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Abstract
Determinantal point processes (DPPs) offer an el-
egant tool for encoding probabilities over subsets
of a ground set. Discrete DPPs are parametrized
by a positive semidefinite matrix (called the DPP
kernel), and estimating this kernel is key to learn-
ing DPPs from observed data. We consider the
task of learning the DPP kernel, and develop for it
a surprisingly simple yet effective new algorithm.
Our algorithm offers the following benefits over
previous approaches: (a) it is much simpler; (b) it
yields equally good and sometimes even better lo-
cal maxima; and (c) it runs an order of magnitude
faster on large problems. We present experimental
results on both real and simulated data to illustrate
the numerical performance of our technique.

1. Introduction
Determinantal point processes (DPPs) arose in statisti-
cal mechanics, where they were originally used to model
fermions (Macchi, 1975). Recently, they have witnessed
substantial interest in a variety of machine learning applica-
tions (Kulesza, 2013; Kulesza and Taskar, 2012).

One of the key features of DPPs is their ability to model the
notion of diversity while respecting quality, a concern that
underlies the broader task of subset selection where balanc-
ing quality with diversity is a well-known issue—see e.g.,
document summarization (Lin and Bilmes, 2012), object
retrieval (Affandi et al., 2014), recommender systems (Zhou
et al., 2010), and sensor placement (Krause et al., 2008).

DPPs are also interesting in their own right: they have
various combinatorial, probabilistic, and analytic properties,
while involving a fascinating set of open problems (Lyons,
2003; Hough et al., 2006; Kulesza, 2013).

Within machine learning DPPs have found good use—see
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for instance (Gillenwater et al., 2014); (Kulesza and Taskar,
2011b); (Kulesza and Taskar, 2011a); (Affandi et al., 2014);
(Affandi et al., 2103); (Affandi et al., 2013); (Gillenwater
et al., 2012). For additional references and material we refer
the reader to the survey (Kulesza and Taskar, 2012).

Our paper is motivated by the recent work of Gillenwater
et al. (2014), who made notable progress on the task of
learning a DPP kernel from data. This task is conjectured
to be NP-Hard (Kulesza, 2013, Conjecture 4.1). Gillenwa-
ter et al. (2014) presented a carefully designed EM-style
procedure, which, unlike several previous approaches (e.g.,
(Kulesza and Taskar, 2011b;a; Affandi et al., 2014)) learns
a full DPP kernel nonparameterically.

One main observation of Gillenwater et al. (2014) is that
applying projected gradient ascent to the DPP log-likelihood
usually results in degenerate estimates (because it involves
projection onto the set {X : 0 � X � I}). Hence one may
wonder if instead we could apply more sophisticated man-
ifold optimization techniques (Absil et al., 2009; Boumal
et al., 2014). While this idea is attractive, and indeed ap-
plicable, e.g., via the excellent MANOPT toolbox (Boumal
et al., 2014), empirically it turns out to be computationally
too demanding; the EM strategy of Gillenwater et al. (2014)
is more practical.

We depart from both EM and manifold optimization to de-
velop a new learning algorithm that (a) is simple, yet power-
ful; and (b) yields essentially the same log-likelihood values
as the EM approach while running significantly faster. In
particular, our algorithm runs an order of magnitude faster
on larger problems.

The key innovation of our approach is a derivation via a
fixed-point view, which by construction ensures positive
definiteness at every iteration. Its convergence analysis in-
volves an implicit bound-optimization iteration to ensure
monotonic ascent.1 A pleasant byproduct of the fixed-point
approach is that it avoids any eigenvalue/vector computa-
tions, enabling a further savings in running time.

1The convergence analysis in this version of the paper improves
upon our original submission, in that our proof is now constructive
and requires weaker assumptions.
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1.1. Background and problem setup

Without loss of generality we assume that the ground set
of N items is {1, 2, . . . , N}, which we denote by Y . A
(discrete) DPP on Y is a probability measure P on 2Y (the
set of all subsets of Y) such that for any Y ⊆ Y , the prob-
ability P(Y ) verifies P(Y ) ∝ det(LY ); here LY denotes
the principal submatrix of the DPP kernel L induced by
indices in Y . Intuitively, the diagonal entry Lii of the kernel
matrix L captures some notion of the importance of item
i, whereas an off-diagonal entry Lij = Lji measures simi-
larity between items i and j. This intuitive notion provides
further motivation for seeking DPPs with non-diagonal ker-
nels when there is implicit interaction between the observed
items.

The normalization constant for the measure P follows upon
observing that

∑
Y⊆Y det(LY ) = det(L+ I). Thus,

P(Y ) =
det(LY )

det(L+ I)
, Y ⊆ Y. (1.1)

DPPs can also be given an alternative representation through
a marginal kernel K that captures for a random Y ∼ P and
every A ⊆ Y , the marginal probability

P(A ⊆ Y ) = det(KA). (1.2)

It is easy to verify thatK = L(L+I)−1, which also implies
that K and L have the same eigenvectors and differ only in
their eigenvalues. It can also be shown (Kulesza, 2013) that
P(Y ) = |det(K − IY c)|, where IY c is a partial N × N
identity matrix with diagonal entries in Y zeroed out.

Both parameterizations (1.1) and (1.2) of the DPP probabil-
ity are useful: Gillenwater et al. (2014) used a formulation
in terms of K; we prefer (1.1) as it aligns better with our
algorithmic approach.

1.2. Learning the DPP Kernel

The learning task aims to fit a DPP kernel (either L or equiv-
alently the marginal kernel K) consistent with a collection
of observed subsets. Suppose we obtain as training data n
subsets (Y1, . . . , Yn) of the ground setY . The task is to max-
imize the likelihood of these observations. Two equivalent
formulations of this maximization task may be considered:

max
L�0

∑n

i=1
log det(LYi)− n log det(I + L), (1.3)

max
0�K�I

∑n

i=1
log
(
|det(K − IY c

i
)|
)
. (1.4)

We will use formulation (1.3) in this paper. Gillenwater
et al. (2014) used (1.4) and exploited its structure to derive
a somewhat intricate EM-style method for optimizing it.
Both (1.3) and (1.4) are nonconvex and difficult optimize.

For instance, using projected gradient on (1.4) may seem
tempting, but projection ends up yielding degenerate (diago-
nal and rank-deficient) solutions which is undesirable when
trying to capture interaction between observations—indeed,
this criticism motivated Gillenwater et al. (2014) to derive
the EM algorithm.

We approach problem (1.3) from a different viewpoint
(which also avoids projection) and as a result obtain a new
optimization algorithm for estimating L. This algorithm, its
analysis, and empirical performance are the subject of the
remainder of the paper.

2. Optimization algorithm
The method that we derive has two key components: (i)
a fixed-point view that helps obtain an iteration that satis-
fies the crucial positive definiteness constraint L � 0 by
construction; and (ii) an implicit bound optimization based
analysis that ensures monotonic ascent. The resulting algo-
rithm is vastly simpler than the previous EM-style approach
of Gillenwater et al. (2014).

If |Y | = k, then for a suitable N × k indicator matrix
U we can write LY = U∗LU , which is also known as
a compression (U∗ denotes the Hermitian transpose). We
write U∗i LUi interchangeably with LYi

, implicitly assuming
suitable indicator matrices Ui such that U∗i Ui = I|Yi|. To
reduce clutter, we will drop the subscript on the identity
matrix, its dimension being clear from context.

Denote by φ(L) the objective function in (1.3). Assume for
simplicity that the constraint set is open, i.e., L � 0. Then
any critical point of the log-likelihood must satisfy

∇φ(L) = 0, or equivalently∑n

i=1
Ui (U∗i LUi)

−1
U∗i − n (I + L)

−1
= 0.

(2.1)

Any (strictly) positive definite solution to the nonlinear ma-
trix equation (2.1) is a candidate locally optimal solution.

We solve this matrix equation by developing a fixed-point
iteration. In particular, define

∆ := 1
n

∑n

i=1
Ui (U∗i LUi)

−1
U∗i − (I + L)−1,

with which we may equivalently write (2.1) as

∆ + L−1 = L−1. (2.2)

Equation (2.2) suggests the following iteration

L−1k+1 ← L−1k + ∆k, k = 0, 1, . . . . (2.3)

A priori there is no reason for iteration (2.3) to be valid
(i.e., converge to a stationary point). But we write it in this
form to highlight its crucial feature: starting from an initial
L0 � 0, it generates positive definite iterates (Prop. 2.1).
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Proposition 2.1. Let L0 � 0. Then, the sequence {Lk}k≥1
generated by (2.3) remains positive definite.

Proof. The proof is by induction. It suffices to show that

L � 0 =⇒ L−1 + ∆ � 0.

Since I + L � L, from the order inversion property of
the matrix inverse map it follows that L−1 � (I + L)−1.
Now adding the matrix 1

n

∑
i=1 Ui (U∗i LUi)

−1
U∗i � 0 we

obtain the desired inequality by definition of ∆.

A quick experiment reveals that iteration (2.3) does not
converge to a local maximizer of φ(L). To fix this defect,
we rewrite the key equation (2.2) in a different manner:

L = L+ L∆L. (2.4)

This equation is obtained by multiplying (2.2) on the left
and right by L. Therefore, we now consider the iteration

Lk+1 ← Lk + Lk∆kLk, k = 0, 1, . . . . (2.5)

Prop. 2.1 in combination with the fact that congruence pre-
serves positive definiteness (i.e., if X � 0, then Z∗XZ � 0
for any complex matrix Z), implies that if L0 � 0, then
the sequence {Lk}k≥1 obtained from iteration (2.5) is also
positive definite. What is more remarkable is that contrary
to iteration (2.3), the sequence generated by (2.5) monoton-
ically increases the log-likelihood.

While monotonicity is not apparent from our intuitive deriva-
tion above, it becomes apparent once we recognize an im-
plicit change of variables that seems to underlie our method.

2.1. Convergence Analysis

Theorem 2.2. Let Lk be generated via (2.5). Then, the
sequence {φ(Lk)}k≥0 is monotonically increasing.

Before proving Theorem 2.2 we need the following lemma.

Lemma 2.3. Let U ∈ CN×k (k ≤ N ) such that U∗U = I .
The map g(S) := log det(U∗S−1U) is convex on the set of
positive definite matrices.

Proof. Since g is continuous it suffices to establish midpoint
convexity. Consider therefore, X,Y � 0 and let

X#Y = X1/2(X−1/2Y X−1/2)1/2X1/2

be their geometric mean. The operator inequality X#Y �
X+Y

2 is well-known (Bhatia, 2007, Thm. 4.1.3). Hence,(
X+Y

2

)−1 � (X#Y )−1 = X−1#Y −1

U∗
(
X+Y

2

)−1
U � U∗(X−1#Y −1)U

� (U∗X−1U)#(U∗Y −1U),

where equality follows from (Bhatia, 2007, Thm. 4.1.3), and
the final inequality follows from (Bhatia, 2007, Thm. 4.1.5)2

Since log det is monotonic on positive definite matrices and
since det(A#B) =

√
detA

√
detB, it then follows that

log det
(
U∗
(
X+Y

2

)−1
U
)
≤ 1

2 log det(U∗X−1U)

+ 1
2 log det(U∗Y −1U),

which proves the lemma.

Now we are ready to prove Theorem 2.2.

Proof (Thm. 2.2). The key insight is to consider S = L−1

instead of L; this change is only for the analysis—the actual
iteration that we implement is still (2.5).3

Writing ψ(S) := φ(L), we see that ψ(S) equals

1
n

∑
i
log det(U∗i S

−1Ui)− log det(S−1 + I)

= log det(S) + 1
n

∑
i
log det(U∗i S

−1Ui)

− log det(I + S).

Let h(S) = 1
n

∑
i log det(U∗i S

−1Ui)−log det(I+S), and
f(S) = log det(S). Clearly, f is concave in S, while h is
convex is S; the latter from Lemma 2.3 and the fact that
− log det(I + S) is convex. This observation allows us to
invoke iterative bound-optimization (an idea that underlies
EM, CCCP, and other related algorithms).

In particular, we construct an auxiliary function ξ so that

ψ(S) ≥ ξ(S,R), ∀S,R � 0,

ψ(S) = ξ(S, S), ∀S � 0.

As in (Yuille and Rangarajan, 2003), we select ξ by exploit-
ing the convexity of h: as h(S) ≥ h(R)+〈∇h(R), S −R〉,
we simply set

ξ(S,R) := f(S) + h(R) + 〈∇h(R) |S −R〉 .

Given an iterate Sk, we then obtain Sk+1 by solving

Sk+1 := argmaxS�0 ξ(S, Sk), (2.6)

which clearly ensures monotonicity: ψ(Sk+1) ≥ ψ(Sk).

Since (2.6) has an open set as a constraint and ξ(S, ·) is
strictly concave, to solve (2.6) it suffices to solve the neces-
sary condition ∇Sξ(S, Sk) = 0. This amounts to

S−1 = (I + Sk)−1 + 1
n

∑
i
S−1k Ui(U

∗
i S
−1
k Ui)

−1U∗i S
−1
k .

Rewriting in terms of L we immediately see that with
Lk+1 = Lk + Lk∆kLk, φ(Lk+1) ≥ φ(Lk) (the inequality
is strict unless Lk+1 = Lk).

2For an explicit proof see (Sra and Hosseini, 2015, Thm. 8).
3Our previous proof was based on viewing iteration (2.5) as a

scaled-gradient-like iteration. However, we find the present version
more transparent for proving monotonicity.
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Theorem 2.2 shows that iteration (2.5) is well-defined (posi-
tive definiteness was established by Prop. 2.1). The fixed-
point formulation (2.5) actually suggests a broader iteration,
with an additional step-size a:

Lk+1 = Lk + aLk∆kLk. (2.7)

Above we showed that for a = 1 ascent is guaranteed. Em-
pirically, a > 1 often works well; Prop. A.1 presents an
easily computable upper bound on feasible a. We conjec-
ture that for all feasible values a ≥ 1, iteration (2.5) is
guaranteed to increase the log-likelihood.

Moreover, all previous calculations can be redone in the
context where L = F ∗WF for a fixed feature matrix F in
order to learn the weight matrix W (under the assumption
that S∗S is invertible), making our approach also useful in
the context of feature-based DPP learning.

Pseudocode of our resulting learning method is presented in
Algorithms 1 and 2. For simplicity, we recommend using a
fixed value of a (which can be set at initialization).

Algorithm 1 Picard Iteration
Input: Matrix L, training set T , step-size a > 0.
for i = 1 to maxIter do
L←− FixedPointMap(L, T , a)
if stop(L, T , i) then

break
end if

end for
return L

Algorithm 2 FixedPointMap
Input: Matrix L, training set T , step-size a > 0
Z ←− 0
for Y in T do
ZY = ZY + L−1

Y
end for
return L+ aL(Z/|T | − (L+ I)−1)L

2.2. Iteration cost and convergence speed

The cost of each iteration of our algorithm is dominated by
the computation of ∆, which costs a total ofO(

∑n
i=1 |Yi|3+

N3) = O(nκ3 + N3) arithmetic operations, where κ =
maxi |Yi|; the O(|Yi|3) cost comes from the time required
to compute the inverse L−1Yi

, while the N3 cost stems from
computing (I + L)−1. Moreover, additional N3 costs arise
when computing L∆L.

In comparison, each iteration of the method of Gillenwater
et al. (2014) costs O(nNκ2 + N3), which is comparable
to, though slightly greater than O(nκ3 +N3) as N ≥ κ. In
applications where the sizes of the sampled subsets satisfy
κ � N , the difference can be more substantial. More-
over, we do not need any eigenvalue/vector computations to
implement our algorithm.

Finally, our iteration also runs slightly faster than the K-
Ascent iteration, which costs O(nN3). Additionally, simi-
larly to EM, our algorithm avoids the projection step neces-
sary in the K-Ascent algorithm (which ensures K ∈ {X :
0 � X � I}). As shown in (Gillenwater et al., 2014),
avoiding this step helps learn non-diagonal matrices.

We note in passing that similar to EM, assuming a non-
singular local maximum, we can also obtain a local linear
rate of convergence. This follows by relating iteration (2.5)
to scaled-gradient methods (Bertsekas, 1999, §1.3) (except
that we have an implicit PSD constraint).

3. Experimental results
We compare performance of our algorithm, referred to
as Picard iteration4, against the EM algorithm presented
in Gillenwater et al. (2014). We experiment on both syn-
thetic and real-world data.

For real-world data, we use the baby registry test on which
results are reported in (Gillenwater et al., 2014). This dataset
consists in 111, 006 sub-registries describing items across
13 different categories; this dataset was obtained by col-
lecting baby registries from amazon.com, all containing
between 5 and 100 products, and then splitting each registry
into subregistries according to which of the 13 categories
(such as “feeding”, “diapers”, “toys”, etc.) each product in
the registry belongs to. (Gillenwater et al., 2014) provides a
more in-depth description of this dataset.

These sub-registries are used to learn a DPP capable of
providing recommendations for these products: indeed, a
DPP is well-suited for this task as it provides sets of products
in a category that are popular yet diverse enough to all be of
interest to a potential customer.

3.1. Implementation details

We measure convergence by testing the relative change
|φ(Lk+1)−φ(Lk)|

|φ(Lk)| ≤ ε. We used a tighter convergence crite-
rion for our algorithm (εpic = 0.5·εem) to account for the fact
that the distance between two subsequent log-likelihoods
tends to be smaller for the Picard iteration than for EM.

The parameter a for Picard was set at the beginning of
each experiment and never modified as it remained valid
throughout each test5. In EM, the step size was initially
set to 1 and halved when necessary, as per the algorithm
described in (Gillenwater et al., 2014); we used the code
of Gillenwater et al. (2014) for our EM implementation6.

4Our nomenclature stems from the usual name for such itera-
tions in fixed-point theory (Granas and Dugundji, 2003).

5Although it was not necessary in our experiments, if the pa-
rameter a becomes invalid, it can be halved until it reaches 1.

6These experiments were run with MATLAB, on a Linux Mint
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Figure 1. Normalized log-likelihood as a function of time for various set sizes N , with n = 5000 and a = 5 using the BASIC random
distribution.
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(b) n = 10, 000

time (s)

0 50 100

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(c) n = 15, 000

Figure 2. Normalized log likelihood as a function of time for various numbers of training sets, with N = 50 and a = 5 using the BASIC
random distribution.
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Figure 3. Normalized log likelihood as a function of time for different values of a, with N = 50 and n = 5000 using the BASIC random
distribution.

3.2. Synthetic tests

In each experiment, we sample n training sets from a base
DPP of size N , then learn the DPP using EM and the Picard
iteration. We initialize the learning process with a random
positive definite matrix L0 (or K0 for EM) drawn from the
same distribution as the true DPP kernel.

system, using 16GB of RAM and an i7-4710HQ CPU @ 2.50GHz.

Specifically, we used two matrix distributions to draw the
true kernel and the initial matrix values from:

• BASIC: We draw the coefficients of a matrix M from
the uniform distribution over

[
0,
√

2
]
, then return L =

MM> conditioned on its positive definiteness.

• WISHART: We draw L from a Wishart distribution
with N degrees of freedom and an identity covariance
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matrix, and rescale it with a factor 1
N .

Figures 1, 2 and 3 show the log-likelihood as a function of
time for different parameter values when both the true DPP
kernel and the initial matrixL0 were drawn from the BASIC
distribution. Tables 1 and 2 show the final log-likelihood
and the time necessary for each method to reach 99% of the
optimal log likelihood for both distributions and parameters
n = 5000, a = 5.

As shown in Figure 1, the difference in time necessary for
both methods to reach a good approximation of the final
likelihood (as defined by best final likelihood) grows drasti-
cally as the size N of the set of all elements {1, 2, . . . , N}
increases. Figure 2 illustrates the same phenomenon when
N is kept constant and n increases.

Finally, the influence of the parameter a on convergence
speed is illustrated in Figure 37. Increasing a noticeably in-
creases Picard’s convergence speed, as long as the matrices
remain positive definite during the Picard iteration.

Table 1. Final log-likelihoods and time necessary for an iteration
to reach 99% of the optimal log likelihood for both algorithms
when using BASIC distribution for true and initialization matrices
(training set size of 5,000, a = 5).

LOG-LIKELIHOOD RUNTIME TO 99%
PICARD EM PICARD EM

N = 50 -15.5 -15.5 17.3S 30.7S
N = 100 -24.4 -24.2 143S 75.5S
N = 150 -32.5 -32.5 40.7S 84.0S
N = 200 -40.8 -41.2 51.1S 1,730S
N = 250 -45.7 -46.0 99.1S 2,850S

Table 2. Final log-likelihoods and time necessary for an iteration to
reach 99% of the optimal log likelihood for both algorithms when
using WISHART distribution for true and initialization matrices
(training set size of 5,000, a = 5).

LOG-LIKELIHOOD RUNTIME TO 99%
PICARD EM PICARD EM

N = 50 -33.0 -33.1 0.2S 2.0S
N = 100 -66.2 -66.2 0.5S 3.6S
N = 150 -99.2 -99.3 0.8S 5.2S
N = 200 -132.1 -132.4 1.2S 8.9S
N = 250 -165.1 -165.7 2.5S 11S

The greatest strength of the Picard iteration lies in its initial
rapid convergence: the log-likelihood increases significantly
faster for the Picard iteration than for EM. Although for
small datasets EM sometimes performs better, our algorithm
provides substantially better results in shorter timeframes
when dealing with larger datasets.

7In the cases where a > 1, a safeguard was added to check that
the matrices returned by our algorithm were positive definite.

Overall, our algorithm converges to 99% of the optimal log-
likelihood (defined as the maximum of the log-likelihoods
returned by each algorithm) significantly faster than the EM
algorithm for both distributions, particularly when dealing
with large values of N .

Thus, the Picard iteration is preferable when dealing with
large ground sets; it is also very well-suited to cases where
larger amounts of training data are available.

3.3. Baby registries experiment

We tested our implementation on all 13 product categories in
the baby registry dataset, using two different initializations:

• the aforementioned Wishart distribution

• the data-dependent moment matching initialization
(MM) described in (Gillenwater et al., 2014)

In each case, 70% of the baby registries in the product cate-
gory were used for training; 30% served as test. The results
presented in Figures 4 and 5 are averaged over 5 learning
trials, each with different initial matrices; the parameter a
was set equal to 1.3 for all iterations.

Table 3. Comparison of final log-likelihoods for both algorithms;
relative closeness between Picard and EM: δ = |φem − φpic|/φem.

CATEGORY δ (WISHART) δ (MM)
FURNITURE 4.4E-02 1.2E-03
CARSEATS 3.7E-02 7.6E-04
SAFETY 3.3E-02 8.0E-04
STROLLERS 3.9E-02 3.0E-03
MEDIA 2.3E-02 2.4E-03
HEALTH 2.6E-02 7.4E-03
TOYS 2.0E-02 5.9E-03
BATH 2.6E-02 2.9E-03
APPAREL 9.2E-03 4.3E-03
BEDDING 1.3E-02 7.6E-03
DIAPER 7.2E-03 5.3E-03
GEAR 2.3E-03 9.0E-03
FEEDING 4.9E-04 2.1E-03

Similarly to its behavior on synthetic datasets, the Picard it-
eration provides overall significantly shorter runtimes when
dealing with large matrices and training sets. As shown in
Table 3, the final log-likelihoods are very close (on the order
10−2 to 10−4) to those attained by the EM algorithm.

Using a moments-matching initialization leaves Picard’s
runtimes overall unchanged (a notable exception being the
‘gear’ category). However, EM’s runtime decreases dras-
tically with this initialization, although it remains signifi-
cantly longer than Picard’s in most categories.

The final log-likelihoods are also closer when using
moments-matching initialization (see Table 3).
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Figure 4. Evaluation of EM and the Picard iteration on the baby registries dataset using Wishart initialization.
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Figure 5. Evaluation of EM and the Picard iteration on the baby registries dataset using moments-matching initialization.

4. Conclusions and future work
We approached the problem of maximum-likelihood estima-
tion of a DPP kernel from a different angle: we analyzed the
stationarity properties of the cost function and used them
to obtain a novel fixed-point Picard iteration. Experiments
on both simulated and real data showed that for a range of
ground set sizes and number of samples, our Picard itera-
tion runs remarkably faster that the previous best approach,
while being extremely simple to implement. In particular,
for large ground set sizes our experiments show that our
algorithm cuts down runtime to a fraction of the previously
optimal EM runtimes.

We presented a theoretical analysis of the convergence prop-
erties of the Picard iteration, and found sufficient conditions

for its convergence. However, our experiments reveal that
the Picard iteration converges for a wider range of step-
sizes (parameter a in the iteration and plots) than currently
accessible to our theoretical analysis. It is a part of our
future work to develop more complete convergence theory,
especially because of its strong empirical performance.

In light of our results, another line of future work is to apply
fixed-point analysis to other DPP learning tasks.
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A. Bound on a

Proposition A.1. Let L, Ui, and ∆ be as defined above; set
Z = 1

n

∑
i Ui (U∗i LUi)

−1
U∗i . Define the constant

γ := max{λmin(LZ), 1/λmax(I + L)}. (A.1)

Then, 0 ≤ γ ≤ 1 and for a ≤ (1− γ)−1 the update

L′ ← L+ aL∆L

ensures that L′ is also positive definite.

Proof. Let Z = 1
n

∑n
i=1 Ui (U∗i LUi)

−1
U∗i .

To ensure L+ aL∆L � 0 we equivalently show

L−1 + a
(

1
n

n∑
i=1

Ui (U∗i LUi)
−1
U∗i − (L+ I)

−1
)
� 0

=⇒ I + aL1/2ZL1/2 � aL (L+ I)
−1

=⇒ (1− a)I + a(I + L)−1 + aL1/2ZL1/2 � 0
(as L(L+ I)−1 = I − (I + L)−1)

=⇒ (1− a) + aλmin((I + L)
−1

+ L1/2ZL1/2) > 0.

This inequality can be numerically optimized to find the
largest feasible value of a. The simpler bound in question
can be obtained by noting that

λmin((I + L)
−1

+ L1/2ZL1/2)

≥ max{λmin(LZ), 1/λmax(I + L)} = γ.

Thus, we have the easily computable bound for feasible a:

a ≤ 1

1− γ
.

Clearly, by construction γ ≥ 0. To see why γ ≤ 1, observe
that (I + L) ≺ I , so that λmin((I + L)

−1
) < 1. Further,

block-matrix calculations show that Z � L−1, whereby
λmin(L1/2ZL1/2) ≤ λmin(I) = 1.
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