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Abstract

In marketing planning, advertisers seek to max-

imize the number of customers by allocating

given budgets to each media channel effectively.

The budget allocation problem with a bipartite

influence model captures this scenario; however,

the model is problematic because it assumes

there is only one advertiser in the market. In real-

ity, there are many advertisers which are in con-

flict of advertisement; thus we must extend the

model for such a case.

By extending the budget allocation problem with

a bipartite influence model, we propose a game-

theoretic model problem that considers many ad-

vertisers. By simulating our model, we can ana-

lyze the behavior of a media channel market, e.g.,

we can estimate which media channels are allo-

cated by an advertiser, and which customers are

influenced by an advertiser.

Our model has many attractive features. First,

our model is a potential game; therefore, it has a

pure Nash equilibrium. Second, any Nash equi-

librium of our game has 2-optimal social utility,

i.e., the price of anarchy is 2. Finally, the pro-

posed model can be simulated very efficiently;

thus it can be used to analyze large markets.

1. Introduction

1.1. Background

Marketing is used by advertisers to create loyal customers.

A major decision problem in marketing planning is the al-

location of budgets to media channels (e.g., TV, newspa-

per, billboards, and websites) efficiently to maximize the

number of influenced customers under some constraints.

This problem can be formulated as follows: Suppose we
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have estimates for the extent to which marketing channels

can influence customer decisions and convert potential cus-

tomers into loyal buyers. We would like to market a new

product that may possibly be adopted by a large fraction

of the customers. How should we choose the appropriate

marketing channels?

Alon et al. (Alon et al., 2012) were the first to model this

channel market. Consider a bipartite graph in which one

side is the set of media channels and the other is the cus-

tomers. Each edge between a channel and a customer in-

dicates that the customer is influenced via the channel with

some probability that depends on the budget allocated to

that channel. The maximization of the expected number of

influenced customers under some budget constraint can be

formulated as a combinatorial optimization problem. This

optimization problem can be developed in the general sub-

modularity framework. More precisely, it can be formu-

lated as knapsack-constrained monotone submodular func-

tion maximization problem on the integer lattice. Thus a

polynomial time (1 − 1/e)-approximation algorithm can

be obtained by a greedy type algorithm (Alon et al., 2012;

Soma et al., 2014). We describe this submodularity frame-

work in more details in Section 3. This model and its

extensions are studied in the area of computational adver-

tising (Ieong et al., 2014; Geyik et al., 2014; Hatano et al.,

2015).

1.2. Motivation

In reality, there are many advertisers with comparable

products in a channel market, and they compete to convert

potential customers into as many loyal buyers as possible.

Market analysts (often controlled by publishers or adver-

tisers) analyze such a complicated market. Major tasks

of analysts are to simulate/predict the market to acquire

an insight, and to propose a strategy for a market plan-

ning (Broder & Josifovski, 2011). In particular, they wish

to estimate the media channels that are allocated by adver-

tisers and the number of customers that are influenced by
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each advertiser. Since the model proposed in (Alon et al.,

2012) only deals with a single advertiser, analysts need a

market model that deals with many advertisers. This is the

main motivation of our paper.

As mentioned above, many advertisers are competing, and

they want to convert as many potential customers into loyal

buyers as possible via media channels. In this case, each

advertiser would adopt his own strategy independent of his

competitors’ marketing strategies. Thus we need to de-

velop a network equilibrium framework that considers the

reality of competition among multiple advertisers through

media channels.

For this purpose, it makes sense to adopt game-theoretic

analysis; we regard a media channel market as a game in

which advertisers act as the players of the game. The goal

of each player is to maximize his utility (the number of

influenced customers). Here, we assume that each player

knows the influence probability of all other players, i.e., we

here consider a complete information game. This assump-

tion is reasonable when there are sufficiently many trans-

action logs of the market to construct models of players.

Moreover, we here assume that each player is rational and

selfish, i.e., he chooses a strategy that (approximately) max-

imizes his utility. This assumption is, in particular, reason-

able for online advertising and internet auctions (Varian,

2007; Zhao & Nagurney, 2008) since many advertisers use

computer programs in these markets (Yuan et al., 2013). In

this setting, game theory provides a rich theory for analyz-

ing a game.

1.3. Contribution

We propose a game-theoretic model of a media channel

market with n advertisers and discuss its properties. We

offer the following theoretical contributions.

• We propose a game-theoretic model of a channel me-

dia market with n advertisers, which is an exten-

sion of the budget allocation problem presented in

(Alon et al., 2012). We call this model the budget

allocation game with bipartite influence model (Sec-

tion 4).

• We show that the game has a pure Nash equilibrium.

This is a desirable property for a market model. To

prove this property, we show that the game is a poten-

tial game (Section 5).

• The social utility of any pure Nash equilibrium is 2-

optimal. Furthermore, there exists a Nash equilibrium

of min{Hn, 2}-optimal, where Hn = 1+1/2+ · · ·+
1/n is the n-th harmonic number. We give an asymp-

totically tight example for these results (Section 6).

To show the practical usefulness of our model, we also dis-

cuss the computational perspective.

• Finding a pure Nash equilibrium is NP-hard. Thus we

consider an approximate Nash equilibrium and prove

that it can be found in polynomial time. We also give a

bound of the approximate price of anarchy (Section 7).

• We conduct numerical experiments with synthetic and

real datasets. We observe that the approximate best-

response dynamics converges in only a few rounds,

and the social utility of the obtained solution is very

close to the social optimal. These are much better than

theory. Thus, our model has a capability of analyzing

large markets, which will appear in online advertising

and internet auctions (Section 8).

All omitted proofs will be given in Appendix A in the sup-

plementary material.

2. Notation

In this section, we first introduce game theoretical notions

and submodularity.

2.1. Game theory

We first define a (non-cooperative) game. Let n ∈ Z>0

be the number of players and let [n] = {1, . . . , n}
be the set of players. An n-player game in strategic

form (Nisan et al., 2007) (a “game” for short) is a tuple

([n], {Di}i∈[n], {fi}i∈[n]), where Di is a set of strategies

for player i, and fi : D → R is a utility function of player

i, where D = D1×· · ·×Dn is the set of all possible config-

urations. The goal of player i is to find a strategy xi ∈ Di

to maximizes his utility function fi. For notational conve-

nience, when there is no fear of confusion, we denote by

g(xi, x−i) the value of function g : D → R when player

i selects a strategy xi and other players select strategies

x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

A configuration x ∈ D is a (pure) Nash equilibrium (Nash,

1950) if it satisfies

fi(xi, x−i) ≥ fi(x
′
i, x−i) (1)

for all x′
i ∈ Di. Nash equilibrium is the most commonly-

used notion of equilibrium in game theory, and in gen-

eral, a game does not necessarily have a pure Nash equi-

librium. See (Nisan et al., 2007) for more details of algo-

rithmic game theory.

2.2. Submodular function on integer lattice

Let S be a finite set. A function f : ZS → R is submodular

on the integer lattice (“submodular”) if it satisfies

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (2)

for all x, y ∈ Z
S where ∨ denotes the element-wise

maximum and ∧ denotes the element-wise minimum:
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(x ∨ y)(s) = max{x(s), y(s)} and (x ∧ y)(s) =
min{x(s), y(s)}. A function f : Z

S → R is monotone

nondecreasing if it satisfies

f(x) ≤ f(y) (3)

for all x ≤ y, i.e., x(s) ≤ y(s) (s ∈ S). A function

f : ZS → R satisfies component-wise concavity (Shioura,

2009; Milgrom & Strulovici, 2009) if it satisfies

f(x+ es)− f(x) ≥ f(x+ 2es)− f(x+ es) (4)

for all s ∈ S, where es is the s-th unit vector.1 See (Topkis,

1998) for more details of submodular function defined on

the lattice.

3. Budget allocation problem

Here, we review the budget allocation problem with a

bipartite influence model, which is proposed by Alon

et al. (Alon et al., 2012) and extended by Soma et

al. (Soma et al., 2014). We discuss a game-theoretic ex-

tension of this model in the next section.

Let G = (S∪T,E) be a bipartite graph, where the left ver-

tices S denote media channels, the right vertices T denote

customers, and the edges E ⊆ S × T denote the relations

between channels and customers. Each edge (s, t) ∈ E
has an activation probability p(s, t) ∈ [0, 1] such that cus-

tomer t ∈ T is activated via channel s ∈ S with probability

p(s, t).

Suppose that an advertiser has a budget of B ∈ Z≥0 units.

If x(s) ∈ Z≥0 units are allocated for channels s ∈ S, then

customer t ∈ T is activated by the advertiser with proba-

bility

P (x, t) = 1−
∏

s∈Γ(t)

(1− p(s, t))
x(s)

, (5)

where Γ(t) = {s ∈ S : (s, t) ∈ E} denotes the neighbor of

t ∈ T . Thus, the expected number of activated customers

by the advertiser f(x) is given by

f(x) =
∑

t∈T

P (x, t)

=
∑

t∈T



1−
∏

s∈Γ(t)

(1− p(s, t))
x(s)



 . (6)

The purpose of advertiser is to maximize f(x) under bud-

get constraints, which is specified as follows. Let c(s) ∈

1This property is also called diminishing marginal re-
turn property (Soma et al., 2014). “Submodularity with
component-wise concavity” is called directional concav-
ity (Shaked & Shanthikumar, 1990), which was originally studied
by Rüschendorf (Rüschendorf, 1983).

Z≥0 be a capacity of channel s ∈ S and w(s) ∈ Z≥0 be

an allocation cost of channel s ∈ S. These denote that the

channel s can be allocated at most c(s) units and the cost of

allocating an unit is w(s). The advertiser wants to allocate

the budgets to each channel under the capacity and the cost

constraints. Thus his/her problem is given as the following.

maximize f(x)

subject to
∑

s∈S

w(s)x(s) ≤ B,

0 ≤ x(s) ≤ c(s).

(7)

The function f defined by (6) is a monotone submodu-

lar function on the integer lattice and satisfies component-

wise concavity (Soma et al., 2014). For a general mono-

tone submodular function f with component-wise concav-

ity, the problem (7) is NP-hard. Moreover, it is NP-hard

to obtain better than (1− 1/e)-approximate solution of the

problem (Alon et al., 2012). Thus we are interested in ap-

proximation algorithms.

Alon et al. proposed two polynomial time algorithms for

the problem (7). The first algorithm is a (1 − 1/e) ap-

proximation algorithm, which is an integer lattice version

of Sviridenko (Sviridenko, 2004). This algorithm com-

bines a partial enumeration and a greedy procedure; it first

enumerates all feasible assignments of cardinality at most

three, and then performs greedy procedure (Algorithm 1)

from these assignments. Since the number of initial assign-

ments is O(|S|3B3) and the greedy procedure terminates

at most |S|B iterations, the complexity of this algorithm is

O(γ|T ||S|4B4), where γ is the complexity of evaluating

P (x, t). Soma et al. (Soma et al., 2014) extended this algo-

rithm for a general monotone submodular function on the

integer lattice.

Even though the above algorithm runs in polynomial time,

in practice, it is not scalable for large instances due to

its expensive exponent. The second algorithm of Alon

et al. (Alon et al., 2012) is a more efficient but less ac-

curate algorithm. The algorithm first performs a greedy

procedure (Algorithm 1) from empty assignment x = 0,

and then compares the obtained solution with all feasi-

ble assignments of cardinality one. This procedure gives

a (1/2)(1 − 1/e) approximation solution in O(γ|T ||S|B)
time. Note that this algorithm can be immediately extend

to a general submodular function on the integer lattice with

component-wise concavity.

4. Proposed model

In this section, we propose a game-theoretic extension of

the budget allocation problem. Some possible extensions

of the model are discussed in Section 9.

Suppose that there are n advertisers in a market. We here

define a game, and regard these advertisers as the players
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Algorithm 1 Greedy procedure for maximizing monotone

submodular function with component-wise concavity un-

der a knapsack constraint (Alon et al., 2012).

1: loop
2: s∗ ∈ argmax

s
{(f(x+es)−f(x))/w(s) : x(s) ≤ c(s)−

1,
∑

s′∈S
w(s′)x(s′) ≤ B − w(s)}

3: if NO such s∗ then return x as a solution
4: x(s∗)← x(s∗) + 1
5: end loop

Algorithm 2 Activating customer t by the random ordering

rule.

1: Draw a random permutation σ ∈ Sn

2: for k = 1, . . . , n do

3: Player σ(k) tries to activate customer t with proba-

bility Pσ(k)(xσ(k), t)
4: if The challenge is succeeded then break

5: end for

of the game. Similar to the budget allocation problem, we

consider a bipartite graph G = (S ∪ T,E), where S de-

notes the set of channels and T denotes the set of cus-

tomers. Each player i ∈ [n] has activation probability

pi : E → [0, 1], budget Bi ∈ Z≥0, channel capacity

ci : S → Z≥0, and allocation cost wi : S → Z≥0. The

set of feasible strategies of player i is expressed as follows:

Di = {xi ∈ Z
|S| :

∑

s∈S

wi(s)xi(s) ≤ Bi,

0 ≤ xi(s) ≤ ci(s) (s ∈ S)}. (8)

The purpose of each player (advertiser) is to find a feasi-

ble allocation xi ∈ Di for maximizing the number of his

customers.

Defining a game-theoretic extension of the budget alloca-

tion problem requires an activation rule, i.e., when many

advertisers with comparable products simultaneously ap-

proach the same customer t ∈ T , we must specify which

advertiser successfully activates that customer. We propose

the following rule, which we refer to as the random order-

ing rule. First, we define the contribution of advertiser i
as

Pi(xi, t) = 1−
∏

s∈Γ(t)

(1− pi(s, t))
xi(s) . (9)

Note that (9) coincides with the activation probability when

the other advertisers are ignored. For each customer t ∈ T ,

we draw a permutation σ ∈ Sn uniformly at random, where

Sn denotes the set of all permutations of [n]. Then, accord-

ing to permutation σ, each player sequentially attempts to

activate customer t. The formal description is given in Al-

gorithm 2.

The utility function fi(x1, . . . , xn) of player i ∈ [n] is the

number of expected customers activated by player i when

each player j ∈ [n] allocates xj ∈ Dj . In the random

ordering rule, we can obtain the the closed form of fi as

follows:

fi(x) =
1

n!

∑

t∈T

∑

σ∈Sn

Pi(xi, t)
∏

j≺σi

(1− Pj(xj , t)), (10)

where i ≺σ j indicates that i appears before j in σ.

The tuple ([n], {fi}i∈[n], {Di}i∈[n]) defines a game. We

call this the budget allocation game with a bipartite influ-

ence model. We propose this game for a model of a media

channel market with many advertisers.

Intuitively, this model (random ordering rule) corresponds

to the following customer’s action: Imagine a customer

who wants to buy a PC. Today he obtains many flyers

from PC manufactures (advertisers) via media channels.

He starts examining these manufactures sequentially, and

when he identifies a desirable PC, he immediately pur-

chases the PC and stops examining the other makers. If the

examination order is random, the customer’s actions corre-

spond to the proposed model.

We here give a basic property of the utility functions.

Proposition 1. Each utility function fi(xi, x−i) is a mono-

tone nondecreasing submodular function with component-

wise concavity with respect to xi ∈ Di.

5. Existence of pure Nash equilibria

Existence of pure Nash equilibria is a desirable property of

a market model, in particular, for market analysts. When a

current configuration is not a Nash equilibrium, each player

may change his strategy to improve his utility. Therefore, if

market analysts want to propose a strategy for advertisers,

a market model should be a Nash equilibrium.

Here, we show that a budget allocation game has a

pure Nash equilibrium. To prove this, we introduce

the notion of a potential game. A game is a potential

game (Monderer & Shapley, 1996) if there exists a func-

tion Φ : D → R such that for all i ∈ [n],

fi(x
′
i, x−i)− fi(xi, x−i) = Φ(x′

i, x−i)− Φ(xi, x−i).
(11)

Function Φ is called a potential of the game. The potential

is unique up to a constant difference (Monderer & Shapley,

1996). The most important property of a potential game is

that it must have a pure Nash equilibrium. In fact, by (11),

the maximum potential feasible solution is a Nash equilib-

rium.

We show that our game is also a potential game; thus it has

a pure Nash equilibrium.

Proposition 2. A budget allocation game is a potential
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Algorithm 3 Best response dynamics.

1: Set arbitrary initial solutions xi ∈ Di, i ∈ [n]
2: repeat
3: for i ∈ [n] do
4: Compute xi ∈ argmax{fi(yi, x−i) : yi ∈ Di}
5: if fi(yi, x−i) > fi(xi, x−i) then Update xi ← yi
6: end for
7: until no update is performed

game with potential function

Φ(x) =
∑

t∈T

∑

∅6=I⊆[n]

(−1)|I|−1

|I|

∏

i∈I

Pi(xi, t). (12)

Corollary 3. A budget allocation game has a pure Nash

equilibrium.

The proof of Proposition 2 will be given in Appendix A.

A Nash equilibrium of a potential game can be found by the

best-response dynamics (Algorithm 3) in a finite number of

iterations (Monderer & Shapley, 1996). This implies that,

in our model, a market tends to be a Nash equilibrium.

6. Quality of Nash equilibrium

As discussed in the previous section, our budget allocation

game has a pure Nash equilibrium. In this section, we an-

alyze the quality of pure Nash equilibria. We define social

utility as the sum of the utilities of all advertisers.

F (x) =f1(x) + · · ·+ fn(x)

=
∑

t∈T

(

1−
n
∏

i=1

(1− Pi(xi, t))

)

. (13)

The social utility F (x) is the expected number of cus-

tomers activated by some advertiser. Market analysts

sometimes desire a strategy for advertisers to obtain a large

social utility. However, as mentioned in the previous sec-

tion, advertisers would not accept a configuration that is

not a Nash equilibrium. Therefore we are interested in the

social utility at a Nash equilibrium. To measure this, we

adopt the price of anarchy and the price of stability.

Price of Anarchy The ratio between the best

social utility and the worst social utility under

Nash equilibria is referred to as the price of anar-

chy (Koutsoupias & Papadimitriou, 1999), which is

expressed as

PoA =
max{F (x) : x ∈ D}

min{F (x) : x is a Nash}
.

Since a market tends to a Nash equilibrium, at least PoA-

optimal customers are naturally activated. Thus, if PoA is

close to one, we can say that the market is efficient.

Here we show that the price of anarchy of the budget allo-

cation game is at most 2. To show this, we prove that our

game is a monotone utility game. A game is a monotone

utility game on the integer lattice if it satisfies the follow-

ing three conditions.

1. F (x) is a nondecreasing submodular function on the

integer lattice, and satisfies component-wise concav-

ity.

2. F (x) ≥
∑n

i=1 fi(x).
2

3. fi(x) ≥ F (xi, x−i)− F (0, x−i).

Note that utility games are originally defined on set func-

tions (Vetta, 2002). Here we extend this concept to a game

on the integer lattice. We first show that the price of anar-

chy of a monotone utility game is at most 2.

Proposition 4. The price of anarchy of a monotone utility

game on the integer lattice is at most 2.

Proposition 4 is an integer lattice version of Theorem 5 pre-

sented by Vetta (Vetta, 2002). This proof (which will be

given in Appendix A) requires component-wise concavity.

We can show that the budget allocation game is a monotone

utility game on the integer lattice. Therefore, by Proposi-

tion 5 below (whose proof will be given in Appendix A),

we can show that the price of anarchy of the game is at

most 2.

Proposition 5. The budget allocation game is a monotone

utility game on the integer lattice.

Corollary 6. The price of anarchy of the budget allocation

game is at most 2.

Price of Stability There is another quality measure,

called the price of stability (Anshelevich et al., 2008). The

price of stability is the ratio between the best social utility

and the best social utility under Nash equilibria:

PoS =
max{F (x) : x ∈ D}

max{F (x) : x is a Nash}
.

When the price of stability is close to one, there is an ac-

ceptable configuration with possibly many activated cus-

tomers. Thus market analysts can propose this configura-

tion to advertisers to obtain a large social utility.

By definition, the price of stability is at most the price of

anarchy. We can slightly improve this bound.

Proposition 7. The price of stability of a budget allocation

game is at most max{Hn, 2}, where Hn is the harmonic

number, Hn = 1 + 1/2 + · · ·+ 1/n.

2Since we defined social utility as the sum of the players’ util-
ity, condition 2) is satisfied. However, we define a basic utility
game for a more general situation.
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s1 t1t t
p = 1, 1, 1

s2 t2t t
p = 0, 1/3− ǫ, 0

s3 t3t t
p = 0, 0, 1/3− ǫ

Figure 1. Asymptotically tight example for PoA and PoS.

Algorithm 4 Approximate best response dynamics.

1: Set arbitrary initial solutions xi ∈ Di, i ∈ [n]
2: repeat
3: for i ∈ [n] do
4: Find an η-approximate solution yi of the problem

max{fi(yi, x−i) : yi ∈ Di}.
5: if fi(yi, x−i) > fi(xi, x−i) + ǫ then Update xi ← yi
6: end for
7: until no update is performed

Note that H2 = 1.5, H3 ≈ 1.833, and H4 ≈ 2.083. Thus

the above proposition (whose proof will be given in Ap-

pendix A) improves the bound for n ≤ 3.

Example 8. A bipartite graph G = (S ∪ T,E) is defined

by n parallel lines, i.e., S = [n], T = [n], and E = {(i, i) :
i ∈ [n]}. The edge probability is defined by

pi(j, j) =











1, j = 1,

1/n− ǫ, j = i( 6= 1),

0, otherwise.

(14)

Figure 1 shows the case for n = 3. Each i ∈ S has unit

cost and unbounded capacity, and each player has an unit

budget.

In this instance, the social optimal solution is xi = ei for

all i ∈ [n], and the corresponding social utility is 2− 1/n.

On the other hand, a solution xi = e1 for all i ∈ [n] is

a unique Nash equilibrium. and the corresponding social

utility is 1. Therefore PoA = PoS = 2 − 1/n. By tending

n → ∞, we have PoA = PoS → 2, i.e., it is a tight example

for Propositions 6 and 7.

7. Approximate Nash equilibrium

In the previous sections, we considered only the theoretical

perspective. Here, we consider the computational perspec-

tive.

Computing a Nash equilibrium is at least as hard as the bud-

get allocation problem (7); thus it is NP-hard. Therefore

we are interested in approximation algorithms. A configu-

ration x ∈ D is an (η, ǫ)-approximate Nash equilibrium if

it satisfies

fi(xi, x−i) ≥ ηfi(x
′
i, x−i)− ǫ.

for all x′
i ∈ Di. For market analysis, an approximate Nash

equilibrium has the following meaning: Since maximizing

fi is NP-hard, it makes sense to assume that

each advertiser adopts an (η, ǫ)-approximation

algorithm to improve his strategy.
(15)

In such a case, each advertiser may not change his strategy

when the current strategy is an approximate Nash equilib-

rium, i.e., an approximate Nash equilibrium is an accept-

able configuration for all advertisers.

We can find an approximate Nash equilibrium in polyno-

mial number of iterations by approximate best response dy-

namics (Algorithm 4). This also implies that, in our model

with (15), a market tends to be an approximate Nash equi-

librium.

Proposition 9. For an arbitrary ǫ > 0, the best response

dynamics finds an (η, ǫ)-approximate Nash equilibrium in

|T |Hn/ǫ rounds (lines 2–9).

If we use a polynomial time approximation algorithm for

line 4, each round of the approximate best response dynam-

ics requires polynomial number of utility functions eval-

uations. It should be mentioned that, in (10), the utility

function fi has O(n!) terms. Thus the naive computation

requires O(n!) time. However, we can reduce this factor

to O(n(log n)2) by using a divide-and-conquer algorithm

with the fast Fourier transform.

Proposition 10. For each i ∈ [n], fi(x) can be computed

in O(|E|n+ |T |n(log n)2) time.

If we adopt the η = (1/2)(1 − 1/e) approximation

algorithm (mentioned in Section 3) in line 4 of Algo-

rithm 3, we can implement Algorithm 3 in O(B|S||E|n +
B|S||T |n(log n)2) time per round; see the proof of Propo-

sition 10 in Appendix A.

Finally, we give a bound for the approximate price of anar-

chy. Again, the proof will be given in Appendix A.

Proposition 11. Let x∗ ∈ D be the optimal social utility

allocation. For any (η, ǫ)-approximate Nash equilibrium

x ∈ D, we have

F (x∗) ≤

(

1 +
1

η

)

F (x) +
ǫn

η
.

This shows if each player uses η = 1− 1/e approximation

algorithm for maximizing his utility, the approximate price

of anarchy is about 1+ 1/(1− 1/e) ≈ 2.58. If each player

uses η = (1/2)(1− 1/e) approximation algorithm, the ap-

proximate price of anarchy is about 1+2/(1−1/e) ≈ 4.16.

8. Experiments

Here, we demonstrate the practical usefulness of the pro-

posed model through numerical experiments.
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Figure 2. Number of rounds to converge.

For efficient computation, we adopt the (1/2)(1− 1/e) ap-

proximation algorithm for line 4 in Algorithm 3, as men-

tioned right after Proposition 10. Furthermore, by using

a naive algorithm, instead of the fast Fourier transform in

evaluating fi (see the proof of Proposition 10 in Appendix),

the complexity per round becomes O(B|S||T |n2).

All experiments were conducted on an Intel Xeon E5-

2690 2.90GHz CPU with 256GB memory running Ubuntu

12.04. Our algorithm was implemented in C++ and was

compiled using g++v4.6 with the -O3 option.

8.1. Typical behavior

We first show the typical behavior of the algorithm. We

generated 100 random bipartite graphs which has |S| =
100 and |T | = 10000 vertices, and each t ∈ T has 20
random edges. We set n = 10 players, and choose each

player’s budgets and the influence probabilities such that

1/5 of the customers will be activated. We performed our

approximate best response dynamics with ǫ = 0.999.

We observed that the dynamics converges in a few rounds.

Figure 2 (a) shows the histogram of the number of rounds to

converge. Most instances are converged in four rounds, and

only a few instances require more than four founds (but at

most seven rounds). To observe the precise behavior of the

algorithm, we select one instance that requires five rounds

and plot the social utility for each rounds. The result is

shown in Figure 2 (b). This shows the process almost con-

verges at the first round and it requires additional rounds

for minor improvements.

We also performed similar experiments with other param-

eters and random graph models (e.g., random power-law

graphs); however we obtain similar results for all experi-

ments (see: Appendix B). Thus we conclude that this is a

typical behavior of our model.

8.2. Scalability

We then discuss the scalability of our algorithm. We per-

formed experiments for real datasets. We here adopt the

following datasets.

Table 1. Computational time (per round) in real datasets.

dataset |S| |T | n time/round

open1 541 4271 20 24 s
open2 757 5062 20 40 s

movielens 100k 944 1683 10 3 s
movielens 1m 6040 3706 10 44 s
movielens 10m 69878 10677 10 1621 s

user-tag 17122 82035 5 518 s
user-picture 12177 495402 5 4728 s
tag-picture 82035 495402 5 18780 s

1. open-advertising-dataset3 (open1, open1). The

dataset consists of click-query logs of a search engine.

2. MovieLens dataset4 (movielens 100k, movielens 1m,

and movielens 10m). MovieLens5 is a web-based rec-

ommender system. The dataset consists of the rating

of movies by users on MovieLens.

3. vi.sualize.us dataset6 (user-tab, user-picture, and user-

tag). vi.sualize.us7 is a social bookmarking service

for pictures. The dataset consists of bipartite graphs

between two of users, tags, and pictures.

We construct bipartite graphs from these dataset. Budgets

and influence probabilities of players are determined sim-

ilarly as the experiment in Section 8.1. The results are

summarized in Table 1. For each instance, the number of

rounds for converge performs similar to the experiment in

Section 8.1, i.e., the model converges in a few iterations.

This shows our model can be efficiently simulated in large

real datasets.

8.3. Approximate vs exact maximization

In our model, we assumed that each player approximately

maximizes his utility. We here verify whether the exact

maximization improves this utility.

Since the exact maximization requires exhaustive search,

which is very expensive, we used a small instance for this

experiment. We generated 100 random bipartite graphs

with |S| = 10 and |T | = 100 vertices, and each t ∈ T
has 5 edges. We set n = 2 players. Other conditions are

the same as the experiments in Section 8.1.

In this setting, the ratio between a player’s utility when all

players use the approximate maximization and when they

use the exact maximization is contained in [0.990, 1.008]
(see Appendix B for more details). This means the approx-

imate maximization is enough to evaluate the quality of so-

3https://code.google.com/p/open-advertising-dataset/
4http://grouplens.org/datasets/movielens/
5http://movielens.umn.edu/
6http://konect.uni-koblenz.de/networks/pics ti
http://konect.uni-koblenz.de/networks/pics ut
http://konect.uni-koblenz.de/networks/pics ui

7http://vi.sualize.us/
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lutions, which can be very efficiently computed.

8.4. Experimental value of price of anarchy

Finally, we evaluate the quality of the obtained social util-

ity. Proposition 11 shows that the approximate price of an-

archy is at most 1 + 1/η = 4.16. We here compare this

value with the social utility of the obtained solution. Here,

we used the same instances in Section 8.3.

In this experiment, the ratio of the optimal social utility,

obtained by exhaustive search and the obtained solution is

at most 1.006, which is significantly better than the theory

(see Appendix B). In fact, it is significantly better than the

exact price of anarchy (= 2). This implies that, in our ex-

periments, we can find an approximate Nash equilibrium

which is very close to the social optimal solution.

9. Extension of the model

In this section, we discuss a possible generalization of our

proposed model. In our theory, we have only used the prop-

erty that Pi(xi, t) is a monotone nondecreasing submod-

ular function with component-wise concavity. Thus, we

can extend the proposed model for any probability function

Pi(X, t) that satisfies this property, instead of (9).

One important example is the nonincreasing influence

probability model introduced by Soma et al. (Soma et al.,

2014). In this model, each activation probability pi(e)

is extended to nondecreasing probabilities p
(1)
i (e) ≥

p
(2)
i (e) ≥ · · · , and Pi(xi, t) is extended to

Pi(xi, t) :=
∏

s∈Γ(t)

x(s)
∏

k=1

(1− p
(k)
i (s, t)). (16)

This model captures real-world marketing phenomena, i.e.,

the effectiveness of activating a target customer may de-

crease in multiple trials.

10. Related work

This paper has discussed a game-theoretic extension of the

budget allocation problem. To the best of our knowledge,

this is the first game-theoretic extension of the problem. On

the other hand, there are some game-theoretic models of

the influence maximization problem (Kempe et al., 2003),

which deals with information spreads over non-bipartite

graphs. Here, we briefly review these models and discuss

the relation with our model.

The first game-theoretic model of the influence maxi-

mization problem is proposed by Bharathi, Kempe, and

Salek (Bharathi et al., 2007). In their model, each player

initially selects seed vertices. Then the diffusion process

is performed as same as the independent cascading model

of the influence maximization problem. When a vertex u
is simultaneously activated by many players, it belongs to

one of the activated players. They proved that the price of

anarchy of this model is at most 2.

Alon et al. (Alon et al., 2010) studied a model in which

if many players simultaneously approach a vertex i, they

“cancel out.” They showed that, if the diameter of an un-

derlying graph is at most 2 (which seems very restrictive),

then the game has a pure Nash equilibrium. They also

showed that the price of anarchy of their game is at most 2.

Tzoumas and Amanatidis (Tzoumas et al., 2012) extended

this model and discussed the condition of existence of a

pure Nash equilibrium.

Goyal and Kearns (Goyal & Kearns, 2012) proposed a gen-

eral influence model that is specified by a function, called

a switching function. This is a generalization of the lin-

ear threshold model in the influence maximization prob-

lem (Kempe et al., 2003). He and Kempe (He & Kempe,

2013) analyzed this model and proved that the price of an-

archy is at most 2.

By comparing these existing results, the largest advantage

of our model is that it has a pure Nash equilibrium. As

mentioned in Section 5, this is a desirable property for a

market model.

11. Conclusion

In this paper we have proposed a model for a media channel

market with many advertisers, which is a game-theoretic

extension of the budget allocation problem presented by

Alon et al. (Alon et al., 2012). The proposed model has the

following attractive features: 1) it has a pure Nash equilib-

rium, 2) both the price of anarchy and the price of stability

can be estimated, and 3) it can be efficiently simulated. We

conducted numerical experiments to demonstrate that the

model can be applied to a large scale market.

There are some possible future works. First, we here as-

sumed that each player knows the influence probabilities

of all other players. This makes our model a complete in-

formation game, which is easy to analyze. Extending this

model to an incomplete information game is perhaps im-

portant future work. Second, we here assumed that an or-

dering of players is uniformly random, which is the key

of Proposition 2. Introducing distributions over the order-

ings is a natural extension of the model; however, in this

model, Proposition 2 does not hold, i.e., the existence of

Nash equilibrium is non-trivial. Analyzing this extended

model is interesting future work. Finally, in the exper-

iments in Section 8.4, we have obtained an approximate

Nash equilibrium which is very close to the social optimal

solution. Exploiting the reason of this phenomenon seems

practically important work.
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A. Proofs omitted in the body

Here, we give all missing proofs for the presented proposi-

tions.

Proof of Proposition 1. This follows from explicit formula

(10) and the fact that (9) is monotone-nondecreasing

submodular function with component-wise concavity in

xi (Soma et al., 2014).

Proof of Proposition 2. We find a potential Φ of the form

Φ(x) =
∑

t∈T

∑

I⊆[n]

α(I)
∏

i∈I

Pi(xi, t),

where α(I) denotes a coefficient to be determined. Con-

dition (11) of potential is invariant under translation; thus,

without loss of generality, we may assume α(∅) = 0.

For each i ∈ [n], we have

Φ(x′
i, x−i)− Φ(xi, x−i)

=
∑

t∈T

(Pi(xi, t)− Pi(x
′
i, t))

∑

i∈I⊆[n]

α(I)
∏

j∈I\{i}

Pj(xj , t)

and

fi(x
′
i, x−i)− fi(xi, x−i)

=
∑

t∈T

(Pi(xi, t)− Pi(x
′
i, t))

1

n!

∑

σ∈Sn

∏

j≺σi

(1− Pj(xj , t)).

To hold equality (11), the coefficient α should satisfy the

following relation.

∑

i∈I⊆[n]

α(I)
∏

j∈I\{i}

Pj(xj , t)

=
1

n!

∑

σ∈Sn

∏

j≺σi

(1− Pj(xj , t)).

By comparing these terms, for all I ⊆ V that contain i ∈
V , we have8

α(I) =
(−1)|I|+1

n!
|{σ ∈ Sn : j ≺σ i (∀j ∈ I \ {i})}|

=
(−1)|I|+1

|I|
.

8The number of permutations is evaluated as follows. Let I =
{1, . . . , |I|}. Consider a permutation of symbols (x, . . . , x, |I|+
1, . . . , n). By replacing the last appeared x with i and the other
x with distinct j ∈ I , we obtain a permutation that satisfies
j ≺σ i (∀j ∈ I\{i}). This shows that there is a one-to-one corre-
spondence between Sn/SI×SI\{i} and {σ ∈ Sn : j ≺σ i (∀j ∈
I \ {i})}. Therefore, |{σ ∈ Sn : j ≺σ i (∀j ∈ I \ {i})}| =
n!(|I| − 1)!/|I|! = n!/|I|.

It is important that the above-derived α(I) is independent

to the choice of i. Therefore

Φ(x) =
∑

t∈T

∑

∅6=I⊆[n]

(−1)|I|−1 1

|I|

∏

i∈I

Pi(xi, t) (17)

satisfies condition (11) for all i.

Proof of Proposition 4. Let x∗ = (x∗
1, . . . , x

∗
n) ∈ D be the

social optimal allocation, and let x = (x1, . . . , xn) ∈ D be

a Nash equilibrium. Let x∗(i) = (x∗
1, . . . , x

∗
i , 0, . . . , 0) for

i = 0, . . . , n. Then we have

F (x∗)− F (x) ≤F (x∗ ∨ x)− F (x)

=
n
∑

i=1

F (x∗(i) ∨ x)− F (x∗(i−1) ∨ x)

≤
n
∑

i=1

F (x∗
i ∨ xi, x−i)− F (xi, x−i)

≤
n
∑

i=1

F (x∗
i ∨ xi − xi, x−i)− F (0, x−i).

Here, the first line is obtained by monotonicity, the second

line is the telescoping sum, the third line is by submodular-

ity, and the last line is by component-wise concavity. Since

x∗
i ∨ xi − xi ≤ x∗

i and by the definition of Di, we have

x∗
i ∨ xi − xi ∈ Di.

By condition 3) of utility games, we have

F (x∗
i ∨ xi − xi, x−i)− F (0, x−i) ≤ fi(x

∗
i ∨ xi − xi, x−i).

Furthermore, since x is a Nash equilibrium, we have

fi(x
∗
i ∨ xi − xi, x−i) ≤ fi(xi, x−i). (18)

Therefore we have

F (x∗)− F (x) ≤
n
∑

i=1

fi(x) = F (x).

This shows F (x∗) ≤ 2F (x), i.e., PoA ≤ 2.

Proof of Proposition 5. By the definition of F , condition

2) is obvious. Here, we prove conditions 1) and 3).

1). Corollary 2.6.3 in Topkis (Topkis, 1998) shows that the

product of nonnegative nonincreasing supermodular (i.e.,

negative of submodular) functions is also a nonnegative

nonincreasing supermodular function. Since each Pi(xi, t)
is a nonnegative nondecreasing submodular function, the

product

1−
n
∏

i=1

(1− Pi(xi, t)) (19)
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is a nonnegative nondecreasing submodular function. Fur-

thermore, since Pi(xi, t) satisfies component-wise concav-

ity and the variables x1, . . . , xn appear separately in (19), it

also satisfies component-wise concavity. This proves con-

dition 1).

3). Since fi(0, x−i) = 0, we have

fi(x) = fi(x)− fi(0, x−i) = Φ(x)− Φ(0, x−i). (20)

By the form of the potential function (17), we have

fi(x) =
∑

t∈T

Pi(xi, t)
∑

I⊆[n]\{i}

(−1)|I|

|I|+ 1

∏

j∈I

Pj(xj , t).

On the other hand, by the definition (13), we have

F (xi, x−i)− F (0, x−i)

=
∑

t∈T

Pi(xi, t)
∏

j∈[n]\{i}

(1− Pj(xj , t)).

We prove the inequality between these two formulas. Con-

sider the function

Ψi(x, t; z) =
∏

j∈[n]\{i}

(1− zPj(xj , t))

=
∑

I⊆[n]\{i}

(−1)|I|z|I|
∏

j∈I

Pj(xj , t). (21)

Then we have the following representations.

F (xi, x−i)− F (0, x−i) =
∑

t∈T

Pi(xi, t)Ψi(x, t; 1), (22)

fi(x) =
∑

t∈T

Pi(xi, t)

∫ 1

0

Ψi(x, t; z)dz. (23)

By definition (21) of Ψi, it is a monotone nonincreasing

function in z ∈ [0, 1]. In particular, Ψ(X, t; z) takes min-

imum at z = 1. Thus, by comparing (22) and (23), we

obtain 3).

Proof of Proposition 7. Let x+ ∈ argmax{Φ(x) : x ∈
D}, which is a Nash equilibrium. We estimate the social

utility at x+. Similar to the proof of Proposition 5, we de-

fine

Ψ(x+, t; z) =
1

z



1−
∏

i∈[n]

(1− zPi(x
+
i , t))



 . (24)

By induction in n, we can prove that Ψ(x+, t; z) is a mono-

tone nonincreasing function in z ∈ [0, 1]. Thus, since we

have

F (x+) =
∑

t∈T

Ψ(x+, t; 1), and

Φ(x+) =
∑

t∈T

∫ 1

0

Ψ(x+, t; z)dz, (25)

we have F (x+) ≤ Φ(x+). We now prove the opposite

inequality. To this end, we use

max
x∈D

Φ(x)

F (x)
≤ max

a∈[0,1]n

∫

Ξ(a; z)dz,

where

Ξ(a; z) =
(1/z)(1−

∏

i∈[n](1− za(i)))

1−
∏

i∈[n](1− a(i))
.

By computing ∂Ξ(a; z)/∂a(j), it follows that Ξ(a; z) is a

monotone nondecreasing function in a ∈ [0, 1]n. Thus we

have

max
a∈[0,1]n

∫ 1

0

Ξ(a; z)dz =

∫ 1

0

Ξ(1; z)dz

=

∫ 1

0

1− (1− z)n

z
dz = Hn.

Thus we have Φ(x) ≤ HnF (x) for all x ∈ D. Therefore,

for the best utility configuration x∗, we have

F (x∗) ≤ Φ(x∗) ≤ Φ(x+) ≤ HnF (x+).

This shows PoS ≤ Hn.

Proof of Proposition 9. When the approximate best re-

sponse dynamics terminates, we have

fi(xi, x−i) ≥ ηfi(x
′
i, x−i)− ǫ.

for all x′
i ∈ Di. Therefore the obtained solution is an (η, ǫ)-

approximate Nash equilibrium.

We evaluate the number of rounds. Let x(ν) be the solution

at the ν-th round. If the algorithm does not terminate at this

round, some advertiser i’s utility is increased by at least ǫ.
Therefore, since the game is a potential game, we have

Φ(x(ν+1))− Φ(x(ν)) ≥ ǫ.

Therefore, the number of rounds is at most (maxx Φ(x))/ǫ.
By the proof of Proposition 7, we have maxx Φ(x) ≤
Hn maxx F (x) ≤ |T |Hn. Thus the approximate best

response dynamics converges in at most |T |Hn/ǫ itera-

tions.

Proof of Proposition 10. Since (20) holds, we only need to

consider how to compute Φ(x) efficiently. We use the inte-

gral representation (25): Since each integrant Ψ(x, t; z) is

a polynomial in z, we expand (24) and substitute to (25) to

compute Φ(x) as follows.

We first compute Pi(x, t) for all i ∈ [n] and t ∈ T ; This

requires O(n|E|) time. We then expand Ψ(x, t; z) to obtain

the representation

Ψ(x, t; z) = c0(x, t) + c1(x, t)z + · · ·+ cn−1(x, t)z
n−1.
(26)
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Figure 3. Number of rounds to converge in power-law graph.

Then we can compute Φ(x) via

Φ(x) =
∑

t∈T

(

c0(x, t) +
c1(x, t)

2
+ · · ·+

cn−1(x, t)

n

)

.

To obtain the representation (26), we can use a divide-and-

conquer method with fast Fourier transform: divide the fac-

tors, compute the products recursively, and then compute

the product by the fast Fourier transform. The complex-

ity of this method is O(n(log n)2) because the following

equation

g(n) = 2g(n/2) +O(n log n)

has a solution g(n) = O(n(log n)2). Therefore, we obtain

an O(|T |n(log n)2) time algorithm for computing Φ(x).
Note that this divide-and-conquer approach can be also

found in Li, Saha, and Deshpande (Li et al., 2009).

Proof of Proposition 11. We only have to modify (18) in

the proof of Proposition 4 as follows.

ηfi((x
∗
i ∨ xi)− xi, x−i)− ǫ ≤ fi(xi, x−i).

This proves the proposition.

B. Additional experimental results

Here, we show some experimental results which are omit-

ted in the main body.

Additional experimental results for Section 8.1 In Sec-

tion 8.1, we give a typical behavior of the proposed model

by using a random bipartite graph whose right vertices has

a constant number of edges. Here, we give a result for the

same experiment for a random power-law bipartite graph.

A graph is constructed as follows: Let S be the set of left

vertices and T be the set of right vertices. We specify de-

grees of the right vertices t ∈ T by a power-law distribu-

tion. Then, we add random edges which are consistent with

specified degrees. This construction is called configuration

model.

The results are shown in Figure 3. As same as the results

shown in Figure 2, most instances are converged in four

rounds, and the process almost converges at the first round.
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Figure 4. Histogram of the utility by exact minimization / by ap-

proximate minimization.
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Figure 5. Histogram of the optimal social utility / utility of an ob-

tained approximate Nash equilibrium.

We can observe that the distributions of the number of

rounds to converge (Figures 2 (a) and 3 (a)) are slightly dif-

ferent. In a random power-law bipartite graph, the process

converges more quickly than that for a random uniform bi-

partite graph.

Additional experimental results for Section 8.3 In Sec-

tion 8.3, we described that the personal utilities do not

change regardless of the exact maximization or the ap-

proximate maximization in each step. Here, we give a

raw data for this experiment. Figure 4 is a histogram

of this data. The ratio is contained in a small range,

[0.990, 1.008], and it is sharply concentrated at a very small

range, [0.998, 1.001].

Additional experimental results for Section 8.4 In Sec-

tion 8.4, we described that the the ratio of the optimal so-

cial utility and the utility of an obtained approximate Nash

equilibrium is very close. Since the approximate price of

anarchy is 4.16, this result is much better than the theory.

Here, we give a raw data for this experiment. Figure 5 is a

histogram of this data. The ratio is contained in a small

range, [1.000, 1.006], and the majority is contained in a

more smaller range, [1.000, 1.003].


