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Proof of Lemma 2.3 Before showing admissibility of the threshold-Pairs function in the multiclass setting,
we first show Fα(G) is admissible for the binary setting. Consider the binary classification setting, let

Fα(G) = [[n1G − α]+[n2G − α]+ − α2]+.

All the properties are obviously true except supermodularity. To show supermodularity, suppose R ⊆ G and
object j /∈ R. Suppose j belongs to the first class. We need to show

Fα(G ∪ j)− Fα(G) ≥ Fα(R ∪ j)− Fα(R). (1)

Consider 3 cases:
(1) Fα(R) = Fα(R ∪ j) = 0: The right hand side of (1) is 0 and (1) holds because of monotonicity of Fα.
(2) Fα(R) = 0, Fα(R∪j) > 0, Fα(G) = 0: (1) reduces to Fα(G∪j) ≥ Fα(R∪j), which is true by monotonicity.
(3) Fα(R) = 0, Fα(R ∪ j) > 0, Fα(G) > 0: Note that Fα(G) > 0 implies that [n1G − α]+[n2G − α]+ − α2 > 0
which further implies n1G > α, n2

G > α. Thus the left hand side is

Fα(G ∪ j)− Fα(G) =

(n1G − α+ 1)(n2G − α)− α2 − ((n1G − α)(n2G − α)− α2)

= n2G − α.

The right hand side is

Fα(R ∪ j) = (n1R − α+ 1)(n2R − α)− α2

= (n1R − α)(n2R − α)− α2 + (n2R − α).

If n1R ≥ α, Fα(R) = max((n1R − α)(n2R − α) − α2, 0) = 0 because Fα(R ∪ j) > 0 implies n2R > α. So
Fα(R ∪ j) ≤ n2R − α ≤ n2G − α = Fα(G ∪ j)− Fα(G).
(4) Fα(R) > 0: We have

Fα(G ∪ j)− Fα(G) = n2G − α ≥ n2R − α = Fα(R ∪ j)− Fα(R).

This completes the proof for the binary classification setting. To generalize to the multiclass threshold-Pairs
function, again, all properties are obviously true except supermodularity, which follows from the fact that
each term in the sum is supermodular according to the proof for binary setting.

More Admissible Impurity Functions The following polynomial impurity function is also admissible.

Lemma 0.1. Suppose there are k classes in G. Any polynomial function of n1G, . . . , n
k
G with non-negative

terms such that n1G, . . . , n
k
G do not appear as singleton terms is admissible. Formally, if

F (G) =

M∑
i=1

γi(n
1
G)pi1(n2G)pi2 . . . (nkG)pik , (2)

where γi’s are non-negative, pij’s are non-negative integers and for each i there exists at least 2 non-zero
pij’s, then F is admissible.



Proof. Properties (1),(2),(3) and (5) are obviously true. To show F is supermodular, suppose R ⊂ G and
object ĵ /∈ R and ĵ belongs to class j, we have

F (R ∪ ĵ)− F (R)

=
∑
i∈Ij

γi[(n
1
R)pi1 . . . (njR + 1)pij . . . (nkR)pik−

(n1R)pi1 . . . (njR)pij . . . (nkR)pik ]

≤
∑
i∈Ij

γi[(n
1
G)pi1 . . . (njG + 1)pij . . . (nkG)pik−

(n1G)pi1 . . . (njG)pij . . . (nkG)pik ]

= F (G ∪ ĵ)− F (G),

where the first summation index set Ij is the set of terms that involve njR. The inequality follows because

(njR + 1)pij can be expanded so the negative term can be canceled, leaving a sum-of-products form for R,
which is term-by-term dominated by that of G.

Another family of admissible impurity functions is the Powers function.

Corollary 0.2. Powers function

F (G) = (

k∑
i=1

niG)l −
k∑
i=1

(niG)l (3)

is admissible for l = 2, 3, . . . .

We compare the threshold-Pairs with various α values against the Powers function to study the effect of them
on the tree building subroutine GreedyTree. We compare performance using 9 data sets from the UCI
Repository in Figure 1. We assume that all features have a uniform cost. For each data set, we replace non-
unique objects with a single instance using the most common label for the objects, allowing every data set
to be complete (perfectly classified by the decision trees). Additionally, continuous features are transformed
to discrete features by quantizing to 10 uniformly spaced levels. For trees with a smaller cost (and therefore
lower depth), the threshold-Pairs impurity function outperforms the Powers impurity function with early
stopping (higher α leads to earlier stopping), whereas for larger cost (and greater depth), the Powers impurity
function outperforms threshold-Pairs. If α is set to 0, the difference between threshold-Pairs and Powers
function is small.

Details of Data Sets The house votes data set is composed of the voting records for 435 members of
the U.S. House of Representatives (342 unique voting records) on 16 measures, with a goal of identifying
the party of each member. The sonar data set contains 208 sonar signatures, each composed of energy
levels (quantized to 10 levels) in 60 different frequency bands, with a goal of identifying The ionosphere
data set has 351 (350 unique) radar returns, each composed of 34 responses (quantized to 10 levels), with
a goal of identifying if an event represents a free electron in the ionosphere. The Statlog DNA data set is
composed of 3186 (3001 unique) DNA sequences with 180 features, with a goal of predicting whether the
sequence represents a boundary of DNA to be spliced in or out. The Boston housing data set contains 13
attributes (quantized to 10 levels) pertaining to 506 (469 unique) different neighborhoods around Boston,
with a goal of predicting which quartile the median income of the neighborhood the neighborhood falls. The
soybean data set is composed of 307 examples (303 unique) composed of 34 categorical features, with a goal
of predicting from among 19 diseases which is afflicting the soy bean plant. The pima data set is composed of
8 features (with continuous features quantized to 10 levels) corresponding to medical information and tests
for 768 patients (753 unique feature patterns), with a goal of diagnosing diabetes. The Wisconsin breast
cancer data set contains 30 features corresponding to properties of a cell nucleus for 569 samples, with a
goal of identifying if the cell is malignant or benign. The mammography data set contains 6 features from
mammography scans (with age quantized into 10 bins) for 830 patients, with a goal of classifying the lesions
as malignant or benign.
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(a) House Votes
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(b) Sonar
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(c) Ionosphere
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(d) Statlog DNA
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(e) Boston Housing
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(f) Soybean
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(g) Pima
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(h) WBCD
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(i) Mammography

Figure 1. Comparison of classification error vs. max-cost for the Powers impurity function in (3) for l = 2, 3, 4, 5
and the threshold-Pairs impurity function. Note that for both House Votes and WBCD, the depth 0 tree is not
included as the error decreases dramatically using a single test. In many cases, the threshold-Pairs impurity function
outperforms the Powers impurity functions for trees with smaller max-costs, whereas the Powers impurity function
outperforms the threshold-Pairs function for larger max-costs.
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