Supplementary Material: Threshold Influence Model for Allocating Advertising Budgets

Atsushi Miyauchi Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Japan

Yuni Iwamasa

Graduate School of Information Science and Technology, University of Tokyo, Japan

Takuro Fukunaga

National Institute of Informatics and JST, ERATO, Kawarabayashi Large Graph Project, Japan

Naonori Kakimura

Graduate School of Arts and Sciences, University of Tokyo, Japan

A. Proof of Theorem 1 (in Section 2)

Proof. We reduce the maximum thresholds coverage problem to the cost-effective version of the problem. Suppose that we are given a bipartite graph G = (S, T; E) with weight w_t and threshold θ_t for each $t \in T$ and budget k being a positive integer. We consider the unweighted case, i.e., $w_t = 1$ for each $t \in T$. We add $p > k \cdot |T|$ new nodes u_1, \ldots, u_p to T. Each vertex u_i is connected to all the nodes in S, and has threshold $\theta_{u_i} = k$. The resulting graph is denoted by G'. Note that $f_{G'}(X) = f_G(X)$ if |X| < k and $f_{G'}(X) = f_G(X) + p$ otherwise.

We claim that any most cost-effective solution for G' has to have size k. Indeed, for any $X, Y \subseteq S$ with |X| < k and |Y| = k,

$$\frac{f_{G'}(X)}{|X|} \le |T| < \frac{p}{k} \le \frac{f_G(Y) + p}{|Y|} = \frac{f_{G'}(Y)}{|Y|}.$$

Moreover, for any $X, Y \subseteq S$ with |X| > k and |Y| = k,

$$\frac{f_{G'}(X)}{|X|} \le \frac{|T|+p}{|X|} < \frac{p}{k} \le \frac{f_G(Y)+p}{|Y|} = \frac{f_{G'}(Y)}{|Y|}.$$

Thus the claim holds.

Therefore, a vertex subset X is the most cost-effective solution for G' if and only if X is an optimal solution for G. Thus the theorem holds.

B. Proof of Lemma 1 (in Section 3)

Proof. For each $s \in S$, we make u_s copies $(s, 1), \ldots, (s, u_s)$ of s, and connect each (s, i) to the neighbors of s in G. The resulting graph is denoted by \tilde{G} , which has node sets $\tilde{S} = \{(s,i) \mid s \in S, i = 1, ..., u_s\}$ and T. From the given function $f_t: \mathbb{Z}_+^{\Gamma(t)} \to \mathbb{R}$, construct a set function $\tilde{f}_t: 2^{\tilde{S}_t} \to \mathbb{R}$ as mentioned in the main text, where $\tilde{S}_t = \{(s, i) \mid s \in I\}$ $\Gamma(t), i \in \{0, 1, \dots, u_s\}\}$. Moreover, we define the cost $c(s, i) = c_s i$ as the weight of $(s, i) \in \tilde{S}$. Then consider solving this problem to find a solution $X \subseteq \tilde{S}$ that satisfies $\sum_{(s,i)\in X} c(s,i) \leq B$ and maximizes $\tilde{f}(X)$. Suppose that $X \subseteq \tilde{S}$ is an α -approximate solution for the problem. The corresponding vector is denoted by x. Then we have $f(x) = \tilde{f}(X)$ and $\sum_{s \in S} c_s x_s \leq \sum_{(s,i) \in X} c_s i \leq B$. Hence x is a feasible solution to the original instance, whose objective value is $\tilde{f}(X)$. Since the optimal value to the original instance is equal to that of the reduced instance, x is an α -approximate solution to the original instance.

YUNI_IWAMASA@MIST.I.U-TOKYO.AC.JP

TAKURO@NII.AC.JP

KAKIMURA@GLOBAL.C.U-TOKYO.AC.JP

MIYAUCHI.A.AA@M.TITECH.AC.JP

Since $|\tilde{S}| = \sum_{s \in S} u_s$, the size of the reduced problem is pseudo-polynomial in the input size. Thus the obtained instance has size pseudo-polynomial in the input size.

C. Proof of Theorem 2 (in Section 3)

Proof. First suppose that $c_s = 1$ for each $s \in S$ and $w_t = 1$ for each $t \in T$. Then the contribution $\Delta(X, s)$ is always an integer from 0 to |T|. We maintain |T| + 1 doubly-linked lists, each of which contains source nodes with the same contribution. Each iteration of Algorithm 2 involves identifying and removing the node with the smallest contribution, and updating the lists.

We can find s^* with the smallest contribution in $O(|\Gamma(s^*)|)$ time by checking the lists from below, and remove it from the list in constant time. For each $t \in \Gamma(s^*)$, we compute the value of f_t in β time, and check whether it still exceeds the threshold θ_t . If it is lower than θ_t , we move the source nodes in $\Gamma(t)$ to the appropriate lists, which can be done in $O(|\Gamma(t)|)$ time. Note that for each node in T, this happens at most once.

Thus, the algorithm runs in $O(|S| + |T| + \beta |E|)$. Using a similar argument, when the weights are integers, the running time becomes $O(|S| + \beta |E| + W)$.

When c_s 's are integers, we maintain a priority queue of the source nodes. Throughout the algorithm, we need |S| insert operations, |S| delete-min operations, and |E| decrease-key operations. If we use a Fibonacci heap (Fredman & Tarjan, 1987), the algorithm runs in $O(|S| \log |S| + |T| + \beta |E|)$.

D. Proof of Theorem 3 (in Section 3)

Proof. Suppose that f is monotone and submodular. It is easy to see that \tilde{f} is monotone. Let us prove the submodularity of \tilde{f} . Let $X, Y \subseteq \tilde{S}$, and x, y be the corresponding vectors defined in the main text, respectively. Then $\tilde{f}(X) = f(x)$ and $\tilde{f}(Y) = f(y)$ hold by the definition of \tilde{f} . For each $s \in S$, $\max\{i \in \mathbb{Z}_+ \mid (s, i) \in X \cup Y\}$ is equal to the maximum of x(s) and y(s), and $\max\{i \in \mathbb{Z}_+ \mid (s, i) \in X \cap Y\}$ is not larger than the minimum of x(s) and y(s). The former fact implies $\tilde{f}(X \cup Y) = f(x \lor y)$, and the latter one implies $\tilde{f}(X \cap Y) \leq f(x \land y)$ together with the monotonicity of f. Therefore, we have

$$\tilde{f}(X) + \tilde{f}(Y) = f(x) + f(y) \ge f(x \lor y) + f(x \land y) \ge \tilde{f}(X \cup Y) + \tilde{f}(X \cap Y).$$

Next, suppose that \tilde{f} is monotone and submodular. For vectors $x, y \in \mathbb{Z}^S_+$, define $X = \{(s,i) \mid s \in S, i \leq x(s)\}$ and $Y = \{(s,i) \mid s \in S, i \leq y(s)\}$. Then $\tilde{f}(X) = f(x)$ and $\tilde{f}(Y) = f(y)$. Moreover, we have $\tilde{f}(X \cap Y) = f(x \wedge y)$ and $\tilde{f}(X \cup Y) = f(x \vee y)$. These relationships show

$$f(x) + f(y) = \hat{f}(X) + \hat{f}(Y) \ge \hat{f}(X \cup Y) + \hat{f}(X \cap Y) = f(x \lor y) + f(x \land y).$$

If $x \leq y$, then $X \subseteq Y$ holds, and hence $f(x) \leq f(y)$ follows from $\tilde{f}(X) \leq \tilde{f}(Y)$. Therefore, f is monotone and submodular.

E. Pseudo-Polynomial-Time (e/(e-1))-Approximation Algorithm for the Submodular Maximization over Integer Lattice (in Section 3)

Consider maximizing a monotone submodular function f(x) over integer lattice subject to a budget constraint $\sum_{i \in S} c_i x_i \leq B$ and an upper bound $x \leq u$. From the given monotone submodular function $f: \mathbb{Z}^S_+ \to \mathbb{R}$, construct a set function $\tilde{f}: 2^{\tilde{S}} \to \mathbb{R}$ as mentioned in the main text, where $\tilde{S} = \{(s,i) \mid s \in S, i \in \{0,1,\ldots,u(s)\}\}$. Moreover, we regard a cost $c(s,i) = c_s i$ as the weight of $(s,i) \in \tilde{S}$. Then solve the submodular maximization problem with a budget constraint to find a solution $X \subseteq \tilde{S}$ that satisfies $\sum_{(s,i)\in X} c(s,i) \leq B$ and maximizes $\tilde{f}(X)$. Suppose that $X \subseteq \tilde{S}$ is an α -approximate solution for the problem. Then, letting x be the corresponding vector, we have $f(x) = \tilde{f}(X)$ and $\sum_{s \in S} c(s, x_s) \leq \sum_{(s,i)\in X} c(s,i) \leq B$. Therefore, x is an α -approximate solution to the original instance. Since the reduced problem has an (e/(e-1))-approximation algorithm running in polynomial time, we obtain an (e/(e-1))-approximation algorithm that runs in pseudo-polynomial time.

F. Proof of Theorem 4 (in Section 4)

Proof. Let $X^* \subseteq S$ be an optimal solution for the problem. Choose an arbitrary node $s \in X^*$. Then, by the optimality of X^* , it holds that

$$d(X^*) = \frac{f(X^*)}{c(X^*)} \ge \frac{f(X^* \setminus \{s\})}{c(X^*) - c_s}$$

By using the fact $f(X^* \setminus \{s\}) \ge f(X^*) - \sum_{t \in T(X^*) \cap \Gamma(s)} w_t$, this can be transformed to $(c(X^*) - c_s)d(X^*) \ge f(X^*) - \sum_{t \in T(X^*) \cap \Gamma(s)} w_t$. Since $f(X^*) = c(X^*)d(X^*)$, we have

$$d(X^*) \le \Delta(X^*, s). \tag{F.1}$$

Consider the first iteration when some node $s^* \in X^*$ is removed by the algorithm. Let X denote the subset of nodes at this moment just before the removal. Clearly, we have $X^* \subseteq X$. Let us choose an arbitrary node $s \in X$. Then $\Delta(X, s) \ge \Delta(X, s^*)$ holds by the choice of s^* . Moreover, $\Delta(X, s^*) \ge \Delta(X^*, s^*)$ because $T(X) \supseteq T(X^*)$. Combining with (F.1), we have $\Delta(X, s) \ge \Delta(X, s^*) \ge \Delta(X^*, s^*) \ge \Delta(X^*)$.

Therefore, we obtain

$$d(X) = \frac{1}{c(X)} \sum_{t \in T(X)} w_t \ge \frac{1}{\gamma c(X)} \sum_{s \in X} \sum_{t \in T(X) \cap \Gamma(s)} w_t$$
$$= \frac{1}{\gamma c(X)} \sum_{s \in X} c_s \Delta(X, s) \ge \frac{1}{\gamma c(X)} \sum_{s \in X} c_s d(X^*) = \frac{1}{\gamma} d(X^*).$$

Thus the output is γ -approximation.

G. Proof of Lemma 2 (in Section 4)

Proof. For $X \subseteq S$, we construct a solution $(\overline{x}, \overline{y})$ of (LP) as follows:

$$\overline{x}_s = \begin{cases} \frac{1}{|X|} & s \in X, \\ 0 & \text{otherwise}, \end{cases} \quad \overline{y}_t = \begin{cases} \frac{1}{|X|} & t \in T(X), \\ 0 & \text{otherwise}. \end{cases}$$

The first constraints in (LP) are satisfied. Indeed, if $t \in T(X)$ (i.e., $\overline{y}_t = \frac{1}{|X|}$), then we have $|X \cap \Gamma(t)| \ge \theta_t$, which implies that for any $J \subseteq \Gamma(t)$ with $|J| = p_t$, there exists $s \in J$ that satisfies $s \in X$ (i.e., $\overline{x}_s = \frac{1}{|X|}$). The second constraint in (LP) is also satisfied because $\sum_{s \in S} x_s = \sum_{s \in X} x_s = 1$. Therefore, $(\overline{x}, \overline{y})$ is feasible for (LP). The objective value of $(\overline{x}, \overline{y})$ is

$$\sum_{t \in T} w_t \overline{y}_t = \sum_{t \in T(X)} w_t \overline{y}_t = \frac{1}{|X|} \sum_{t \in T(X)} w_t = d(X).$$

This completes the proof.

H. Proof of Lemma 3 (in Section 4)

Proof. We begin by showing the existence of $r \ge 0$ that satisfies $d(X(r)) \ge \lambda/p$. Without loss of generality, we can assume that $\overline{y}_t = \min\{\sum_{s \in J} \overline{x}_s \mid J \subseteq \Gamma(t), |J| = p_t\}$ for each $t \in T$. We define a sequence of subsets $Y(r) = \{t \in T \mid \overline{y}_t \ge r\}$. If $t \in Y(r)$, then $\min\{\sum_{s \in J} \overline{x}_s \mid J \subseteq \Gamma(t), |J| = p_t\} \ge r$, which means that the p_t th smallest \overline{x}_s is at least $r/p_t \ge r/p$. Hence at least $|\Gamma(t)| - p_t + 1 = \theta_t$ elements in $\Gamma(t)$ are contained in X(r). Thus we see that $Y(r) \subseteq T(X(r))$.

Since for any $r \ge 0$,

$$\frac{1}{|X(r)|} \sum_{t \in T(X(r))} w_t \ge \frac{1}{|X(r)|} \sum_{t \in Y(r)} w_t,$$

		J

it suffices to show that there exists $r \ge 0$ such that

`

$$\frac{1}{|X(r)|} \sum_{t \in Y(r)} w_t \ge \frac{\lambda}{p}$$

Suppose not, that is, for any $r \ge 0$,

$$\sum_{t \in Y(r)} w_t < \frac{\lambda}{p} \cdot |X(r)|. \tag{H.2}$$

For each $t \in T$, define an indicator function $Z_t(r) : [0,1] \to \{0,1\}$ to be 1 if $r \leq \overline{y}_t$ and 0 otherwise. Integrating the left-hand side of (H.2) from 0 to 1, we have

$$\int_0^1 \left(\sum_{t \in Y(r)} w_t\right) dr = \int_0^1 \left(\sum_{t \in T} w_t Z_t(r)\right) dr = \sum_{t \in T} w_t \int_0^1 Z_t(r) dr = \sum_{t \in T} w_t \overline{y}_t = \lambda.$$

On the other hand, for each $s \in S$, define an indicator function $Z_s(r) : [0, p] \to \{0, 1\}$ to be 1 if $r/p \leq \overline{x}_s$ and 0 otherwise. Integrating the right-hand side of (H.2) from 0 to 1, we have

$$\frac{\lambda}{p} \int_0^1 |X(r)| dr = \frac{\lambda}{p} \int_0^1 \left(\sum_{s \in S} Z_s(r) \right) dr = \frac{\lambda}{p} \sum_{s \in S} \int_0^1 Z_s(r) dr \le \frac{\lambda}{p} \sum_{s \in S} \int_0^p Z_s(r) dr = \frac{\lambda}{p} \sum_{s \in S} p\overline{x}_s \le \lambda,$$

which is a contradiction. Thus, we have the existence of $r \ge 0$ that satisfies $d(X(r)) \ge \lambda/p$.

From the definition of X(r), we can enumerate all distinct sets of X(r) by putting $r = p\overline{x}_s$ for all $s \in S$. This completes the proof.

References

Fredman, M. L. and Tarjan, R. E. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596-615, 1987.