Our experiments demonstrated the advanta-
geous performance of our proposed approach over strong
baselines in real-world BEP tasks.
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Kunegis, Jérôme and Lommatzsch, Andreas. Learning
spectral graph transformations for link prediction. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pp. 561–568. ACM, 2009.

Melville, Prem, Mooney, Raymond J, and Nagarajan, Ra-
madass. Content-boosted collaborative filtering for im-
proved recommendations. In AAAI/IAAI, pp. 187–192,
2002.

Mnih, Andriy and Salakhutdinov, Ruslan. Probabilistic
matrix factorization. In Advances in neural information
processing systems, pp. 1257–1264, 2007.

Neudecker, H. A note on kronecker matrix products and
matrix equation systems. SIAM Journal on Applied
Mathematics, 17(3):603–606, 1969.

Rendle, Steffen, Freudenthaler, Christoph, Gantner, Zeno,
and Schmidt-Thieme, Lars. Bpr: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence, pp. 452–461. AUAI Press, 2009.

Rennie, Jasson DM and Srebro, Nathan. Fast maximum
margin matrix factorization for collaborative prediction.
In Proceedings of the 22nd international conference on
Machine learning, pp. 713–719. ACM, 2005.

Sen, Prithviraj, Namata, Galileo Mark, Bilgic, Mustafa,
Getoor, Lise, Gallagher, Brian, and Eliassi-Rad, Tina.
Collective classification in network data. AI Magazine,
29(3):93–106, 2008.

Smola, Alexander J and Kondor, Risi. Kernels and regu-
larization on graphs. In Learning theory and kernel ma-
chines, pp. 144–158. Springer, 2003.

Vishwanathan, S Vichy N, Schraudolph, Nicol N, Kondor,
Risi, and Borgwardt, Karsten M. Graph kernels. The
Journal of Machine Learning Research, 11:1201–1242,
2010.

Weimer, Markus, Karatzoglou, Alexandros, Le, Quoc Viet,
and Smola, Alex. Maximum margin matrix factorization
for collaborative ranking. Advances in neural informa-
tion processing systems, 2007.

Yang, Yiming, Liu, Hanxiao, Carbonell, Jaime G., and Ma,
Wanli. Concept graph learning from educational data.
In Proceedings of the Eighth ACM International Con-
ference on Web Search and Data Mining, WSDM 2015,
Shanghai, China, February 2-6, 2015, pp. 159–168,
2015. doi: 10.1145/2684822.2685292. URL http:
//doi.acm.org/10.1145/2684822.2685292.

Yu, Kai, Chu, Wei, Yu, Shipeng, Tresp, Volker, and Xu,
Zhao. Stochastic relational models for discriminative
link prediction. In Advances in neural information pro-
cessing systems, pp. 1553–1560, 2006.

Zhou, Dengyong and Schölkopf, Bernhard. A regulariza-
tion framework for learning from graph data. 2004.

Zhu, Xiaojin. Semi-supervised learning literature survey.
2005.

Zhu, Xiaojin, Ghahramani, Zoubin, Lafferty, John, et al.
Semi-supervised learning using gaussian fields and har-
monic functions. In ICML, volume 3, pp. 912–919,
2003.

http://doi.acm.org/10.1145/2684822.2685292
http://doi.acm.org/10.1145/2684822.2685292

