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Abstract
Canonical Correlation Analysis (CCA) is a
widely used spectral technique for finding cor-
relation structures in multi-view datasets. In
this paper, we tackle the problem of large scale
CCA, where classical algorithms, usually requir-
ing computing the product of two huge matri-
ces and huge matrix decomposition, are compu-
tationally and storage expensive. We recast CCA
from a novel perspective and propose a scalable
and memory efficient Augmented Approximate
Gradient (AppGrad) scheme for finding top k
dimensional canonical subspace which only in-
volves large matrix multiplying a thin matrix of
width k and small matrix decomposition of di-
mension k × k. Further, AppGrad achieves opti-
mal storage complexityO(k(p1+p2)), compared
with classical algorithms which usually require
O(p2

1 + p2
2) space to store two dense whitening

matrices. The proposed scheme naturally gen-
eralizes to stochastic optimization regime, espe-
cially efficient for huge datasets where batch al-
gorithms are prohibitive. The online property
of stochastic AppGrad is also well suited to the
streaming scenario, where data comes sequen-
tially. To the best of our knowledge, it is the
first stochastic algorithm for CCA. Experiments
on four real data sets are provided to show the
effectiveness of the proposed methods.

1. Introduction
1.1. Background

Canonical Correlation Analysis (CCA), first introduced in
1936 by (Hotelling, 1936), is a foundamental statistical
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tool to characterize the relationship between two multidi-
mensional variables, which finds a wide range of appli-
cations. For example, CCA naturally fits into multi-view
learning tasks and tailored to generate low dimensional fea-
ture representations using abandunt and inexpensive unla-
beled datasets to supplement or refine the expensive labeled
data in a semi-supervised fashion. Improved generaliza-
tion accuracy has been witnessed or proved in areas such
as regression (Kakade & Foster, 2007), clustering (Chaud-
huri et al., 2009; Blaschko & Lampert, 2008), dimension
reduction (Foster et al., 2008; McWilliams et al., 2013),
word embeddings (Dhillon et al., 2011; 2012), etc. Besides,
CCA has also been succesfully applied to genome-wide as-
sociation study (GWAS) and has been shown powerful for
understanding the relationship between genetic variations
and phenotypes (Witten et al., 2009; Chen et al., 2012).

There are various equivalent ways to define CCA and here
we use the linear algebraic formulation of (Golub & Zha,
1995), which captures the very essense of the procedure,
pursuing the directions of maximal correlations between
two data matrices.
Definition 1.1. For data matrices X ∈ Rn×p1 ,Y ∈
Rn×p2 Let Sx = X>X/n, Sy = Y>Y/n, Sxy =
X>Y/n and p = min{p1, p2}. The canonical correla-
tions λ1, · · · , λp and corresponding pair of canonical vec-
tors {(φi, ψi)}pi=1 between X and Y are defined recur-
sively by

(φj , ψj) = arg max
φ>Sxφ=1, ψ>Syψ=1

φ>Sxφi=0, ψ>Syψi=0, 1≤i≤j−1

φ>Sxyψ

λj = φ>j Sxyψj j = 1, · · · , p

Lemma 1.1. Let S
− 1

2
x SxyS

− 1
2

y = UDV> be the singular

value decomposition. Then Φ = S
− 1

2
x U, Ψ = S

− 1
2

y V, and
Λ = D where Φ = (φ1, · · · , φp),Ψ = (ψ1, · · · , ψp) and
Λ = diag(λ1, · · · , λp).

The identifiability of canonical vectors (Φ,Ψ) is equiva-
lent to the identifiability of the singular vectors (U,V).
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Lemma 1.1 implies that the leading k dimensional CCA
subspace can be solved by first computing the whitening
matrices S

− 1
2

x ,S
− 1

2
y and then perform a k-truncated SVD

on the whitened covariance matrix S
− 1

2
x SxyS

− 1
2

y . This
classical algorithm is feasible and accurate when the data
matrices are small but it can be slow and numerically un-
stable for large scale datasets which are common in modern
natural language processing (large corpora, Dhillon et al.
(2011; 2012)) and multi-view learning (abandunt and inex-
pensive unlabeled data, Hariharan & Subramanian (2014))
applications.

Throughout the paper, we call the step of orthonormalizing
the columns of X and Y whitening step. The computa-
tional complexity of the classical algorithm is dominated
by the whitening step. There are two major bottlenecks,

• Huge matrix multiplication X>X,Y>Y to obtain
Sx,Sy with computational complexity O(np2

1 +np2
2)

for general dense X and Y.

• Large matrix decomposition to compute S
− 1

2
x and

S
− 1

2
y with computational complexity O(p3

1 + p3
2)

(Even when X and Y are sparse, Sx,Sy are not nec-
essarily sparse)

Remark 1.1. The whitening step dominates the k-
truncated SVD step because the top k dimensional singular
vectors can be efficiently computed by randomized SVD al-
gorithms (see Halko et al. (2011) and many others).

Remark 1.2. Another classical algorithm (built-in func-
tion in Matlab) introduced in (Björck & Golub, 1973) uses
a different way of whitening. It first carrys out a QR de-
composition, X = QxRx and Y = QyRy and then
performs a SVD on Q>x Qy , which has the same computa-
tional complexity O(np2

1 +np2
2) as the algorithm indicated

by Lemma 1.1. However, it is difficult to exploit sparsity
in QR factorization while X>X,Y>Y can be efficiently
computed when X and Y are sparse.

Besides computational issues, extra O(p2
1 + p2

2) space is

necessary to store two whitening matrices S
− 1

2
x and S

− 1
2

y

(typically dense). In high dimensional applications where
the number of features is huge, this can be another bottle-
neck considering the capacity of RAM of personal desktops
(10-20 GB). In large distributed storage systems, the extra
required space might incur heavy communication cost.

Therefore, it is natural to ask: is there a scalable algo-
rithm that avoids huge matrix decomposition and huge ma-
trix multiplication? Is it memory efficient? Or even more
ambitiously, is there an online algorithm that generates de-
cent approximation given a fixed computational power (e.g.
CPU time, FLOP)?

1.2. Related Work

Scalability begins to play an increasingly important role
in modern machine learning applications and draws more
and more attention. Recently lots of promising progress
emerged in the literature concerning with randomized al-
gorithms for large scale matrix approximations, SVD, and
Principal Component Analysis (Sarlos, 2006; Liberty et al.,
2007; Woolfe et al., 2008; Halko et al., 2011). Unfortu-
nately, these techniques does not directly solve CCA due
to the whitening step. Several authors have tried to de-
vise a scalable CCA algorithm. Avron et al. (2013) pro-
posed an efficient approach for CCA between two tall and
thin matrices (p1, p2 � n) harnessing the recently de-
veloped tools, Subsampled Randomized Hadamard Trans-
form, which only subsampled a small proportion of the n
data points to approximate the matrix product. However,
when the size of the features, p1 and p2, are large, the sam-
pling scheme does not work. Later, Lu & Foster (2014)
consider sparse design matrices and formulate CCA as iter-
ative least squares, where in each iteration a fast regression
algorithm that exploits sparsity is applied.

Another related line of research considers stochastic
optimization algorithms for PCA (Arora et al., 2012;
Mitliagkas et al., 2013; Balsubramani et al., 2013), which
date back to Oja & Karhunen (1985). Compared with batch
algorithms, the stochastic versions empirically converge
much faster with similar accuracy. Further, these stochastic
algorithms can be applied to streaming setting where data
comes sequentially (one pass or several pass) without be-
ing stored. As mentioned in (Arora et al., 2012), stochastic
optimization algorithm for CCA is more challenging and
remains an open problem because of the whitening step.

1.3. Main Contribution

The main contribution of this paper is to directly tackle
CCA as a nonconvex optimization problem and propose
a novel Augmented Approximate Gradient (AppGrad)
scheme and its stochastic variant for finding the top k di-
mensional canonical subspace. Its advantages over state-
of-art CCA algorithms are three folds. Firstly, AppGrad
scheme only involves large matrix multiplying a thin ma-
trix of width k and small matrix decomposition of dimen-
sion k×k, and therefore to some extent is free from the two
bottlenecks. It also benefits if X and Y are sparse while
classical algorithm still needs to invert the dense matrices
X>X and Y>Y. Secondly, AppGrad achieves optimal
storage complexity O(k(p1 + p2)), the space necessary to
store the output, compared with classical algorithms which
usually require O(p2

1 + p2
2) for storing the whitening ma-

trices. Thirdly, the stochastic (online) variant of AppGrad
is especially efficient for large scale datasets if moderate
accuracy is desired. It is well-suited to the case when com-
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putational resources are limited or data comes as a stream.
To the best of our knowledge, it is the first stochastic algo-
rithm for CCA, which partly gives an affirmative answer to
a question left open in (Arora et al., 2012).

The rest of the paper is organized as follows. We introduce
AppGrad scheme and establish its convergence properties
in section 2. We extend the algorithm to stochastic settings
in section 3. Extensive real data experiments are presented
in section 4. Concluding remarks and future work are sum-
marized in section 5. Proof of Theorem 2.1 and Proposi-
tion 2.3 are relegated to the supplementary material.

2. Algorithm
For simplicity, we first focus on the leading canonical pair
(φ1, ψ1) to motivate the proposed algorithms. Results for
general scenario can be obtained in the same manner and
will be briefly discussed in the later part of this section.

2.1. An Optimization Perspective

Throughout the paper, we assume X and Y are of full rank.
We use ‖ · ‖ for L2 norm. ∀u ∈ Rp1 , v ∈ Rp2 , we define
‖u‖x = (u>Sxu)

1
2 and ‖v‖y = (v>Syv)

1
2 , which are

norms induced by X and Y.

To begin with, we recast CCA as an nonconvex optimiza-
tion problem (Golub & Zha, 1995).

Lemma 2.1. (φ1, ψ1) is the solution of

min
1

2n
‖Xφ−Yψ‖2

subject to φ>Sxφ = 1, ψ>Syψ = 1
(1)

Although (1) is a nonconvex (due to the nonconvex con-
straint), (Golub & Zha, 1995) showed that an alternat-
ing minimization strategy (Algorithm 1), or rather itera-
tive least squares, actually converges to the leading canon-
ical pair. However, each update φt+1 = S−1

x Sxyψ
t is

computationally intensive. Essentially, the alternating least
squares acts like a second order method, which is usually
recognized to be inefficient for large-scale datasets, espe-
cially when current estimate is not close enough to the op-
timum. Therefore, it is natural to ask: is there a valid first
order method that solves (1)? Heuristics borrowed from
convex optimization literature give rise to a projected gra-
dient scheme summarized in Algorithm 2. Instead of com-
pletely solving a least squares in each iterate, a single gra-
dient step of (1) is performed and then project back to the
constrained domain, which avoids inverting a huge matrix.
Unfortunately, the following proposition demonstrates that
Algorithm 2 fails to converge to the leading canonical pair.

Algorithm 1 CCA via Alternating Least Squares
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 and ini-
tialization (φ0, ψ0)
Output :(φALS, ψALS)
repeat
φt+1 = arg min

φ

1
2n‖Xφ−Yψt‖2 = S−1

x Sxyψ
t

φt+1 = φt+1/‖φt+1‖x
ψt+1 = arg min

ψ

1
2n‖Yψ −Xφt‖2 = S−1

y Syxφ
t

ψt+1 = ψt+1/‖ψt+1‖y
until convergence

Algorithm 2 CCA via Naive Gradient Descent
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initial-
ization (φ0, ψ0), step size η1, η2

Output : NAN (incorrect algorithm)
repeat
φt+1 = φt − η1X

>(Xφt −Yψt)/n
φt+1 = φt+1/‖φt+1‖x
ψt+1 = ψt − η2Y

>(Yψt −Xφt)/n
ψt+1 = ψt+1/‖ψt+1‖y

until convergence

Proposition 2.1. If leading canonical correlation λ1 6= 1
and either φ1 is not an eigenvector of Sx or ψ1 is not an
eigenvector of Sy, then ∀η1, η2 > 0, the leading canoni-
cal pair (φ1, ψ1) is not a fixed point of the naive gradient
scheme in Algorithm 2. Therefore, the algorithm does not
converge to (φ1, ψ1).

Proof of Proposition 2.1. The proof is similar to the proof
of Proposition 2.2 and we leave out the details here.

The failure of Algorithm 2 is due to the nonconvex na-
ture of (1). Although every gradient step might decrease
the objective function, this property no longer persists af-
ter projecting to its nonconvex domain

{
(φ, ψ) |φ>Sxφ =

1, ψ>Syψ = 1
}

(the normalization step). On the contrary,
decreases triggered by gradient descent is always main-
tained if projecting to a convex region.

2.2. AppGrad Scheme

As a remedy, we propose a novel Augmented Approximate
Gradient (AppGrad) scheme summarized in Algorithm 3.
It inherits the convergence guarantee of alternating least
squares as well as the scalability and memory efficiency
of first order methods, which only involves matrix-vector
multiplication and only requires O(p1 + p2) extra space.

AppGrad seems unnatural at first sight but has some nice
intuitions behind as we will discuss later. The differences
and similarities between these algorithms are subtle but
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Algorithm 3 CCA via AppGrad
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initial-
ization (φ0, ψ0, φ̃0, ψ̃0), step size η1, η2

Output: (φAG, ψAG, φ̃AG, ψ̃AG)
repeat
φ̃t+1 = φ̃t − η1X

>(Xφ̃t −Yψt)/n

φt+1 = φ̃t+1/‖φ̃t+1‖x
ψ̃t+1 = ψ̃t − η2Y

>(Yψ̃t −Xφt)/n

φt+1 = ψ̃t+1/‖ψ̃t+1‖y
until convergence

crucial. Compared with the naive gradient descent, we in-
troduce two auxiliary variables (φ̃t, ψ̃t), an unnormalized
version of (φt, ψt). During each iterate, we keep updat-
ing φ̃t and ψ̃t without scaling them to have unit norm,
which in turn produces the ‘correct’ normalized counter-
part, (φt, ψt). It turns out that (φ1, ψ1, λ1φ1, λ1ψ1) is a
fixed point of the dynamic system {(φt, ψt, φ̃t, ψ̃t)}∞t=0.

Proposition 2.2. ∀ i ≤ p, let φ̃i = λiφi, ψ̃i = λiψi, then
(φi, ψi, φ̃i, ψ̃i) are the fixed points of AppGrad scheme.

To prove the proposition, we need the following lemma that
characterizes the relations among some key quantities.

Lemma 2.2. Sxy = SxΦΛΨ>Sy

Proof of Lemma 2.2. By Lemma 1.1, S
− 1

2
x SxyS

− 1
2

y =

UDV>, where U = S
1
2
x Φ, V = S

1
2
y Ψ and D = Λ. Then

we have Sxy = S
1
2
x UDV>S

1
2
y = SxΦΛΨ>Sy.

Proof of Proposition 2.2. Substitute (φt, ψt, φ̃t, ψ̃t) =

(φi, ψi, φ̃i, ψ̃i) into the iterative formula in Algorithm 3.

φ̃t+1 = φ̃i − η1(Sxφ̃i − Sxyψi)

= φ̃i − η1(Sxφ̃i − SxΦΛΨ>Syψi)

= φ̃i − η1(Sxφ̃i − λiSxφi)

= φ̃i

The second equality is direct application of Lemma 2.2.
The third equality is due to the fact that Ψ>SyΨ = Ip.
Then,

φt+1 = φ̃i/‖φ̃i‖x = φ̃i/λi = φi

Therefore (φ̃t+1, φt+1) = (φ̃t, φt) = (φ̃i, φi). A symmet-
ric argument will show that (ψ̃t+1, ψt+1) = (ψ̃t, ψt) =

(ψ̃i, ψi), which completes the proof.

The connection between AppGrad and alternating min-
imization strategy is not instaneous. Intuitively, when
(φt, ψt) is not close to (φ1, ψ1), solving the least squares
completely as carried out in Algorithm 1 is a waste of com-
putational power (informally by regarding it as a second

order method, the Newton Step has fast convergence only
when current estimate is close to the optimum). Instead
of solving a sequence of possibly unrelevant least squares,
the following lemma shows that AppGrad directly targets
at the least squares that involves the leading canonical pair.

Lemma 2.3. Let (φ1, ψ1) be the leading canonical pair
and (φ̃1, ψ̃1) = λ1(φ1, ψ1). Then,

φ̃1 = arg min
φ

1

2n
‖Xφ−Yψ1‖2

ψ̃1 = arg min
ψ

1

2n
‖Yψ −Xφ1‖2

(2)

Proof of Lemma 2.3. Let φ∗ = arg min
φ

1
2n‖Xφ−Yψ1‖2,

by optimality condition, Sxφ
∗ = Sxyψ1. Apply

Lemma 2.2,

φ∗ = Sx
−1SxΦΛΨ>Syψ1 = λ1φ1 = φ̃1

Similar argument gives ψ∗ = ψ̃1

Lemma 2.3 characterizes the relationship between lead-
ing canonical pair (φ1, ψ1) and its unnormalized counter-
part (φ̃1, ψ̃1), which sheds some insight on how AppGrad
works. The intuition is that (φt, ψt) and (φ̃t, ψ̃t) are cur-
rent estimations of (φ1, ψ1) and (φ̃1, ψ̃1), and the updates
of (φ̃t+1, ψ̃t+1) in Algorithm 3 are actually gradient steps
of the least squares in (2), with the unknown truth (φ1, ψ1)
approximated by (φt, ψt). In terms of mathematics,

φ̃t+1 = φ̃t − η1X
>(Xφ̃t −Yψt)/n

≈ φ̃t − η1X
>(Xφ̃t −Yψ1)/n

= φ̃t − η1∇φ
1

2n
‖Xφ−Yψ1‖2|φ=φ̃t

(3)

The normalization step in Algorithm 3 corresponds
to generating new approximations of (φ1, ψ1), namely
(φt+1, ψt+1), using the updated (φ̃t+1, ψ̃t+1) through the
relationship (φ1, ψ1) = (φ̃1/‖φ̃1‖x, ψ̃1/‖ψ̃1‖y). There-
fore, one can interpret AppGrad as approximate gradi-
ent scheme for solving (2). When (φ̃t, ψ̃t) converge to
(φ̃1, ψ̃1), its scaled version (φt, ψt) converge to the lead-
ing canonical pair (φ1, ψ1).

The following theorem shows that when the estimates enter
a neighborhood of the true canonical pair, AppGrad is con-
tractive. Define the error metric et = ‖∆φ̃t‖2 + ‖∆ψ̃t‖2
where ∆φ̃t = φ̃t − φ̃1,∆ψ̃

t = ψ̃t − ψ̃1.

Theorem 2.1. Assume λ1 > λ2, ∃L1, L2 ≥ 1 such that
λmax(Sx), λmax(Sy) ≤ L1 and λmin(Sx), λmin(Sy) ≥
L−1

2 , where λmin(·), λmax(·) denote smallest and largest
eigenvalues. If e0 < 2(λ2

1 − λ2
2)/L1 and set η1 = η2 =
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Algorithm 4 CCA via AppGrad (Rank-k)
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initial-
ization (Φ0,Ψ0, Φ̃0, Ψ̃0), step size η1, η2

Output : (ΦAG,ΨAG, Φ̃AG, Ψ̃AG)
repeat

Φ̃t+1 = Φ̃t − η1X
>(XΦ̃t −YΨt)/n

SVD: (Φ̃t+1)>SxΦ̃t+1 = UxDxU
>
x

Φt+1 = Φ̃t+1UxD
− 1

2
x U>x

Ψ̃t+1 = Ψ̃t − η2Y
>(YΨ̃t −XΦt)/n

SVD: (Ψ̃t+1)>SyΨ̃t+1 = UyDyU
>
y

Ψt+1 = Ψ̃t+1UyD
− 1

2
y U>y

until convergence

η = δ/6L1, then AppGrad achieves linear convergence
such that ∀ t ∈ N+

et ≤
(

1− δ2

6L1L2

)t
e0

where δ = 1−
(

1− 2(λ2
1−λ

2
2)−L1e0

2λ2
1

) 1
2

> 0

Remark 2.1. The theorem reveals that the larger is the
eigengap λ1−λ2, the broader is the contraction region. We
didn’t try to optimize the conditions above and empirically
as shown in the experiments, a randomized initialization
always suffices to capture most of the correlations.

2.3. General Rank-k Case

Following the spirit of rank-one case, AppGrad can be eas-
ily generalized to compute the top k dimesional canonical
subspace as summarized in Algorithm 4. The only differ-
ence is that the original scalar normalization is replaced by
its matrix counterpart, that is to multiply the inverse of the
square root matrix Φt+1 = Φ̃t+1UxD

− 1
2

x U>x , ensuring
that (Φt+1)>X>XΦt+1 = Ik.

Notice that the gradient step only involves a large matrix
multiplying a thin matrix of width k and the SVD is per-
formed on a small k × k matrix. Therefore, the computa-
tional complexity per iteration is dominated by the gradient
step, of order O(n(p1 + p2)k). The cost will be further re-
duced when the data matrices X,Y are sparse.

Compared with classical spectral agorithm which first
whitens the data matrices and then performs a SVD on
the whitened covariance matrix, AppGrad actually merges
these two steps together. This is the key of its efficiency. In
a high level, whitening the whole data matrix is not neces-
sary and we only want to whiten the directions that contain
the leading CCA subspace. However, these directions are
unknown and therefore for two-step procedures, whitening
the whole data matrix is unavoidable. Instead, AppGrad
tries to identify (gradient step) and whiten (normalization

step) these directions simultaneously. In this way, every
normalization step is only performed on the potential k di-
mensional target CCA subspace and therefore only deals
with a small k × k matrix.

Parallel results of Lemma 2.1, Proposition 2.1, Proposi-
tion 2.2, Lemma 2.3 for this general scenario can be es-
tablished in a similar manner. Here, to make Algorithm 4
more clear, we state the fixed point result of which the proof
is similar to Proposition 2.2.

Proposition 2.3. Let Λk = diag(λ1, · · · , λk) be the diag-
onal matrix of top k canonical correlations and let Φk =
(φ1, · · · , φk),Ψk = (φ1, · · · , φk) be the top k CCA vec-
tors. Also denote Φ̃k = ΦkΛk and Ψ̃k = ΨkΛk. Then
for any k × k orthogonal matrix Q, (Φk,Ψk, Φ̃k, Ψ̃k)Q
is a fixed point of AppGrad scheme.

The top k dimensional canonical subspace is identifiable up
to a rotation matrix and Proposition 2.3 shows that every
optimum is a fixed point of AppGrad scheme.

2.4. Kernelization

Sometimes CCA is restricted because of its linearity and
kernel CCA offers an alternative by projecting data into a
high dimensional feature space. In this section, we show
that AppGrad works for kernel CCA as well. Let KX (·, ·)
and KY(·, ·) be Mercer kernels, then there exists feature
mappings fX : X → FX and fY : Y → FY such
that KX (xi, xj) = 〈fX (xi), fX (xj)〉 and KY(yi, yj) =
〈fY(yi), fY(yj)〉. Let FX = (fX (x1), · · · , fX (xn))> and
FY = (fY(y1), · · · , fY(yn))> be the compact representa-
tion of the objects in the possibly infinite dimensional fea-
ture space. Since the top k dimensional canonical vectors
lie in the space spaned by the features, say Φk = F>XWX
and Ψk = F>YWY for some WX ,WY ∈ Rn×k. Let
KX = FXF>X ,KY = FYF>Y be the Gram matrices. Sim-
ilar to Lemma 2.1, kernel CCA can be formulated as

arg max
WX ,WY

‖KXWX −KYWY‖2F

subject to W>
XKXKXWX = Ik W>

YKYKYWY = Ik

Following the same logic as Proposition 2.3, a similar fixed
point result can be proved. Therefore, Algorithm 4 can be
directly applied to compute WX ,WY by simply replacing
X,Y with KX ,KY .

3. Stochastic AppGrad

Recently, there is a growing interest in stochastic opti-
mization which is shown to have better performance for
large-scale learning problems (Bousquet & Bottou, 2008;
Bottou, 2010). Especially in the so-called ‘data laden
regime’, where data is abundant and the bottleneck is run-
time, stochastic optimization dominate batch algorithms
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Algorithm 5 CCA via Stochastic AppGrad (Rank-k)
Input: Data matrix X ∈ Rn×p1 ,Y ∈ Rn×p2 , initial-
ization (Φ0,Ψ0, Φ̃0, Ψ̃0), step size η1t, η2t, minibatch
size m
Output : (ΦSAG,ΨSAG, Φ̃SAG, Ψ̃SAG)
repeat

Randomly pick a subset I ⊂ {1, 2, · · · , n} of size m
Φ̃t+1 = Φ̃t − η1tX

>
I (XIΦ̃

t −YIΨ
t)/m

SVD: (Φ̃t+1)>( 1
mX>IXI)Φ̃t+1 = U>x DxUx

Φt+1 = Φ̃t+1U>x D
− 1

2
x Ux

Ψ̃t+1 = Ψ̃t − η2tY
>
I (YIΨ̃

t −XIΦ
t)/m

SVD: (Ψ̃t+1)>( 1
mY>IYI)Ψ̃t+1 = U>y DyUy

Ψt+1 = Ψ̃t+1U>y D
− 1

2
y Uy

until convergence

both empirically and theoretically. Given these advan-
tages, lots of efforts have been spent on developing stochas-
tic algorithms for principal component analysis (Oja &
Karhunen, 1985; Arora et al., 2012; Mitliagkas et al., 2013;
Balsubramani et al., 2013). Despite promising progress in
PCA, as mentioned in (Arora et al., 2012), stochastic CCA
is more challenging and remains an open problem due to
the whitening step.

As a gradient scheme, AppGrad naturally generalizes to the
stochastic regime and we summarize in Algorithm 5. Com-
pared with the batch version, only a small subset of sam-
ples are used to compute the gradient, which reduces the
computational cost per iteration from O(n(p1 + p2)k) to
O(m(p1 + p2)k) (m = |I| is the size of the minibatch).
Empirically, this makes stochastic AppGrad much faster
than the batch version as we will see in the experiments.
Also, for large scale applications when fully calculating the
CCA subspace is prohibitive, stochastic AppGrad can gen-
erate a decent approximation given a fixed computational
power, while other algorithms only give a one-shot esti-
mate after the whole procedure is carried out completely.
Moreover, when there is a generative model, as shown in
(Bousquet & Bottou, 2008), due to the tradeoff between
statistical and numerical accuracy, fully solving an empir-
ical risk minimization is unnecessary since the statistical
error will finally dominate. On the contrary, stochastic op-
timization directly tackles the problem in the population
level and therefore is more statistically efficient.

It is worth mentioning that the normalization step is ac-
complished using a sampled Gram matrix 1

mX>IXI and
1
mY>IYI . A key observation is that when m ∈ O(k),
(Φ̃t+1)>( 1

mX>IXI)Φ̃t+1 ≈ (Φ̃t+1)>( 1
mX>X)Φ̃t+1 us-

ing standard concentration inequality, because the matrix
we want to approximate (Φ̃t+1)>( 1

mX>X)Φ̃t+1 is a k×k
matrix, while generally O(p) sample is needed to have

1
mX>IXI ≈ 1

nX>X. As we have argued in previous sec-
tion, this bonus is a byproduct of the fact that AppGrad
tries to identify and whiten the directions that contains the
CCA subspace simultaneously, or else O(p) samples are
necessary for whitening the whole data matrices.

4. Experiments
In this section, we present experiments on four real datasets
to evaluate the effectiveness of the proposed algorithms for
computing the top 20 (k=20) dimensional canonical sub-
space. A short summary of the datasets is in Table 1.

Mediamill is an annotated video dataset from the Medi-
amill Challenge (Snoek et al., 2006). Each image is a rep-
resentative keyframe of a video shot annotated with 101
labels and consists of 120 features. CCA is performed to
explore the correlation structure between the images and its
labels.

MNIST is a database of handwritten digits. CCA is used to
learn correlated representations between the left and right
halves of the images.

Penn Tree Bank dataset is extracted from Wall Street Jour-
nal, which consists of 1.17 million tokens and a vocabulary
size of 43, 000 (Lamar et al., 2010). CCA has been success-
fully used on this dataset to build low dimensional word
embeddings (Dhillon et al., 2011; 2012). The task here is
a CCA between words and their context. We only consider
the 10, 000 most frequent words to avoid sample sparsity.

URL Reputation dataset (Ma et al., 2009) is extracted
from UCI machine learning repository. The dataset con-
tains 2.4 million URLs each represented by 3.2 million
features. For simplicity we only use the first 2 million
samples. 38% of the features are host based features like
WHOIS info, IP prefix and 62% are lexical based features
like Hostname and Primary domain. We run a CCA be-
tween a subset of host based features and a subset of lexical
based features.

4.1. Implementations

Evaluation Criterion: The evaluation criterion we use
for the first three datasets (Mediamill, MNIST, Penn Tree
Bank) is Proportions of Correlations Captured (PCC). To
introduce this term, we first define Total Correlations Cap-
tured (TCC) between two matrices to be the sum of their
canonical correlations as defined in Lemma 1.1. Then, for
estimated top k dimensional canonical subspace Φ̂k, Ψ̂k

and true leading k dimensional CCA subspace Φk,Ψk,
PCC is defined as

PCC =
TCC(XΦ̂k,YΨ̂k)

TCC(XΦk,YΨk)
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Table 1. Brief Summary of Datasets

DATASETS DESCRIPTION p1 p2 n
MEDIAMILL IMAGE AND ITS LABELS 100 120 30, 000

MNIST LEFT AND RIGHT HALVES OF IMAGES 392 392 60, 000
PENN TREE BANK WORD CO-OCURRANCE 10, 000 10, 000 500, 000
URL REPUTATION HOST AND LEXICAL BASED FEATURES 100, 000 100, 000 1, 000, 000

Intuitively PCC characterizes the proportion of correlations
captured by certain algorithm compared with the true CCA
subspace. Therefore, the higher is PCC the better is the
estimated CCA subspace. This criterion has two major ad-
vantages over subspace distance ‖PΦ̂k

− PΦk
‖ (PΩ is pro-

jection matrix of the column space of Ω). First, it is more
natural and relevant considering that the goal of CCA is to
capture most correlations between two data matrices. Sec-
ond, when the eigengap ∆λ = λk−λk+1 is not big enough,
the top k dimensional CCA subspace is ill posed while the
correlations captured is well defined.

We use the output of the standard spectral algorithms as the
truth (Φk,Ψk) to calculate the denominator of PCC. How-
ever, for URL Reputation dataset, the number of samples
and features are too large for the algorithm to compute the
true CCA subspace in a reasonable amount of time and in-
stead we only compare the numerator TCC(XΦ̂k,YΨ̂k)
(monotone w.r.t. PCC) for different algorithms.

Initialization We initialize (Φ0,Ψ0) by first drawing i.i.d.
samples from standard Gaussian distribution and then nor-
malize such that (Φ0)>SxΦ0 = Ik and (Ψ0)>SyΨ0 = Ik

Stepsize For both AppGrad and stochastic AppGrad, a
small part of the training set is held out and cross-validation
is used to choose the step size adaptively.

Regularization For all the algorithms, a little regulariza-
tion is added for numerical stability which means we re-
place Gram matrix X>X with X>X + λI for some small
positive λ.

Oversampling Oversampling means when aiming for top
k dimensional subspace, people usually computes top k+ l
dimesional subspace from which a best k diemsional sub-
space is extracted. In practice, l = 5 ∼ 10 suffices to
improve the performance. We only do a oversampling of 5
in the URL dataset.

4.2. Summary of Results

For the first three datasets (Mediamill, MNIST, Penn Tree
Bank), both in-sample and out-of-sample PCC are com-
puted for AppGrad and Stochastic AppGrad as summarized
in Figure1. As you can see, both algorithms nearly capture
most of the correlations compared with the true CCA sub-
space and stochastic AppGrad consistently achieves same

PCC with much less computational cost than its batch ver-
sion. Moreover, the larger is the size of the data, the bigger
advantage will stochastic AppGrad obtain. One thing to no-
tice is that, as revealed in Mediamill dataset, out-of-sample
PCC is not necessarily less than in-sample PCC because
both denominator and numerator will change on the hold
out set.

For URL Reputation dataset, as we mentioned earlier, clas-
sical algorithms fails on a typical desktop. The reason is
that these algorithms only produce a one-shot estimate af-
ter the whole procedure is completed, which is usually pro-
hibitive for huge datasets. In this scenario, the advantage
of online algorithms like stochastic AppGrad becomes cru-
cial. Further, the stochastic nature makes the algorithm
cost-effective and generate decent approximations given
fixed computational resources (e.g. FLOP). As revealed by
Figure 2, as the number of iterations increases, stochastic
AppGrad captures more and more correlations.

Since the true CCA subspaces for URL dataset is too slow
to compute, we compare our algorithm with some naive
heuristics which can be carried out efficiently in large scale
and catches a reasonable amount of correlation. Below is a
brief description of them.

• Non-Whitening (NW-CCA): directly perform SVD on
the unwhitened covariance matrix XTY. This strat-
egy is also used in (Witten et al., 2009)

• Diagnoally Whitening (DW-CCA) (Lu & Foster,
2014): avoid inverting matrices by approximating
S
− 1

2
x ,S

− 1
2

y with (diag(Sx))−
1
2 and (diag(Sy))−

1
2 .

• Whitening the leading m Principal Component Direc-
tions (PCA-CCA): First compute the leading m di-
mensional principal component subspace and project
the data matrices X and Y to the subspace, denote
them Ux and Uy . Then compute the top k dimen-
sional CCA subspace of the pair (Ux,Uy). At last,
transform the CCA subspace of (Ux,Uy) back to
the CCA subspace of orginal matrix pair (X,Y).
Specifically for this example, we choose m = 1200
(log(FLOP)=35, dominating the computational cost of
Stochastic AppGrad) .

Remark 4.1. For all the heuristics mentioned above, SVD
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Figure 1. Proportion of Correlations Captured (PCC) by AppGrad and stochastic AppGrad on different datasets
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Figure 2. Total Correlations Captured (TCC) by NW-CCA, DW-
CCA, PCA-CCA and stochastic AppGrad on URL dataset. The
dash lines indicate TCC for those heuristics and the colored
dots denote corresponding computational cost. Red arrow means
log(FLOP) of PCA-CCA is more than 33.

and PCA steps are carried out using the randomized al-
gorithms in (Halko et al., 2011). For PCA-CCA, as the
number of Principal Components (m) increases, more cor-
relation will be captured but the computational cost will
also increase. When m = p, PCA-CCA is reduced to the
orginal CCA.

Essentially, all the heuristics are incorrect algorithms and

try to approximately whiten the data matrices. As sug-
gested by Figure 2, stochastic AppGrad significantly cap-
tures much more correlations.

5. Conclusions and Future Work
In this paper, we present a novel first order method, App-
Grad, to tackle large scale CCA as a nonconvex optimiza-
tion problem. This bottleneck-free algorithm is both mem-
ory efficient and computationally scalable. More impor-
tantly, its online variant is well-suited to practical high
dimensional applications where batch algorithm is pro-
hibitive and data laden regime where data is abundant and
runtime is main concern.

Further, AppGrad is flexible and structure information can
be easily incorporated into the algorithm. For example,
if the canonical vectors are assumed to be sparse (Witten
et al., 2009; Gao et al., 2014), a thresholding step can be
added between the gradient step and normalization step to
obtain sparse solutions while it is hard to add sparse con-
straint to the classical CCA formulation which is a gen-
eralized eigenvalue problem. Heuristics in (Witten et al.,
2009) avoid this by simply skipping the whitening proce-
dure (NW-CCA). (Gao et al., 2014) resorts to semidefinite
programming and therefore is very slow. AppGrad with
thresholding works well in simulations and we leave its the-
oretical properties for future research.
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