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Abstract
We explore the benefits of strongly convex free
energies in variational inference, providing both
theoretical motivation and a new meta-algorithm.
Using the duality between strong convexity and
stability, we prove a high-probability bound on
the error of learned marginals that is inversely
proportional to the modulus of convexity of the
free energy, thereby motivating free energies
whose moduli are constant with respect to the
size of the graph. We identify sufficient con-
ditions for Ω(1)-strong convexity in two popu-
lar variational techniques: tree-reweighted and
counting number entropies. Our insights for the
latter suggest a novel counting number optimiza-
tion framework, which guarantees strong con-
vexity for any given modulus. Our experiments
demonstrate that learning with a strongly con-
vex free energy, using our optimization frame-
work to guarantee a given modulus, results in
substantially more accurate marginal probabili-
ties, thereby validating our theoretical claims and
the effectiveness of our framework.

1. Introduction
Though marginal inference in general graphical models is
an intractable problem, many approximations have been
proposed using the variational free energy. Much of this
research has focused on the convexity of the free energy.
When it is convex, convergence to a global minimum is
guaranteed. Less attention has been paid to when the free
energy is strongly convex (i.e., has curvature), and what
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benefits this offers. In this work, we show that learning
with a strongly convex free energy results in more accu-
rate marginal probabilities. Our contributions include: a
theoretical motivation for using strongly convex free ener-
gies, a framework for optimizing the strength of convexity
in many variational methods, and experimental evaluation.

We frame our theoretical analysis in stability, which mea-
sures the inference algorithm’s robustness to perturbation.
One way to characterize stability is the Lipschitz gradi-
ent condition (Hiriart-Urruty & Lemaréchal, 2001), which
is the dual of strong convexity. Using this duality and
the variational form of the log-partition function, we show
that strongly convex free energies result in more stable
marginals. Further, we argue that a simply convex free
energy cannot satisfy this stability guarantee. Using our
stability result, we prove an error bound for the marginals
of a model that is learned using strongly convex variational
inference. The error bound is inversely proportional to the
modulus of convexity (i.e., amount of curvature) of the free
energy, thereby highlighting an important consideration for
strongly convex free energies: the modulus should be con-
stant with respect to the size of the graph, |G|.

Based on the above insights, we aim to identify free en-
ergies that are strongly convex, and when their respective
moduli of convexity are constant with respect to |G|. We
consider two popular variational methods: tree-reweighted
(Wainwright et al., 2005) and counting number (Heskes,
2006) entropies. Using the notion of contraction, we give
model-dependent conditions under which the negative tree-
reweighted entropy is Ω(1)-strongly convex. We then pro-
pose new sufficient conditions to characterize the modu-
lus of convexity for counting number entropies. We use
this to derive a novel counting number optimization that
yields κ-strongly convex free energies, for any κ > 0, in-
dependent of the model parameters. This optimization can
“strongly convexify” any entropy approximation that can
be expressed via counting numbers, which includes many
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used in practice (e.g., Bethe and tree-reweighted).

We demonstrate the practical impact of our theory in a set
of experiments on challenging grid-structured models. Our
empirical results suggest that strongly convex free energies
can dramatically improve the quality of marginal inference,
and that our counting number optimization reduces the er-
ror of learned marginals by over 40%. These findings in-
dicate that having a tunable modulus can offer substantial
benefit in practice.

1.1. Related Work

Our theoretical motivation, which connects strong convex-
ity and stability to error bounds, is primarily related to two
previous studies. Wainwright (2006) argued that, when ap-
proximate inference is necessary, using an inconsistent M -
estimator is sometimes better than using the true model. He
motivated this conclusion with an error bound that lever-
ages the stability of strongly convex variational inference.
Whereas Wainwright’s bound is asymptotic, and tied to a
specific generative process, our error bound is general and
holds with high probability over draws of a finite training
set. Moreover, our results are more explicit about the role
of the modulus of convexity, which highlights the impor-
tance of it being independent of the graph size. The other
related line of work is from London et al. (2013; 2014),
who derived PAC learning bounds for structured predic-
tion. Their bounds crucially rely on a form of “collective”
stability that is guaranteed by L1 strongly convex free en-
ergies. We distinguish our error bound from these by our
proof technique, which uses L2 strong convexity, and that
we are interested in learning accurate marginals, not just
maximizing the marginal probability of the correct label.

The study of convex free energies in approximate infer-
ence has a long history. Approaches can be broadly catego-
rized by their approximation of the negative entropy term.1

Wainwright et al.’s (2005) tree-reweighted approximation
decomposes the entropy into a convex combination of tree
entropies, each of which is convex. Wainwright (2006)
later showed that this approximation is in fact strongly con-
vex, though his lower bound on the modulus decreases as
a function of the size of the graph. Another decomposi-
tion approach, due to Globerson & Jaakkola (2007), re-
places the entropy with a sum of conditional entropies.
This approximation is provably convex, but not strongly
convex. Heskes (2006) proposed general sufficient condi-
tions, based on counting (or, “over-counting”) numbers, to
establish the convexity of the Bethe and Kikuchi approxi-
mations. This work inspired a wave of research in count-
ing number-based approximations (e.g., Weiss et al., 2007;
Hazan & Shashua, 2008; Meltzer et al., 2009; Meshi et al.,

1Since most of these approximations use the same local relax-
ation of the marginal polytope, we focus on the entropy.

2009). Hazan & Shashua (2008) used a slight modification
of Heskes’s conditions to guarantee strict convexity, which
guarantees a unique global minimum, but does not identify
a modulus. To our knowledge, our sufficient conditions are
the first to identify when the counting number entropy is
strongly convex, with a known modulus.

2. Background and Notation
We first introduce notation and review some concepts that
will be used in our analysis. We consider the follow-
ing class of Markov random fields (MRFs). Let Y ,
{e1, . . . , e`} denote a set of ` labels, represented by the
`-dimensional standard basis (a.k.a. “one-hot”) vectors.
Let Y , (Y1, . . . , Yn) denote a set of random variables,
each with domain Y . Let G , (V, E) denote an undi-
rected graph, whose edges correspond to interactions be-
tween variables. We refer to |G| , |V| + |E| as the size of
the graph. The model is parameterized by a set of potential
functions, organized according to the nodes and edges of
G. Given an assignment, y ∈ Yn, let θv(yv) denote the
potential for node v ∈ V being in state yv ∈ Y , and let
θe(ye) denote the potential for edge e = {u, v} ∈ E being
in state ye = yu ⊗ yv . Since yv and ye are standard ba-
sis vectors, we can represent the potentials as vectors, such
that θv(yv) = θv · yv and θe(ye) = θe · ye. With

θ , ((θv)v∈V , (θe)e∈E) and ŷ , ((yv)v∈V , (ye)e∈E) ,

we can then express the aggregate potential for y as a dot
product, θ · ŷ =

∑
v∈V θv(yv) +

∑
e∈E θe(ye). This de-

scribes a log-linear distribution,

p(Y = y;θ) , exp
(
θ · ŷ − Φ(θ)

)
,

where Φ(θ) , log
∑

y′ exp(θ · ŷ′) is a normalizing func-
tion known as the log-partition function.

The log-partition is convex in θ, and has a well-known
variational form (Wainwright & Jordan, 2008), Φ(θ) =
maxµ∈M θ · µ − Φ∗(µ), whereM is the marginal poly-
tope—the set of all consistent marginal vectors—and Φ∗

is the convex conjugate of Φ. In the model we consider,
Φ∗(µ) is equal to the negative entropy of the distribution
consistent with marginals µ.2 The negative of the quan-
tity being maximized is often referred to as the free energy,
E(µ;θ) , −θ · µ + Φ∗(µ). The gradient of Φ(θ) is the
maximizing µ (i.e., minimizer of E), which corresponds to
the marginal distributions of Y1, . . . , Yn. We denote this by

µ(θ) , arg min
µ∈M

E(µ;θ) = ∇Φ(θ).

Unfortunately, for general graph structures, M may re-
quire an exponential number of constraints, and Φ∗ may

2See Wainwright & Jordan (2008) for a precise definition.
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lack an explicit form. Many variational methods address
these problems by relaxingM to an outer bound that uses
a polynomial number of “local” constraints, and replacing
Φ∗ with a tractable approximation, Φ̃∗. The local marginal
polytope, M̃ ⊇M, is typically defined as follows:

M̃ ,

{
µ̃ :

∀v ∈ V,
∑`
j=1 µ̃

j
v = 1 ;

∀e ∈ E , ∀v ∈ e,
∑`
i=1 µ̃

ij
e = µ̃jv

}
.

We call each µ̃ ∈ M̃ a set of pseudomarginals. With a
slight abuse of notation, let Ẽ(µ̃;θ) , −θ · µ̃+Φ̃∗(µ̃) de-
note a variational free energy for Φ̃∗ and M̃, let Φ̃(θ) ,
maxµ̃∈M̃−Ẽ(µ̃;θ) denote the convex conjugate of Φ̃∗

(i.e., the approximate log-partition), and let

µ̃(θ) , arg min
µ̃∈M̃

Ẽ(µ̃;θ) = ∇Φ̃(θ)

denote the pseudomarginals of the variational distribution,

p̃(Y = y;θ) , exp
(
θ · ŷ − Φ̃(θ)

)
.

It is common in structured prediction to condition the dis-
tribution of Y on some observed variables, X. Evidence
X = x is incorporated into the potential functions, so that
p (Y = y |X = x;θ) , exp (θ(x) · ŷ − Φ(θ(x))). For
simplicity of exposition, we will not discuss conditional
distributions, though most of our analysis also holds for
conditional distributions with small modifications.

3. A Case for Strong Convexity
Because the dot product is linear, the convexity of the free
energy is determined by the convexity of the conjugate
function, Φ∗, or Φ̃∗ for approximations. Some approxima-
tions are known to be convex, yet few studies discuss the
strength of convexity, by which we mean the following.
Definition 1. A differentiable function, ϕ : S → R, of a
convex set, S, is κ-strongly convex w.r.t. a norm3, ‖ · ‖, if
and only if, for all s, s′ ∈ S,

κ

2
‖s− s′‖2 + 〈∇ϕ(s), s′ − s〉 ≤ ϕ(s′)− ϕ(s). (1)

The modulus of convexity, κ, measures the curvature of ϕ.

The true conjugate function, Φ∗, is a strongly convex func-
tion of the full probability table. Since the marginals are a
linear function of the probability table, Φ∗ is also a strongly
convex function ofM—albeit with an unknown modulus.
Approximations of Φ∗ that are simply convex ignore this
fact, and may result in less accurate marginals.

The purpose of this section is to motivate the use of strongly
convex free energies. We start by connecting strong con-
vexity to stability, showing that strong convexity is both

3Unless specified, assume strong convexity w.r.t. the 2-norm.

sufficient (Section 3.1) and necessary (Section 3.2) for uni-
form stability, which can be used to derive bounds on the
quality of learned marginals (Section 3.3). More impor-
tantly, the theory suggests that the modulus of convexity is
crucial, and that one should prefer moduli that are indepen-
dent of the size of the graph (Section 3.4). Proofs from this
section are deferred to Appendix B.

3.1. Strong Convexity Guarantees Stability

There is a well-known duality between strong convexity
and the Lipschitz continuity of the gradient.
Definition 2. A differentiable function, ϕ : S → R, has a
λ-Lipschitz continuous gradient if and only if, for all s, s′ ∈
S,

‖∇ϕ(s)−∇ϕ(s′)‖2 ≤ λ ‖s− s
′‖2 . (2)

Lemma 1 (Hiriart-Urruty & Lemaréchal, 2001, Theorem
4.2.1). Let ϕ : S → R denote a differentiable function,
and ϕ? : S? → R its convex conjugate. If ϕ? is κ-strongly
convex, then ϕ has a (1/κ)-Lipschitz continuous gradient.

Since the gradient of Φ̃ corresponds to the pseudomarginals
of the distribution, a strongly convex conjugate function
lets us bound the stability of approximate marginal infer-
ence. This is summarized in the following lemma.4

Lemma 2. Assume that Ẽ uses a κ-strongly convex conju-
gate function, Φ̃∗. Then, for any θ and θ′,

1√
|G|

∥∥µ̃(θ)− µ̃(θ′)
∥∥
2
≤ 1

κ
√
|G|

∥∥θ − θ′
∥∥
2
. (3)

Lemma 2 upper-bounds the root-mean-squared difference
between the respective pseudomarginals of θ and θ′. Ob-
serve that one can trivially upper-bound this quantity by

√
2

by assuming that the marginals are completely different. In
contrast, the right-hand side of Eq. 3 shrinks as a function
of the size of the graph, |G|, and the L2 distance between
the potentials,

∥∥θ − θ′
∥∥
2
, provided κ is lower-bounded by

a function that is independent of these terms. Of course,
since the potentials have length O(|G|), their L2 distance
could be O(

√
|G|); but there are some cases in which the

distance could be small. In Section 3.3, we discuss one
such scenario and use it to derive a bound on the root-mean-
squared error (RMSE) of learned pseudomarginals.

3.2. Convexity Alone Does Not Guarantee Stability

Strong convexity is central to Lemma 2. In fact, there is
good reason to believe that strong convexity is a necessary
condition for uniform stability. To understand why, we re-
turn to the relationship between strong convexity and Lip-
schitz gradients. Lemma 1 states that the former property
implies the latter; however, the converse is also true.

4Wainwright derived a similar result (2006, Lemma 6). Our
lemma is more explicit about the role of the modulus of convexity.
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Lemma 3 (Hiriart-Urruty & Lemaréchal, 2001, Theorem
4.2.2). Let ϕ : S → R denote a differentiable function, and
ϕ? : S? → R its convex conjugate. If ϕ has a λ-Lipschitz
continuous gradient, then ϕ? is (1/λ)-strongly convex.

This establishes an equivalence between strong convexity
and Lipshitz gradients: ϕ has a (1/κ)-Lipschitz continu-
ous gradient if and only if ϕ? is κ-strongly convex. In the
context of variational inference, this means that Eq. 3 holds
if and only if Φ̃∗ is strongly convex. Mere convexity (i.e.,
κ = 0) is insufficient for guaranteeing stability. In fact, for
any simply convex Φ̃∗, it may be possible to construct an
example in which marginal inference is not stable.

For instance, consider the extreme case in which Φ̃∗ is lin-
ear in M̃. This means that Ẽ is also linear. Mangasarian
& Shiau (1987) prove by counterexample that solutions to
linear programs are not Lipschitz continuous (a form of sta-
bility) with respect to perturbations in the objective coeffi-
cients (in this case, the potentials). Therefore, inference
with a linear conjugate function cannot have non-trivial
uniform stability.

3.3. Stability Yields Learning Guarantees

Eq. 3 is especially meaningful in the context of learning.
Suppose we are trying to learn a distribution, p(Y;θ?), pa-
rameterized by some potentials, θ?. We assume that the
class of models to which θ? belongs is known, and that the
variable interactions, defined by a graph G, are fixed. Our
goal is to estimate θ? given m independent draws from the
distribution, (y(1), . . . ,y(m)). To do so, we minimize the
negative log-likelihood (NLL) of the variational distribu-
tion, p̃, induced by an approximate log-partition, Φ̃. The
approximation is for efficiency, since we make repeated
evaluations of the objective during learning. Assume that
Φ̃∗, the convex conjugate of Φ̃, is κ-strongly convex. Let
L(Y;θ) , − ln p̃(Y;θ) denote the NLL under p̃, and let

Lm(θ) ,
1

m

m∑
j=1

L(y(j);θ). (4)

Let

θ̄ , arg min
θ

E [L(Y;θ)] , (5)

and θ̂m , arg min
θ

Lm(θ) + Λm ‖θ‖22 . (6)

If Λm → 0 as m→∞, then θ̄ = limm→∞ θ̂m.

BecauseLm uses the approximate log-partition, θ̂m is not a
consistent estimator. In other words, in the limit of infinite
data, θ̂m may be different from θ?. Nonetheless, we have
that µ(θ?) = µ̃(θ̄), as shown in Appendix B.2. In light
of this, substituting θ̂m and θ̄ into Eq. 3, we have that the
RMSE of the learned marginals, µ̃(θ̂m), with respect to

the true marginals, µ(θ?), is proportional to the distance
between θ̂m and θ̄, divided by the modulus of convexity,
κ. As θ̂m converges to θ̄, the RMSE decreases at a rate
that is inversely proportional to κ.

Convergence of M-estimators has been studied extensively.
Many of these works (e.g., Bickel et al., 2009; Kakade
et al., 2010; Ravikumar et al., 2011; Negahban et al., 2012;
Bradley & Guestrin, 2012; Meng et al., 2014) rely on a
restricted eigenvalue (RE) assumption. Essentially, this
assumes that the eigenvalues of ∇2L( · ;θ)—which is in-
dependent of Y, and therefore the same as ∇2Lm(θ)—
evaluated in the vicinity of θ̄, are bounded away from zero;
meaning, the NLL is strongly convex in a region around θ̄.
We will further assume that, with probability ≥ 1− δ over
draws of the training set, both θ̄ and θ̂m (which is a ran-
dom variable) are contained in a convex set within which
∇2L( · ;θ) is positive definite, thereby implying that the
NLL is strongly convex in this set. The minimum eigen-
value of the Hessian (hence, the modulus of convexity) may
depend on δ, m and G, but should be bounded away from
zero by a constant as m → ∞. This requirement will al-
ways be met if ∇2L( · ; θ̄) is positive definite.

Assumption 1. Assume that there exists a constant, γ̄ > 0,
such that the minimum eigenvalue of ∇2L( · ; θ̄) is at least
γ̄. Further, for any δ ∈ (0, 1) and m ≥ 1, there exists a
convex set, S ⊆ R|θ|, encompassing both θ̄ and θ̂m, and
a function, γ(δ,m,G) = Ω(1), such that, with probability
≥ 1 − δ over draws of m i.i.d. examples, the minimum
eigenvalue of∇2L( · ;θ) : θ ∈ S is at least γ(δ,m,G).

Combining Assumption 1 and Lemma 2, we can prove a
high-probability error bound on the marginals of a model
learned with strongly convex variational inference.

Proposition 1. Let Λm , 1/
√
m. Assume that Φ̃∗

is κ-strongly convex, that Assumption 1 holds, and that∥∥θ̄∥∥∞ ≤ 1. Then, for any δ ∈ (0, 1), with probability
at least 1− 2δ over draws of m i.i.d. examples,

∥∥∥µ̃(θ̂m)− µ(θ?)
∥∥∥
2√

|G|
≤
`

(
2 +

√
1
2 ln 2`2|G|

δ

)
κ γ(δ,m,G)

√
m

. (7)

Like most error bounds, Eq. 7 has an inverse dependence on
the square root ofm, so the bound decreases as the training
set grows. What is interesting about our bound is that it
incorporates the modulus of convexity, κ, of the variational
free energy. Because of the inverse dependence on κ, the
bound tightens as κ grows. Note that the upper bound for∥∥θ̄∥∥∞ can be replaced with any constant. We also note that
Proposition 1 is easily adapted for the mean-absolute error
(MAE), since the RMSE upper-bounds the MAE.
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3.4. Prefer a Constant Modulus

Eqs. 3 and 7 have an inverse dependence on the modulus
of convexity. We should therefore prefer higher values,
leading to sharper bounds. However, stronger convexity
might mean that the approximation is looser. For instance,
one can trivially boost the modulus by scaling the conju-
gate function with a temperature parameter. This reduces
the bounds, but creates a totally entropic distribution. One
therefore wonders whether there is a “right” amount of con-
vexity that trades off stability for marginal accuracy.

One criterion stands out: the modulus should not have an
inverse dependence on |G|. This insight is the most impor-
tant takeaway of this section. When learning large graph-
ical models, it is usually the case that the number of ex-
amples is small relative to the size of the graph. In this
setting, κ can have great impact. If κ = Ω(1/ |G|), then
the learning rate (Eq. 7) is Õ (|G| /

√
m), which is vacuous

for |G| >
√
m. In contrast, if κ = Ω(1), then the learning

rate is Õ (1/
√
m). This observation motivates the study of

Ω(1)-strongly convex free energies in the next section.

4. Strongly Convex Variational Inference
In light of Section 3.4, we would like to identify strongly
convex free energies for which the modulus of convex-
ity is lower-bounded by a function that does not decrease
with |G|. In this section, we present new guarantees for
two popular variational methods. First, we provide model-
dependent conditions under which the tree-reweighted neg-
ative entropy is Ω(1)-strongly convex (Section 4.1). To
prove this result, we prove a similar claim for the negative
entropy of a tree-structured model (given in Appendix C.1).
We also analyze the class of counting number entropies
(which subsumes tree-reweighting), proving an interesting
relationship between the counting numbers and the modu-
lus of convexity (Section 4.2). Using this insight, we then
provide a counting number optimization that guarantees κ-
strong convexity, for any κ > 0, independent of the model.

4.1. Tree-Reweighting

The tree-reweighted entropy (Wainwright et al., 2005) is a
convex combination of tree entropies. In this section, we
give conditions under which its modulus of convexity is
lower-bounded by a function of the parameters and struc-
tural properties, independent of graph size.

Fix a graph, G, and let T (G) denote its spanning trees. For
a tree T , (V, ET ) ∈ T (G), its entropy is given by

HT (µ̃) ,
∑
v∈V

(1− deg(v))Hv(µ̃v) +
∑
e∈ET

He(µ̃e), (8)

where deg(v) is the degree of node v, and Hv(µ̃v) ,
−
∑`
j=1 µ̃

j
v log µ̃jv and He(µ̃e) , −

∑`
i,j=1 µ̃

ij
e log µ̃ije

are the node and edge local entropies. (Eq. 8 is also the
Bethe entropy.) For a distribution, ρ, over T (G), the tree-
reweighted entropy is given by

HTR(µ̃) ,
∑

T∈T (G)

ρ(T )HT (µ̃) (9)

=
∑
v∈V

(
1−

∑
e:v∈e

ρ(e)
)
Hv(µv) +

∑
e∈E

ρ(e)He(µe).

Wainwright (2006) showed that if each edge, e ∈ E , has
positive marginal probability, ρ(e) > 0 (i.e., e appears in at
least one tree, T , with ρ(T ) > 0), then −HTR is at least
Ω(1/ |G|)-strongly convex. Unfortunately, this modulus
decreases as a function of the size of the graph. This is
partly because Wainwright’s analysis considers all models
in the exponential family. Here, we prove a more optimistic
lower bound for models that exhibit good contraction.

Definition 3. Fix a graph, G , (V, E), and potentials,
θ, which induce a probability density, p. For any (u, v) :
{u, v} ∈ E , define the contraction coefficient as

ϑθ(u, v) ,

sup
y,y′∈Y

‖p (Yu |Yv = y;θ)− p (Yu |Yv = y′;θ)‖TV .

Denote the maximum of the contraction coefficients by

ϑ?θ , sup
(u,v):{u,v}∈E

ϑθ(u, v).

The contraction coefficients measure the dependence be-
tween adjacent variables in a graphical model. A contrac-
tion coefficient of 1 implies determinism, and 0 implies
independence. In Appendix C.2, we describe an efficient
procedure for computing the contraction coefficients in a
tree-structured model.

Roughly speaking, the contraction coefficients are deter-
mined by the ratio of “local” signal to “relational” signal. If
the local signal is strong, Yv has little influence on Yu. For
models with a sufficiently high ratio of local-to-relational
signal, dependence decays with graph distance at a geo-
metric rate. In this case, one can show that −HT is Ω(1)-
strongly convex (see Appendix C.1). Using this result, we
obtain the following.

Proposition 2. Fix a graph, G , (V, E), with maximum
degree independent of |V|. Fix a distribution, ρ, over the
spanning trees, T (G), such that there exists a constant,
C > 0 : ∀ e ∈ E , ρ(e) ≥ C, that lower-bounds the
edge probabilities. Let Θ ⊆ R|θ| denote the set of po-
tentials such that each tree T ∈ T (G) : ρ(T ) > 0, with
maximum degree ∆T , has maximum contraction coefficient
ϑ?θ,T ≤ 1/∆T . Let M̃(Θ) , {µ̃(θ) : θ ∈ Θ} denote the
set of pseudomarginals realizable under any θ ∈ Θ. Then,
−HTR is Ω(1)-strongly convex in M̃(Θ).
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The proof is given in Appendix D.1. See Appendix D.2 for
implications of Proposition 2 for a grid-graph model.

Proposition 2 guarantees Ω(1)-strong convexity, but it still
does not identify the modulus. Further, it is model-
dependent, and may not hold for certain potentials. There-
fore, applying Proposition 1 to tree-reweighted variational
inference is only meaningful when learning in a con-
strained model space that admits good contraction. In the
next section, we describe a technique to tune the modulus
to any specified value, regardless of the model.

4.2. Counting Number Optimization

Counting number techniques decompose the entropy into a
weighted sum of node and edge local entropies. For c ,
((cv)v∈V , (ce)e∈E), the counting number entropy is

Hc(µ̃) ,
∑
v∈V

cvHv(µ̃v) +
∑
e∈E

ceHe(µ̃e). (10)

Note that Hc generalizes the Bethe entropy (Eq. 8), which
is given by cv = 1 − deg(v) and ce = 1. We can also
recreate the tree-reweighted entropy (Eq. 9) with cv = 1−∑
e:v∈e ρ(e) and ce = ρ(e). In this section, we show how

to find counting numbers that preserve strong convexity,
with a modulus that is lower-bounded by a given value.

Since−Hv and−He are convex, it is clear from Eq. 10 that
−Hc is convex for nonnegative counting numbers. Hes-
kes (2006) derived more sophisticated sufficient conditions
for convexity by reparameterizing the counting numbers.
Specifically, −Hc is convex if there exist nonnegative aux-
iliary counting numbers, (αv ≥ 0)v∈V , (αe ≥ 0)e∈E and
(αv,e ≥ 0)e∈E,v∈e, such that

∀v ∈ V, cv = αv −
∑
e:v∈e

αv,e, (11)

and ∀e ∈ E , ce = αe +
∑
v:v∈e

αv,e. (12)

The effect of the auxiliary counting numbers, in particu-
lar, αv,e, is to shift weight between the regular counting
numbers, cv and ce. Heskes’ conditions mean that cv can
be negative and still guarantee convexity. We can further
show that −Hc is strongly convex whenever αe is uni-
formly lower-bounded; αv and αv,e, however, are only re-
quired to be nonnegative.

Proposition 3. Fix a graph, G , (V, E), and assume that
every node is in at least one edge. If c satisfies Eqs. 11
and 12 for some κ > 0, (αv ≥ 0)v∈V , (αe ≥ κ)e∈E and
(αv,e ≥ 0)e∈E,v∈e, then −Hc, is (κ/3)-strongly convex.

The proof is given in Appendix E.1.

Proposition 3 lets us characterize the strong convexity of
a range of algorithms that optimize counting numbers. For

example, observing that the Bethe approximation often out-
performed tree-reweighting in practice, Meshi et al. (2009)
proposed a “convexified” Bethe approximation. Their al-
gorithm finds a set of counting numbers that best approx-
imates the Bethe counting numbers, cB, while satisfying
Heskes’ convexity conditions (Eqs. 11 and 12). They also
proposed incorporating a constraint that, for all v ∈ V ,
cv+

∑
e:v∈e ce = 1; this ensures that the counting numbers

are variable-valid for a fully factored (i.e., edgeless) model.
Via Proposition 3, adding a constraint that αe ≥ 3κ en-
sures that the resulting negative entropy is κ-strongly con-
vex. This yields the following constrained quadratic pro-
gram (QP), which we refer to as the strongly convexified
Bethe approximation:

min
c,α≥0

‖c− cB‖22 (13)

s.t. ∀v ∈ V, cv +
∑
e:v∈e

αv,e ≥ 0 ;

∀e ∈ E , ce −
∑
v:v∈e

αv,e ≥ 3κ ;

∀v ∈ V, cv +
∑
e:v∈e

ce = 1.

Note that Eq. 13 only depends on the graph structure; it is
independent of the potentials. Thus, the QP only needs to
be solved once, prior to learning, for each example in the
training set. Moreover, examples that have the same struc-
ture can use the same counting numbers. Certain graphs,
such as regular graphs, may admit an analytic solution to
Eq. 13, thereby avoiding numerical optimization.

We can strongly convexify any desired counting numbers.
For instance, Hazan & Shashua (2008) proposed a convex
counting number optimization that encourages ce = 1 uni-
formly. With a small modification to Eq. 13, we can make
Hazan & Shashua’s method strongly convex. We can also
optimize the tree-reweighted entropy. Though −HTR is al-
ready Ω(1)-strongly convex for certain models (per Propo-
sition 2), it may be difficult to identify the modulus. By
substituting the tree-reweighted counting numbers for cB

in the objective, we can ensure that −HTR is at least κ-
strongly convex, for any given κ, independent of the model.

For certain graphs and values of κ, the variable validity
constraint may make the optimization infeasible. In these
cases, we propose switching to a slackened QP, described
in Appendix E.2. This QP adds a free parameter, C, that
trades off between fitting the target counts and satisfying
variable validity. We explore this trade-off in Section 5.3.

5. Experiments
Our empirical evaluation tests the hypothesis that strongly
convex free energies result in better learned marginals, as
suggested by Proposition 1. Evaluations of approximate
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inference techniques typically use the true model to mea-
sure the discrepancy in the marginals. That is, given the
model that generated the data, θ?, most studies measure
‖µ(θ?)− µ̃(θ?)‖, where µ̃(θ?) uses the true model with
approximate inference. While this isolates the quality of
the approximation, it ignores the fact that approximate in-
ference is typically used both at train and test time. It
is therefore valuable to test the quality of the approxima-
tion using a model that is learned with said approximation.
Wainwright (2006) called this “learning the ‘wrong’ graph-
ical model,” since the learned model may not converge to
the true model. We prefer to call it “learning the ‘right’
graphical model for the ‘wrong’ inference,” since it finds
the best parameters for the given variational method. We
therefore report scores for both true and learned models.

5.1. Data Generator

Our synthetic data generator is based on those used in prior
work (e.g., Hazan & Shashua, 2008; Meshi et al., 2009)
to evaluate approximate marginal inference. We generate
data from an (8× 8) non-toroidal grid-structured model, in
which each node, v, is associated with a binary variable,
Yv ∈ {e1, e2}. The model is defined by the following pro-
cess, for either “attractive” or “mixed” potentials. First, we
fix ωs > 0 and ωp > 0. For each node, we flip a fair
coin, cv ∈ {±1}, and let wv , ωs cv

[
1
−1
]
. If the model

is “attractive,” we uniformly set we , ωp vec
([

1 −1
−1 1

])
,

where vec( · ) converts a matrix to a vector; if “mixed,”
we flip another fair coin, ce ∈ {±1}, and set we ,
ωp ce vec

([
1 −1
−1 1

])
. To create local perturbations (i.e., ev-

idence), we draw a uniformly random xv ∼ U[0, 1] for each
node. Given these, we let

∀v, θv , wv xv, and ∀e = {u, v}, θe , we

(xu + xv
2

)
,

and define the data distribution as

p (Y = y;θ) ,
∑
v∈V

θv · yv +
∑
e∈E

θe · (yu ⊗ yv).

This is equivalent to an Ising model with field potentials
θv ∼ U[−ωs, ωs], and interaction potentials θe ∼ U[0, ωp],
for attractive, or θe ∼ U[−ωp, ωp], for mixed.

5.2. Experiment Design

We use four variational methods from the literature:

LBP: The Bethe approximation (i.e., “loopy” BP).

C-Bethe: Meshi et al.’s (2009) convexified Bethe, which
is equivalent to Eq. 13 with κ = 0.

TRBP: Wainwright et al.’s (2005) tree-reweighted BP,
with the tree distribution described in Appendix D.2.

C-Unif: Hazan & Shashua’s (2008) convex counting num-
ber optimization, which prefers ce = 1 uniformly.

Of the four, only the last three are guaranteed to be convex;
LBP is not convex on a grid. TRBP is in fact strongly con-
vex, though the true modulus depends on the model, and
may be difficult to identify. Hazan & Shashua’s method ac-
tually enforces strict convexity, but since the modulus can
be arbitrarily close to zero, we consider it effectively just
convex. We also compare strongly convexified versions
of C-Bethe, TRBP and C-Unif, using our counting num-
ber optimization. This results in counting numbers that are
provably κ-strongly convex, for a given κ > 0. We de-
note these versions by SC-Bethe, SC-TRBP and SC-Unif,
respectively, and indicate the value of κ whenever relevant.

For each value of ωs ∈ {0.05, 1} and ωp ∈
{0.1, 0.2, 0.5, 1, 2, 5}, we generate 20 models using the
above synthetic generator. Each model acts as a learning
trial. For each model, we compute the true marginal prob-
abilities using exact (junction tree) inference and sample
100 joint assignments to Y. We use these samples to train
a model for each variational method (and value of κ), us-
ing L-BFGS to minimize the regularized NLL (Eq. 6). The
regularization parameter, Λm, is set to 1/

√
m, per Propo-

sition 1. We then compute the node marginals using varia-
tional inference with the true (i.e., generating) and learned
models. For each set of approximate marginals, we com-
pute the root-mean-squared error (RMSE) with respect to
the true, exact marginals. We report the average RMSE
over 20 trials.

Our experiments are implemented in MATLAB, using
data structures from Mark Schmidt’s Undirected Graph-
ical Models (UGM) toolkit (2013b). To optimize the
learning objective, we use Schmidt’s implementation of L-
BFGS with Wolfe line search (2013a). For exact inference
and sampling, we use UGM’s junction tree implementa-
tion. For all variational inference algorithms, we use our
own implementation of counting number belief propaga-
tion (CBP), based on Schwing et al.’s (2011) message up-
dates; this can optimize any variational method whose en-
tropy can be expressed with counting numbers. To opti-
mize the counting number QP (Eq. 13, or Eq. 23 in Ap-
pendix E.2), we use MATLAB’s quadprog, with the in-
terior point method. To measure statistical significance, we
use a paired t-test, with rejection threshold .05.

5.3. Results

Due to space restrictions, we defer the full catalog of fig-
ures to Appendix F. Figure 1 highlights select plots.

Strong Convexity Improves Marginal Inference. Fig-
ures 2a-d plot the RMSE of the node marginals as a func-
tion of the interaction parameter, ωp. Inference is per-
formed with the true model. The SC methods use the post
hoc optimal value of κ (and C) in the counting number op-
timization. All methods perform about the same for ωs = 1
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(a) Model, Attract, ωs = .05
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(b) Model, Mixed, ωs = .05

0.1 0.2 0.5 1 2 5

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

ω
p

N
o
d
e
 M

a
rg

in
a
l 
R

M
S

E

 

 

LBP

C−Bethe

SC−Bethe

TRBP

SC−TRBP

C−Unif

SC−Unif

(c) Learned, Attract, ωs = 1
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(d) Learned, Mixed, ωs = 1

Figure 1. Select plots of RMSE (averaged over 20 trials) of the approximate node marginals w.r.t. the true marginals, as a function of the
interaction parameter, ωp. Data is generated with either “attractive” or “mixed” potentials. Figs. (a)-(b) use the true model for inference,
and (c)-(d) use the learned model. The black dotted line is LBP; color dotted lines are the convex baselines, and solid lines are their SC
counterparts, using the post hoc optimal value of κ (and C for κ ≥ .1). See Section 5.3 for discussion and Appendix F for all figures.

and ωp ≤ 2. LBP has a slight advantage for mixed poten-
tials with ωp ≤ 1, which concurs with previous conclusions
(e.g., Meshi et al., 2009) that LBP performs well when
there is strong local signal. Focusing on ωs = .05, the con-
vex methods offer significant improvement over LBP for
ωp ≥ 1 with attractive and ωp ≥ 2 with mixed potentials.
This shows that convexity helps when there is low local-
to-relational signal. In particular, we note that the strongly
convex methods (TRBP and all SC variants) exhibit dra-
matically lower error in this setting (see Figures 1a-b), with
over 10x improvement over LBP.

Strong Convexity Improves Learned Marginals. Fig-
ures 2e-h also plot RMSE as a function of ωp, but us-
ing the learned model to compute the marginals. The SC
methods yield statistically significant improvements in al-
most all data models. Figures 1c-d highlight the improve-
ment, which is most prominent when ωs = 1. In cer-
tain cases, SC reduces the error of the convex baselines by
over 40%. These results support the hypothesis of Proposi-
tion 1, that using a variational free energy that is provably
Ω(1)-strongly convex can significantly improve the quality
of learned marginals. Moreover, the SC counting number
optimization can even improve TRBP—which is already
strongly convex, though the modulus is model-dependent.

Tuning κ in the SC Methods. The value of κ used in
the SC counting number optimization can have great im-
pact on the quality of the marginals. The theory in Sec-
tion 3 suggests that increasing the modulus of convexity
improves stability and marginal accuracy; however, alter-
ing κ affects the quality of the entropy approximation,
hence, the marginals. Thus, there is a trade-off that needs
to be explored. In Figures 3 and 4, we plot the RMSE
of the marginals as a function of κ, using the true and
learned models respectively, for select values of ωs and
ωp. Since values of κ ≥ .1 result in non-variable-valid
counting numbers for this grid, we use the slackened QP
and report the score for the post hoc optimal C. We learn

the following from these plots. When the true potentials
are given, and the model has low local-to-relational signal
(ωs = .05, ωp ≥ 2), any modulus of convexity above a cer-
tain threshold yields significant improvement. When using
variational inference for training, if there is low local sig-
nal (ωs = .05), use the highest value of κ that supports
variable validity. Since the local signal is weak, it is even
more important to be variable-valid. If local signal is strong
(ωp = 1), one can relax variable validity and push κ further.

Slackened Variable Validity. When using a value of κ
that requires slackening variable validity, this requires se-
lecting a value for the slack parameter, C. The quality of
the slackened solution can vary with C, since this parame-
ter controls the trade-off between variable validity and fit-
ting the target counts. Figures 5 and 6 show select plots of
RMSE as a function of C, focusing on the Bethe and tree-
reweighted approximations. Data is generated using mixed
potentials. In general, we find that the optimal value of C
depends on κ, with lower values of κ favoring lower values
of C. This is likely because lower C makes it easier for
the QP solver to reduce the slack variables. When training
with κ ≥ .1, a good rule of thumb is to set C fairly high;
we found that C = 100 works well overall.

6. Conclusion
We have shown, both theoretically and empirically, that
variational inference with a strongly convex free energy can
improve the accuracy of marginal probabilities. We proved
sufficient conditions under which two popular variational
methods are strongly convex, and proposed a novel count-
ing number optimization that guarantees κ-strong convex-
ity, for any κ. Our results indicate that using this approach
to specify a modulus can dramatically reduce the error
of approximate marginal inference, suggesting substantial,
tangible benefit to applications of graphical models.
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