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Abstract

We propose a new influence model for allocating
budgets to advertising channels. Our model cap-
tures customer’s sensitivity to advertisements as
a threshold behavior; a customer is expected to
be influenced if the influence he receives exceeds
his threshold. Over the threshold model, we dis-
cuss two optimization problems. The first one
is the budget-constrained influence maximiza-
tion. We propose two greedy algorithms based
on different strategies, and analyze the perfor-
mance when the influence is submodular. We
then introduce a new characteristic to measure
the cost-effectiveness of a marketing campaign,
that is, the proportion of the resulting influence to
the cost spent. We design an almost linear-time
approximation algorithm to maximize the cost-
effectiveness. Furthermore, we design a better-
approximation algorithm based on linear pro-
gramming for a special case. We conduct thor-
ough experiments to confirm that our algorithms
outperform baseline algorithms.

1. Introduction
Recent development of online advertisement has opened up
a lot of opportunities for companies to conduct a marketing
campaign. They can promote their products through vari-
ous online advertising channels such as search engine and
social media, in addition to traditional media such as TV,
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newspapers, and radio. In marketing, one of the major de-
cisions is how to allocate a given budget among such media
channels in order to maximize the impact on a set of poten-
tial customers.

We may model as a bipartite graph in which one side is
the set of possible marketing channels, and the other is the
population of target customers. An edge between a channel
i and a customer j indicates that i may influence j. For the
above marketing problem, we can simply consider choos-
ing a set of advertising channels to maximize the number of
customers covered by the chosen channels. This is the clas-
sical combinatorial optimization problem called the maxi-
mum coverage problem. The problem is known to be NP-
hard, but we can obtain an (e/(e − 1))-approximate so-
lution1 using a greedy-type algorithm (Hochbaum, 1997).
However, the maximum coverage problem only focuses
on the number of covered customers, and cannot handle a
probabilistic behavior of making influence in reality. More-
over, we do not consider allocating some amount of bud-
gets to a channel.

Alon et al. (2012) proposed two fundamental marketing
models, the source-side influence model and the target-side
influence model, incorporating a probabilistic behavior of a
market model as well as allowing us to allocate a budget to
a source node. The two models focus on individual (and in-
dependent) interaction and influence between sources and
targets. In their first model, each source determines a prob-
ability of their influence to targets, while each target does
in the other model. The first model was extended to a more
general setting (Soma et al., 2014).

1A feasible solution is α-approximate if its objective value is
at least 1/α times the optimal value. An α-approximation algo-
rithm is one that returns an α-approximate solution for any in-
stance.
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1.1. Our Contribution

In this paper, we propose a threshold influence model over
a bipartite graph. We capture customer’s sensitivity to our
campaign as a threshold behavior. In the proposed model,
when we allocate some amount of budgets to a channel, the
influence which a customer receives is defined by a (gen-
eral) monotone function of the allocated budgets. Exam-
ples of a monotone function are those in both the Alon et
al.’s influence models (2012). A customer is then influ-
enced if the received influence exceeds his threshold. The
detailed model definition will be presented in Section 2.

A threshold represents the different latent tendencies of
customers. Such a model with thresholds has been studied
in the context of viral marketing on social networks, partic-
ularly when an influence function is linear or submodular
(see e.g., (Granovetter, 1978; Kempe et al., 2003; Mossel
& Roch, 2010)). Our model extends these models so that
we are allowed to allocate a budget to a source. Further-
more, in previous studies on viral marketing, a threshold
is usually supposed to be uniformly random, as we do not
know the customers’ latent tendencies in advance. How-
ever, in a practical scenario over a bipartite market model, it
is reasonable that we have observed their tendencies; some
customers are easy to be influenced, while some are not.
Thus we consider an influence model with specific thresh-
olds to incorporate these aspects. Let us also remark that
our model includes various influence maximization prob-
lems such as the Alon et al.’s target-side model, as well as
clustering problems such as the densest k-subgraph prob-
lem (Feige et al., 2001).

Our main contribution is to discuss two optimization prob-
lems over the threshold influence model, which can be
summarized as follows.

1. We consider finding a budget allocation that maximizes
the number of influenced targets subject to a total budget
constraint, which we refer to as the maximum general-
thresholds coverage problem. We develop two simple
algorithms based on different greedy strategies.

2. We show that when an influence to each target is deter-
mined by a monotone submodular function, the problem
with random thresholds can be solved approximately
within a factor of e/(e− 1).

3. We introduce a new characteristic to measure the per-
formance of a marketing campaign, which we re-
fer to as the cost-effectiveness. We propose an al-
most linear-time approximation algorithm to maximize
the cost-effectiveness. Furthermore, we develop a
linear-programming-based (LP-based) algorithm when
a threshold function for each target is of a simple form.

4. The problem of maximizing the cost-effectiveness is

closely related to clustering problems. Our proposed
algorithms solve efficiently the weighted densest sub-
hypergraph problem.

Let us describe our first and second results in details.

One of our proposed algorithms for the maximum general-
thresholds coverage problem is a greedy algorithm, that re-
peatedly chooses the source with maximum marginal re-
turn. It is known that such an algorithm finds an (e/(e −
1))-approximate solution for the maximum coverage prob-
lem, and moreover, this, together with some preprocessing,
returns an (e/(e−1))-approximate solution for the source-
side influence model. This is because the objective func-
tion is monotone and submodular (see Section 1.3 for the
definition). In our model, the objective function is not nec-
essarily submodular or supermodular. In fact, if a threshold
is large, there is a case where adding one source makes no
target influenced. In this case, we can choose any source,
which seems hopeless to have good approximation.

However, we show that, if an influence to each target is
determined by a monotone submodular function over inte-
ger lattice, the greedy strategy returns a well-approximate
solution. In fact, when a threshold is given randomly,
the expected value of the influence is monotone and sub-
modular over integer lattice. Thus the expected influence
can be maximized within a factor of e/(e − 1) in pseudo-
polynomial-time, which was done by the greedy algorithm
using the maximum expected marginal return (Soma et al.,
2014). We here propose a slightly different greedy algo-
rithm for the problem. The key idea is to design a gen-
eral framework to reduce a monotone submodular function
over integer lattice to a set function that is monotone and
submodular. The proof is simple, and furthermore, our re-
duction framework provides approximation algorithms for
problems related to a monotone submodular function over
integer lattice, e.g., a multi-set generalization of (Iyer &
Bilmes, 2013).

The greedy algorithm mentioned above has inefficiency
in the sense that the algorithm requires O(n2) number of
function evaluations even for the Boolean case, where n is
the number of sources. It should be noted that, when an in-
fluence is submodular, we can reduce practical time com-
plexity by the lazy-evaluation technique (Minoux, 1978),
but it is impossible for a general case. We propose an-
other greedy-type algorithm, which runs in almost linear
time. In the algorithm, we start from the whole source set,
and repeatedly remove the source node with the smallest
contribution. The algorithm is a generalization of Asahiro
et al. (2000) and Charikar (2000) for the densest subgraph
problem. Note that the algorithm gives good approxima-
tion for the cost-effectiveness maximization as below. To
evaluate the performance of the two proposed algorithms,
we thoroughly conduct simulation on a real-world network
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and artificially generated networks.

Let us describe our third and fourth results in details.

When we conduct a marketing campaign, it is often in-
teresting to evaluate the performance of the campaign.
The performance can be measured as the proportion of
the resulting influence to the cost spent in the campaign,
which we call the cost-effectiveness. Over our threshold
model, we introduce the problem of maximizing the cost-
effectiveness. Remark that the problem is useful to ana-
lyze a total budget in a marketing campaign; it tells us how
much performance we could achieve (without a total bud-
get constraint), which would help in readjusting a total bud-
get to improve the performance.

For this problem, we first design an almost linear-time ap-
proximation algorithm. In fact, the second greedy algo-
rithm in our first result achieves an approximation fac-
tor of the maximum degree of target nodes. In our con-
text, customers usually communicate through a small num-
ber of media channels, and hence the factor is effective
in practice. Furthermore, we develop an LP-based better-
approximation algorithm when a threshold function for
each target is of a simple form.

Our problem is closely related to clustering problems. In
fact, the cost-effectiveness maximization includes the dens-
est subgraph problem and the densest subhypergraph prob-
lem (see Section 2.2 for the definitions). These problems
can be solved in polynomial time (Huang & Kahng, 1995),
and approximately in linear time within a factor of the max-
imum size of hyperedges when hyperedges have the same
size (Tsourakakis, 2014). Our results extend these ones so
that we are allowed to have hyperedge weights and differ-
ent hyperedge sizes.

Due to the space limitation, some proofs are omitted, which
can be found in the Supplementary Material.

1.2. Related Work

Motivated by applications to marketing, Domingos and
Richardson (2001) and Richardson and Domingos (2002)
introduced viral marketing. They considered the problem
of choosing a few “influential” members in a social net-
work to influence a large fraction of the network through
word-of-mouth effects. Such problem is called the influ-
ence maximization. There are two standard models, i.e.,
the independent cascade (IC) model (Goldenberg et al.,
2001a;b) and the linear threshold (LT) model (Granovet-
ter, 1978). Kempe et al. (2003) showed that for both the IC
and LT models, the expected number of influenced nodes
is a monotone and submodular function with respect to a
seed set. This implies that an optimal solution can be ef-
ficiently approximated within a factor of (e/(e − 1) + ε)
using a greedy-type algorithm (Nemhauser et al., 1978).

Kempe et al. (2003) also proposed a commonly general-
ized model, called the general threshold model, which is
proven to have submodularity (Mossel & Roch, 2010). Lu
et al. (2011; 2012) introduced an LT model with determin-
istic thresholds.

The source-side influence model, introduced by Alon
et al. (2012), focuses on independent influence between
sources and targets, which can be viewed as a budgeted
counterpart of the IC model over a bipartite graph. Our
proposed model is a budgeted counterpart of the LT model,
which also includes the target-side influence model (Alon
et al., 2012) as a special case.

In addition to the budget allocation in marketing, our model
has various applications in machine learning, which will be
presented in Section 2 with detailed formulations.

1.3. Preliminaries

We conclude this section with definitions and notation nec-
essary in this paper.

Let G = (S, T ;E) be a bipartite graph. For a subset
Y ⊆ T , we denote by Γ(Y ) the set of nodes in S that are
neighbors of some node in Y , i.e., Γ(Y ) = {s ∈ S | ∃t ∈
Y, (s, t) ∈ E}. If Y has only one node t, we simply denote
Γ(t) = Γ({t}). We define Γ(X) for X ⊆ S similarly.

Let S be a finite set. We say that a set function g : 2S → R
is monotone if g(X) ≤ g(Y ) for all X,Y with X ⊆ Y . A
set function g is submodular if it satisfies g(X) + g(Y ) ≥
g(X∪Y )+g(X∩Y ) for all X,Y ⊆ S. A set function g is
supermodular if−g is submodular. Intuitively, a submodu-
lar function demonstrates a “diminishing marginal return,”
that is, as we add an element to a larger set, the increase
is smaller. Submodularity captures fundamental properties
in viral marketing on social networks (Kempe et al., 2005;
Mossel & Roch, 2010), and has various applications in ma-
chine learning (Krause & Golovin, 2014; Lin & Bilmes,
2011; Singh et al., 2012).

Let ZS
+ be the set of non-negative integer vectors in which

each component is indexed by an element in a set S. A
function f : ZS

+ → R is monotone if f(x) ≤ f(y) for
all x, y with x ≤ y (i.e., x(s) ≤ y(s) for each s ∈ S).
We say that f is a submodular function over integer lattice
ZS
+ when it satisfies f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y)

for all integer vectors x and y, where x ∨ y and x ∧ y,
respectively, denote the coordinate-wise maxima and min-
ima, i.e., (x ∨ y)(s) = max{x(s), y(s)} and (x ∧ y)(s) =
min{x(s), y(s)} for each s ∈ S. This definition general-
izes submodularity of set functions because if the domain
is restricted to the unit hypercube, then the submodularity
can be identified with that of set functions. A submodular
function over integer lattice is used to analyze and extend
the Alon et al.’s model (Soma et al., 2014).
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2. Problem Definition
In this section, we define our model formally, and present
several examples included in the model.

2.1. Maximum General-Thresholds Coverage

Let G = (S, T ;E) be a bipartite graph, where S is a set of
media channels, T is a set of target customers, and an edge
set E ⊆ S × T represents relationship between channels
and customers. We are given a unit cost cs for each source
s ∈ S, a weight wt for each target t ∈ T , and a total
budget B being a positive integer. When we choose a set
X of nodes in S, the set X makes influence on target nodes.
Specifically, the influence by a subset X in S is determined
as follows. Each target t ∈ T has a threshold θt and a
monotone set function ft : 2

Γ(t) → R+ where ft(∅) = 0.
A target t is influenced by X if ft(Xt) ≥ θt, where we
denote Xt = X ∩ Γ(t).

The maximum general-thresholds coverage problem is to
find X ⊆ S that maximizes

fG(X) =
∑

t∈T :ft(Xt)≥θt

wt

subject to a budget constraint c(X) :=
∑

s∈X cs ≤ B.
When the graph G is clear from the context, we simply
denote f instead of fG.

We also consider the multi-set version of the problem. In
the setting, each source s ∈ S additionally has a capacity
us. We allocate to S a positive integer vector x = (xs)s∈S

that satisfies a budget constraint
∑

s∈S csxs ≤ B. The
vector x makes influence to targets t in T , which is defined
by a monotone function ft over integer lattice ZΓ(t)

+ and a
threshold θt. We then aim to maximize the total weight of
nodes influenced:

fG(x) =
∑

t∈T :ft(xt)≥θt

wt,

where xt is the subvector of x whose indices are Γ(t).

As described below, the problem includes various opti-
mization problems.

Example 1 (Maximum coverage problem). Suppose that
the function ft is given by

ft(X) = |X| (1)

and the threshold θt = 1 for every t ∈ T . Assume that
cs = 1 for any s ∈ S and wt = 1 for any t ∈ T . Then the
problem is the well-known maximum coverage problem. In
this case, the objective function fG is monotone and sub-
modular, and thus we can approximate the optimal value
within a factor of e/(e− 1) (Hochbaum, 1997).

Example 2 (Maximum thresholds coverage problem).
Suppose that ft is given by (1), and θt is a positive integer
between 1 and |Γ(t)|. Then, when cs = 1 for any s ∈ S,
the objective is to find a set X of B nodes in S that max-
imizes the total weight of nodes t in T covered at least θt
times by the edges from X .

This problem is called the maximum thresholds coverage
problem, which was introduced by Alon et al. (2012) to
investigate the target-side influence model in Example 3
below. They showed that this problem, i.e., our prob-
lem, too, is hard to approximate within a factor of Ω(Bϵ)
for some ϵ > 0, assuming a certain hypothesis about the
average-case hardness of random 3SAT. On the positive
side, they proposed an O(logB)-approximation algorithm
for the multi-set case when us is infinity.

Example 3 (Target-side influence model). Alon et
al. (2012) introduced a target-side influence model. In the
model, each target t ∈ T has a sequence of probabilities
(pt1, . . . , p

t
B). A subset X of S makes |Xt| independent tri-

als to each t according to the probability sequence. Specif-
ically, the probability ft of t being influenced is given by

ft(X) = 1−
|Xt|∏
i=1

(1− pti). (2)

The objective is to maximize the expected number of influ-
enced nodes, i.e.,

∑
t∈T ft(X). It should be noted that the

function ft is monotone, but not necessarily submodular or
supermodular. The problem can be polynomially reduced
to the maximum thresholds coverage problem (Example 2).
Furthermore, in our problem setting with thresholds, we
can consider maximizing the total weight of targets t in T
whose probability (2) is at least θt.

Example 4 (Source-side influence model with threshold).
Suppose that we are given a probability ps for each source
s ∈ S, and that ft is a probability by independent trials
from sources. That is, ft is given by

ft(X) = 1−
∏
s∈Xt

(1− ps). (3)

In our problem setting, we can consider maximizing the
total weight of targets t in T whose probability (3) is at
least θt.

Example 5 (Densest k-subgraph problem). The densest k-
subgraph problem is the problem of finding a set of k ver-
tices that maximizes the number of edges in the subgraph
induced by the k vertices. The best known approximation
algorithm achieves an approximation factor of O(n1/3−δ)
for some small δ > 0 (Feige et al., 2001). Bhaskara
et al. (2010) proposed an O(n1/4+ε)-approximation algo-
rithm that runs in nO(1/ε) time for any ε > 0. Recently, Pa-
pailiopoulos et al. (2014) designed a nearly linear-time al-
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gorithm whose approximation factor depends on the eigen-
values of the adjacency matrix. This problem can be re-
duced to our problem, as described in Example 6 below.

Example 6 (Densest k-subhypergraph problem). Let V be
a finite set and E be a family of subsets of V . The pair
H = (V, E) is called a hypergraph. Note that, when the
size of each element in E is exactly two, H forms a graph.
For a subset X ⊆ V , we denote by E(X) the set of hyper-
edges in the subhypergraph induced by X . In the densest k-
subhypergraph problem, given a hypergraph H = (V, E),
we find a subset X ⊆ V of size k that maximizes |E(X)|.

This problem can be reduced to our problem. Indeed, a
hypergraph H can be naturally represented as a bipartite
graph as follows. For H = (V, E), we construct a bipartite
graph G = (V, E ;E), where E = {(v, e) | v ∈ e}. Each
node e ∈ E in G has degree exactly |e|. We set θe = |e| for
every e ∈ E . Then, for a subset X ⊆ V , the set E(X) is
equivalent to {e ∈ E | |Xe| ≥ θe}. Thus this is a special
case of our problem where fe is given by (1).

Applications in Machine Learning. Not only in online
advertisement, our influence model over a bipartite graph is
of significance in other machine learning applications such
as sensor placement (Krause et al., 2008), feature selection
(Krause & Guestrin, 2005; Liu et al., 2013), and text sum-
marization (Lin & Bilmes, 2011).

For example, in the standard sensor placement scenario, we
aim to allocate sensors so that the number of targets mon-
itored is maximized. To make the system reliable and ro-
bust, it is natural to maximize the number of targets mon-
itored by a specified number of sensors, which can be for-
mulated as our threshold model (Example 2). There is an-
other situation in which each sensor may fail to observe
a target, and we aim to maximize the number of targets
whose probability of being monitored exceeds a specified
threshold. This problem can also be formulated as our
model (see Examples 3 and 4). In the context of feature se-
lection, the objective is to find a small set that summarizes
the feature of a given data as well as possible. For example,
in the concept-based text summarization (Filatova & Hatzi-
vassiloglou, 2004), we aim to find a subset X of sentences
that maximizes the total credit of concepts covered by X ,
which is in fact the weighted maximum coverage problem
(Example 1). Using our framework, we can further con-
sider finding a subset X of sentences that maximizes the
total credit of concepts covered by X a specified number
of times.

2.2. Cost-Effective General-Thresholds Coverage

It is observed that, the larger a budget B is, the larger influ-
ence we can make to targets. It is then natural to ask how
much the budget B is the most effective. That is, we aim to

maximize

d(X) =
fG(X)

c(X)

over all X ⊆ S. We call d(X) the cost-effectiveness of X .
As seen below, the problem has been studied in the context
of clustering problems (Examples 5 and 6).

Example 7 (Densest subgraph problem). Maximizing
the cost-effectiveness for the densest k-subgraph prob-
lem (Example 5) is known as the densest subgraph prob-
lem. Given a graph (V, F ), we are asked to find a subset
X ⊆ V that maximizes the density |F (X)|/|X|, where
F (X) is the set of edges in the subgraph induced by
X . In contrast to the densest k-subgraph problem, this
problem can be solved in polynomial time using a flow-
based algorithm (Goldberg, 1984) or an LP-based algo-
rithm (Charikar, 2000). Moreover, Charikar (2000) proved
that the greedy algorithm proposed by Asahiro et al. (2000)
finds a 2-approximate solution in linear time.

Example 8 (Densest subhypergraph problem). The dens-
est subhypergraph problem is to maximize the cost-
effectiveness for the densest k-subhypergraph (Example 6).
That is, given a hypergraph H = (V, E), we are asked
to find a subset X ⊆ V that maximizes |E(X)|/|X|.
Huang and Kahng (1995) proposed a flow-based algorithm
that solves the problem in polynomial time. Recently,
Tsourakakis (2014) extensively studied the l-uniform case
(i.e., |e| = l for every e ∈ E), and proposed efficient exact
and approximation algorithms for the problem.

In the above examples, the cost-effectiveness maximization
can be solved efficiently. As another example, if fG is sub-
modular, then it is easy to see that argmaxs∈S d({s}) is an
optimal solution. However, it turns out to be NP-hard for a
general case. In fact, an instance of the maximum thresh-
olds coverage problem (Example 2) can be reduced to one
of the cost-effective general-thresholds coverage problem
with polynomial size.

Theorem 1. The cost-effective general-thresholds cover-
age problem is NP-hard.

Finally, let us emphasize that, in a wide variety of machine
learning applications described in Section 2.1, the cost-
effective maximization is also reasonable, as it is useful to
measure how much budget is the most effective.

3. Budget-Constrained Maximization
3.1. Greedy Algorithms

We present two greedy algorithms: the incremental greedy
algorithm and the decremental greedy algorithm for the
multi-set version of the maximum general-thresholds cov-
erage problem.
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Algorithm 1 INCREMENTALGREEDY

1: Initialize X0 ← ∅ and i← 0
2: while c(Xi) < B and S ̸= ∅ do
3: Find v ∈ S \Xi that maximizes ∇(Xi, v)
4: if c(Xi ∪ {v}) ≤ B then
5: Xi+1 ← Xi ∪ {v} and i← i+ 1
6: else S ← S \ {v}
7: return Xi

Algorithm 2 DECREMENTALGREEDY

1: Initialize X|S| ← S and i← |S|
2: while c(Xi) > B do
3: Find v ∈ Xi with smallest contribution ∆(Xi, v)
4: Xi−1 ← Xi \ {v} and i← i− 1
5: return Xi

We first show that we can reduce a multi-set instance to an
instance with unit capacity.

Let f : ZS
+ → R be a function over integer lattice. Let S̃

denote {(s, i) | s ∈ S, i ∈ Z+}. For X ⊆ S̃, we define
the corresponding vector x ∈ ZS

+ as the vector such that
x(s) = max{i ∈ Z+ | (s, i) ∈ X}, where we note that
x(s) = 0 if (s, i) ̸∈ X for any i. We define a set function
f̃ : 2S̃ → R by f̃(X) = f(x) for each X ⊆ S̃. We have
the following lemma.

Lemma 1. An instance of the multi-set version of the max-
imum general-thresholds coverage problem can be reduced
to the one with us = 1 for each s ∈ S with pseudo-
polynomial size.

Thus we henceforth present algorithms only for the case
where us = 1 for every s ∈ S.

For X ⊆ S, we denote T (X) = {t ∈ T | ft(Xt) ≥ θt}.
The incremental greedy algorithm is described in Algo-
rithm 1. For s ∈ S \X , we define

∇(X, s) =

∑
t∈T (X∪{s})\T (X) wt

cs
.

It is easy to see that Algorithm 1 runs in O(β|S||E|+ |T |)
time, where β denotes the time to compute the value of ft.

On the other hand, the decremental greedy algorithm is pre-
sented in Algorithm 2. For s ∈ X , we define the contribu-
tion of s in X by

∆(X, s) =

∑
t∈T (X)∩Γ(s) wt

cs
.

Clearly, Algorithm 2 runs in O(|S|2 + |T | + β|E|) time.
The following theorem states that the algorithm can be im-
plemented to run in almost linear time.

Theorem 2. Algorithm 2 runs in O(|S|+ β|E|+W ) time
when cs = 1 for each s ∈ S and wt is an integer for
each t ∈ T , where W =

∑
t∈T wt. For the general case,

Algorithm 2 runs in O(|S| log |S|+ |T |+ β|E|) time.

3.2. Submodular Thresholds Coverage

In this section, a threshold function ft is limited to a [0, 1]-
valued monotone submodular function over integer lattice.
An example of a monotone submodular function can be
found in Examples 1, 2, and 4.

Moreover, for each target t ∈ T , a threshold θt is supposed
to be chosen uniformly at random from the interval [0, 1].
The objective is to find an integer vector x = (xs)s∈S that
maximizes the expected number of targets t ∈ T satisfying
ft(xt) ≥ θt, subject to a total budget constraint. Specifi-
cally, the objective function is represented as

∑
t∈T ft(xt).

Since the sum of monotone submodular functions is mono-
tone and submodular, the problem is maximizing a mono-
tone submodular function over integer lattice subject to a
total budget constraint. Therefore, it follows from Soma
et al. (2014) that we can find an (e/(e − 1))-approximate
solution in pseudo-polynomial time.

We here present a simpler different approach from Soma et
al. (2014). The main idea is to use the reduction in Lemma
1. The following theorem guarantees that the reduced in-
stance preserves submodularity.

Theorem 3. Let f : ZS
+ → R be a function over integer

lattice. Then f is monotone and submodular if and only if
the set function f̃ is monotone and submodular.

Let S̃ = {(s, i) | s ∈ S, i ∈ Z+}, and let f̃ be a mono-
tone submodular set function defined in Theorem 3. We
define c(s, i) = csi for (s, i) ∈ S̃, and consider the prob-
lem of maximizing f̃(X) subject to

∑
(s,i)∈X c(s, i) ≤ B.

Then an α-approximate solution for this problem yields
an α-approximate one for the original problem. Since
the well-known greedy algorithm (with partial enumera-
tion) gives an (e/(e− 1))-approximate solution for the re-
duced problem (Sviridenko, 2004), we have an (e/(e−1))-
approximation algorithm for the original problem.
Remark 1. Theorem 3 provides a general framework for
problems related to a monotone submodular function over
integer lattice to reduce to the counterpart on a set function.
In particular, this gives a simpler proof for the approxima-
tion result on maximizing a monotone submodular function
over integer lattice (Soma et al., 2014). Consider maxi-
mizing a monotone submodular function f(x) over integer
lattice subject to a budget constraint

∑
i∈S cixi ≤ B and a

capacity x ≤ u. Then we can reduce to the one of maximiz-
ing a monotone submodular set function subject to a bud-
get constraint, which yields an (e/(e − 1))-approximation
algorithm in pseudo-polynomial time (see the Supplemen-
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tary Material for details). Note that our reduction implies a
pseudo-polynomial-time algorithm slightly different from
Soma et al. (2014) in the sense that our algorithm uses dif-
ferent marginal return to choose the next one.

The same reduction is applicable to the submodular set
cover problem (Wolsey, 1984). Using our reduction frame-
work, we obtain a logarithmic-approximation algorithm,
running in pseudo-polynomial time, for the multi-set ver-
sion of the submodular set cover problem. Furthermore,
we can apply the same reduction for more general prob-
lems such as multi-set generalizations of the submodular
cost submodular cover and submodular cost submodular
knapsack problems (Iyer & Bilmes, 2013).

4. Cost-Effectiveness Maximization
4.1. Fast Greedy Approximation

In this section, we prove that Algorithm 2 essentially
returns an approximate solution for the cost-effective
general-thresholds coverage problem. Define γ to be the
maximum degree of a node in T , i.e., γ = maxt∈T |Γ(t)|.

Our algorithm repeatedly removes a source node with the
minimum contribution in the remaining graph, and then re-
turns the subset with maximum cost-effectiveness during
the process. That is, we execute Algorithm 2 with B = 0
to obtain a sequence of subsets X|S|, . . . , X0, and return
argmaxi=0,...,|S| d(Xi). This runs in O(|S| log |S|+ |T |+
β|E|) time by Theorem 2. We have the following theorem.
Theorem 4. The above algorithm is a γ-approximation al-
gorithm for the cost-effective general-thresholds coverage
problem.

The key observation is that, in the sequence X|S|, . . . , X0,
if Xi is the minimum subset containing an optimal solution
for the problem, then the contribution ∆(Xi, s) is at least
the optimal cost-effectiveness for any s ∈ Xi. This implies
that Xi is γ-approximation.

4.2. Linear-Programming-based Approximation
In this section, we propose an LP-based approximation
algorithm for the case where cs = 1 for each source
s ∈ S and ft(X) = |X| for each target t ∈ T . Define
pt = |Γ(t)| − θt + 1 for each t ∈ T and p = maxt∈T pt.

We introduce a variable xs for each s ∈ S and a variable yt
for each t ∈ T . Consider the following linear programming
problem (LP):

max.
∑
t∈T

wtyt

s. t.
∑
s∈J

xs ≥ yt (∀t ∈ T, ∀J ⊆ Γ(t) with |J | = pt);∑
s∈S

xs ≤ 1; xs ≥ 0 (∀s ∈ S); yt ≥ 0 (∀t ∈ T ).

Note that (LP) has an exponential number of constraints.
However, we can check the feasibility in polynomial time,
because the first constraints are satisfied if and only if
the sum of the smallest pt variables corresponding to the
sources in Γ(t) is at least yt for each t ∈ T . Therefore,
(LP) can be solved in polynomial time using the ellipsoid
method (Grötschel et al., 1981).

We first observe that we can construct a feasible solution
of (LP) with objective value at least d(X) from a subset
X ⊆ S.

Lemma 2. For any X ⊆ S, there exists a feasible solution
of (LP) whose objective value is greater than or equal to
d(X).

Conversely, let (x, y) be a feasible solution of (LP). For
a real parameter r ≥ 0, we define a sequence of subsets
X(r) = {s ∈ S | xs ≥ r/p}. Then, taking the integral of
d(X(r)) with respect to r from 0 to 1, we see that X(r) for
some r ∈ [0, 1] has large cost-effectiveness.

Lemma 3. For any feasible solution (x, y) of (LP) with
objective value λ, there exists s ∈ S that satisfies
d(X(pxs)) ≥ λ/p.

Our LP-based algorithm is designed as follows. It solves
(LP) to obtain an optimal solution (x, y), and then returns
X(pxs) that maximizes the cost-effectiveness over s ∈ S.
From the above lemmas, we have the following theorem.

Theorem 5. The LP-based algorithm is a polynomial-time
p-approximation algorithm for the cost-effective thresholds
coverage problem.

5. Experiments
To evaluate the performance of our algorithms, we have
conducted simulation on a real-world network and large-
scale networks. All experiments were performed on a Win-
dows PC with Intel Core i7 2.40 GHz CPU and 16 GB
RAM. Our algorithms were implemented in C++.

We compare algorithms Incremental (Algorithm 1) and
Decremental (Algorithm 2) with two baseline algorithms
Degree and Random. Degree selects nodes in decreas-
ing degree order, and Random selects nodes randomly.
Remark that the LP-based algorithm in Section 4.2 was not
implemented because the ellipsoid method for (LP) is re-
quired, which is expected to be impractical.

We use as ft the functions (2) of the target-side model and
(3) of the source-side model. A sequence of probabilities
in the functions is set randomly from the interval [0, 0.1].
Note that the function (3) is submodular, while (2) is not.
We define cs = 1 for each source s and wt = 1 for each
target t. We set us = 1 as we can reduce any instance into
the case.
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Figure 1. Results for Yahoo! Bidding Data. (a) and (b) are on the
source-side model, and (c) and (d) are on the target-side model.

As a real-world network, we use the Yahoo! Search Mar-
keting Advertiser Bidding Data (Yahoo!) as in (Soma et al.,
2014). It is a bipartite graph between 1,000 search key-
words and 10,475 accounts, where each edge represents
one “bid” to advertisement on the keyword. The graph has
52,567 edges (representing ‘who bid at least once to what’
relation). We set threshold θt for each target t in the follow-
ing two ways: random thresholds means θt is chosen ran-
domly from the interval [0, 1], and large thresholds means
θt is chosen randomly from the interval [0.5, 1].

Figure 1 shows influence spreads with respect to a budget
size for each algorithm. The results depend on the set-
tings. For the source-side model with random thresh-
olds, Incremental always returns the best values. This
result matches the theoretical guarantee for the submod-
ular case, as the expected value of the objective value is
submodular. When thresholds are large, Decremental al-
ways returns the best values. The other algorithms are of
poor quality particularly when B is small. For the target-
side model, Decremental returns the best values in most
cases, except for the random thresholds case when B is
of medium size. For all settings, Decremental took within
one second, similarly to Random and Degree, while In-
cremental took much time (a few hours). In summary, it is
observed that Decremental is fast and of the best quality
when thresholds are large. When the objective function is
close to submodular, Incremental is better but slower.

We also measured the maximum cost-effectiveness ob-
tained by Decremental for each setting. Recall that when
fG is submodular, there is an optimal solution of size
one. For the source-side model with random thresh-
olds, the output of size one achieves the maximum cost-
effectiveness, which implies that this setting has a nearly-
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Figure 2. Cost-effectiveness for large-scale networks

submodular objective function. For the target-side model
with random thresholds and the source-side and target-
side models with large thresholds, the outputs with max-
imum cost-effectiveness have size 8, 130, and 95, respec-
tively.

To evaluate for larger-scale networks, we have also run our
experiments on artificially generated graphs. We set |S| =
20,000 and |T | = 200,000 with around 2,000,000 edges
between them. The graphs are generated so that the degree
distribution of the source nodes obeys the power law with
exponent γ = 2.0. After assigning the degree deg(s) to
each source node s, it is connected to deg(s) nodes chosen
uniformly from T . We set θt = 0.8 for every target t. We
executed only Decremental and Degree as they outper-
formed the other algorithms in the Yahoo! Search Market-
ing Advertiser Bidding Data with large thresholds.

Figure 2 demonstrates the cost-effectiveness of the solu-
tions obtained by each algorithm. Decremental returns
a better solution than Degree, whose size with maximum
cost-effectiveness is 28 for the source-side model and 37
for the target-side model. Also, Decremental returns bet-
ter influence spreads than Degree. Decremental took
only a few minutes for both models.

6. Conclusion
In this paper, we have introduced a new influence model
over a bipartite graph. The model captures the different
sensitivities of customers to advertisements as thresholds.
We have first discussed the maximum general-thresholds
coverage problem, and proposed two greedy algorithms;
the incremental greedy algorithm extends the one for the
submodular case, while the decremental greedy algorithm
runs in almost linear time. Numerical experiments suggest
to use the incremental one only for the nearly-submodular
case, and the decremental one for the other cases. We have
then introduced another type of optimization problem, the
cost-effective general-thresholds coverage problem, to ana-
lyze the performance of our campaign. For the problem, we
have developed an almost linear-time approximation algo-
rithm, and furthermore, an LP-based better-approximation
algorithm for a special case.
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