
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

A. Proof of Lemma 3
Lemma 3. The stability parameter of a performance measure Ψ(·) can be written as δ(ε) ≤ LΨ · ε iff its sufficient dual
region is bounded in a ball of radius Θ (LΨ).

Proof. Let us denote primal variables using the notation x = (u, v) and dual variables using the notation θ = (α, β). The
proof follows from the fact that any value of θ for which Ψ∗(θ) = −∞ can be safely excluded from the sufficient dual
region.

For proving the result in one direction suppose Ψ is stable with δ(ε) = Lε for some L > 0. Now consider some θ ∈ R2

such that ‖θ‖2 ≥ L. Now set xC = −C · θ. Then we have

Ψ∗(θ) = inf
x
{〈θ,x〉 −Ψ(x)}

≤ inf
C>0
{〈θ,xC〉 −Ψ(xC)}

= inf
C>0

{
−C ‖θ‖22 −Ψ(xC)

}
≤ inf
C>0

{
−C ‖θ‖22 −Ψ(0) + CL ‖θ‖∞

}
≤ inf
C>0

{
−C ‖θ‖22 −Ψ(0) + CL ‖θ‖2

}
= inf
C>0
{−C ‖θ‖2 (‖θ‖2 − L)} −Ψ(0)

≤ inf
C>0
{−C ‖θ‖2 −Ψ(0)}

= −∞

Thus, we can conclude that no dual vector with norm greater than L can be a part of the sufficient dual region. This shows
that the sufficient dual region is bounded inside a ball of radius L. For proving the result in the other direction, suppose the
dual sufficient region is indeed bounded in a ball of radius R. Consider two points x1,x2 such that

θ∗1 = arg min
θ∈AΨ

{〈θ,x1〉 −Ψ∗(θ)}

θ∗2 = arg min
θ∈AΨ

{〈θ,x2〉 −Ψ∗(θ)}

Now define f(θ,x) := 〈θ,x〉 −Ψ∗(θ) so that, by the above definition, f(θ∗1,x1) = Ψ(x1) and f(θ∗2,x2) = Ψ(x2). Now
we have

Ψ(x1) = f(θ∗1,x1) ≤ f(θ∗2,x1)

≤ f(θ∗2,x2) + |〈θ∗2,x1 − x2〉|
= Ψ(x2) + |〈θ∗2,x1 − x2〉|
≤ Ψ(x2) +R ‖x1 − x2‖2 ,

where the fourth step follows from the norm bound on θ∗2. Similarly we have

Ψ(x2) ≤ Ψ(x1) +R ‖x1 − x2‖2

This establishes the result.

B. Proof of Theorem 4
Theorem 4. Suppose we are given a stream of random samples (x1, y1), . . . , (xT , yT ) drawn from a distribution D over
X × Y . Let Ψ(·) be a concave, Lipschitz link function. Let Algorithm 1 be executed with a dual feasible set A ⊇ AΨ,
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ηt = 1/
√
t and η′t = 1/

√
t. Then, the average model w = 1

T

∑T
t=1 wt output by the algorithm satisfies, with probability

at least 1− δ,

PΨ(w) ≥ sup
w∗∈W

PΨ(w∗)− δΨ
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Proof. For this proof we shall assume that Ψ is LΨ-Lipschitz so that its sufficient dual region can be bounded by an
application of Lemma 3. Notice that the updates for (α, β) can be written as follows:

(αt+1, βt+1)← ΠAΨ

(
(αt, βt)− ηt∇(α,β)`

d
t (αt, βt)

)
,

where

`dt (α, β) =

{
αr+(wt;xt, yt)−Ψ∗(α, β) if yt > 0
βr−(wt;xt, yt)−Ψ∗(α, β) if yt < 0

which can be interpreted as simple gradient descent with `t. Moreover, since Ψ∗ is concave, `dt is convex with respect to
(α, β) for every t. Note that the terms r+(wt;xt, yt) and r−(wt;xt, yt) do not involve α, β and hence act as arbitrary
bounded positive constants for this part of the analysis.

Note that by Lemma 3, we have the radius of AΨ bounded by LΨ. Also, since Ψ is a monotone function, by a similar
argument, Ψ∗(α, β) can be shown to be a Ψ(Br, Br)-Lipschitz function. For all the performance measures considered,
we have Ψ(Br, Br) ≤ Br. Thus, `dt (α, β) is a 2Br-Lipschitz function. Hence, using a standard GIGA-style analysis
(Zinkevich, 2003) on the (descent) updates on αt and βt in Algorithm 1, we have (for ηt = 1√

t
)

1

T

T∑
t=1

[
αtr

+(wt; xt, yt) + βtr
−(wt; xt, yt) − Ψ∗(αt, βt)
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≤ inf
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{ 1
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where the last step follows from Fenchel conjugacy.

Further, noting that Ext,yt

q
r+(wt; xt, yt)

∣∣x1:t−1, y1:t−1

y
= P (wt), and Ext,yt

q
r−(wt; xt, yt)

∣∣x1:t−1, y1:t−1

y
=

N(wt), we use the standard online-batch conversion bounds (Cesa-Bianchi et al., 2001) to the loss functions r+ and r−

individually to obtain w.h.p.
1
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By monotonicity of Ψ, we get
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where the second inequality follows from stability of Ψ, and the third inequality follows from concavity of r̄+ and r̄−,
Jensen’s inequality, and stability of Ψ.

Similarly, the update to w can be written as

wt+1 ← ΠW (wt − η′t∇w`
p
t (wt)) ,

where ΠW is the projection operator for the domainW and

`pt (w) =

{
−αtr+(w;xt, yt) + Ψ∗(αt, βt) if yt > 0
−βtr−(w;xt, yt) + Ψ∗(αt, βt) if yt < 0

Since r+, r− are concave and the term Ψ∗(αt, βt) does not involve w, `pt is convex in w for all t. Also, we can show that
`pt (w) is an (LΨ · Lr)-Lipschitz function. Hence, applying a standard GIGA analysis (Zinkevich, 2003) to the (ascent)
update on wt in Algorithm 1 (with η′t = 1√

t
), we have for any w∗ ∈ W ,
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Again, observing that by linearity of expectation, we have

Ext,yt

q
αtr

+(w∗;xt, yt) + βtr
−(w∗;xt, yt)

∣∣x1:t−1, y1:t−1

y
= αtP (w∗) + βtN(w∗),

which gives us, through an online-batch conversion argument (Cesa-Bianchi et al., 2001) w.h.p,
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where the second step follows from concavity of Ψ and Jensen’s inequality, in the third step ᾱ = 1
T

∑T
t=1 αt and β̄ =

1
T

∑T
t=1 βt, and the last step follows from Fenchel conjugacy.

Combining Eq. (1) and (2) gives us the desired result.
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C. Proof of Theorem 5
Theorem 5. Suppose we have the problem setting in Theorem 4 with the ΨG-mean performance measure being optimized
for. Consider a modification to Algorithm 1 wherein the reward functions are changed to r+

t (·) = r+(·) + ε(t), and
r−t (·) = r−(·) + ε(t) for ε(t) = 1

t1/4 . Then, the average model w = 1
T

∑T
t=1 wt output by the algorithm satisfies, with

probability at least 1− δ,

PΨG-mean(w) ≥ sup
w∗∈W

PΨG-mean(w
∗)− Õ

(
1

T 1/4

)
.

Proof. Suppose Ψ(u+ ε, v+ ε) ≤ Ψ(u, v) + δΨ(ε) as before. Let r+
t (·) = r+(·) + ε(t), and r−t (·) = r−(·) + ε(t). Let us

make all updates with respect to r+
t , r

−
t . Let r(ε) be the radius of the sufficient dual domainA for a given regularization ε.

Also let ε̄ = 1
T

∑T
i=1 ε(t). We will assume throughout that ε(t) = O(1). Then we have:
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We can now use online to batch conversion bounds (Cesa-Bianchi et al., 2001), and monotonicity of Ψ to get

1

T

T∑
t=1

[
αtr

+(wt; xt, yt) + βtr
−(wt; xt, yt) − Ψ∗(αt, βt)

]
≤ Ψ

(
P (w), N(w)

)
+ δΨ

(
Õ
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For the primal updates, we get, for any w∗ ∈ W ,
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since ε(t), αt, βt ≥ 0. Again using an online-batch conversion argument (Cesa-Bianchi et al., 2001) we get w.h.p,

1

T

T∑
t=1

[
αtr

+(wt;xt, yt) + βtr
−
t (wt;xt, yt) − Ψ∗(αt, βt)

]
≥ Ψ

(
P (w∗), N(w∗)

)
− Õ
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Combining Eq. (4) and (5) gives us
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(
1√
T ε̄

)
− Õ
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This can be achieved with ε(t) = 1

4√t .

D. Proof of Theorem 8
Theorem 8. Let Algorithm 2 be executed with a performance measure P(a,b) and reward functions that offer values in
the range [0,m). Let P∗ := supw∈W P(a,b)(w). Also let ∆t = P∗ − P(a,b)(wt) be the excess error for the model wt

generated at time t. Then there exists a value η(m) < 1 such that for ∆t ≤ ∆0 · η(m)t.

Proof. In order to be generic in its treatment, the proof will require the following regularity conditions on the performance
measure

1. b0 6= 0

2. α− P(w) · γ ≥ 0 for all w ∈ W

3. β − P(w) · δ ≥ 0 for all w ∈ W

4. −1 < f ≤ γ · P (w) + δ ·N(w) ≤ g for all w ∈ W

Define et := V (wt+1, vt) − vt. Then we can state the following lemmata which together yield the convergence bound
proof.

Lemma 10. et
1+f ≥ P

∗ − vt

Proof. Assume that for some w∗, P(w∗) = vt + et + e′ where e′ > 0. Then we have

V (w∗, vt) =

(
et

1 + f
+ e′

)
(1 + γ · P (w∗) + δ ·N(w∗))− et

≥
(

et
1 + f

+ e′
)

(1 + f)− et

= e′(1 + f) > 0,

which contradicts the fact that no classifier can achieve a valuation greater than vt + et at level vt, thus proving the desired
result.

Lemma 11. For any w that achieves V (w, v) = v + e such that e ≥ 0, we have

P(w) ≥ v +
e

g + 1
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Proof. Let v′ = v + e
g+1 . We will show that V (w, v′) ≥ v′ which will establish the result by pseudo-linearity. We have

V (w, v′)− v′ = c+ (α− v′γ) · P (w) + (β − v′δ) ·N(w)− v′

= c+ (α− vγ) · P (w) + (β − vδ) ·N(w)− v′ − e

g + 1
(γ · P (w) + δ ·N(w))

= v + e− v′ − e

g + 1
(γ · P (w) + δ ·N(w))

≥ v + e− v′ − ge

g + 1
= 0,

where we have used the bounds on γ · P (w) + δ ·N(w) and the fact that 1 + g > 0.

Given the above results we can establish the convergence bound. More specifically, we can show the following: let
∆t = P∗ − P(wt). Then we have

∆t+1 ≤
g − f
g + 1

·∆t

To see this, consider the following

∆t+1 = P∗ − P(wt+1) ≤ P∗ −
(
vt +

et
g + 1

)
≤ P∗ −

(
vt +

(1 + f)(P∗ − vt)
g + 1

)
= P∗ −

(
P(wt) +

(1 + f)(P∗ − P(wt))

g + 1

)
= ∆t −

1 + f

g + 1
·∆t =

g − f
g + 1

·∆t,

which proves the result. Notice that Table 2 gives the rates of convergence for the different performance measures by
calculating bounds on the value of g−fg+1 for those performance measures.

E. An analysis of the AMP Algorithm under Inexact Maximizations
For this and the next section, we will, for the sake of simplicity, we will focus only on the F-measure for β = 1 and p = 1/2
so that θ = 1. For this setting, the F-measure looks like the following: F (P,N) = 2P

2+P−N , and the valuation function
looks like V (w, v) = (1− v/2) ·P (w) + v/2 ·N(w). We shall denote the performance measure as F (w), and its optimal
value as F ∗. We will assume that the reward functions give bounded rewards in the range [0,m).

So far we assumed that Step 4 in the Algorithm AMP gave us wt+1 such that

V (wt+1, vt) = max
w∈W

V (w, vt)

Now we will only assume that wt+1 satisfies

V (wt+1, vt) = max
w∈W

V (w, vt)− εt

We also assume that the level vt is only approximated in Step 5 of AMP, i.e. using Lemma 7 we have

vt = F (wt) + δt

where δt is a signed real number.

Given these approximations, we can prove the following results

Lemma 12. The following hold for the setting described above

1. If δt ≤ 0 then et ≥ 0

2. If δt > 0 then et ≥ −δt
(
1 + m

2

)
3. If F ∗ < vt (which can happen only if δt > 0), then et < 0

4. If et < 0 then F ∗ < vt
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5. We have

(a) If et ≥ 0, then et ≥
(

2−m
2

)
(F ∗ − vt).

(b) If et < 0, then et ≥
(

2+m
2

)
(F ∗ − vt).

6. If V (w, v) = v + e, then

(a) If e ≥ 0 then F (w) ≥ v + 2e
2+m

(b) If e < 0 then F (w) ≥ v + 2e
2−m

Proof. We give the proof in parts

1. If δt ≤ 0 then this means that there exists a w such that F (w) ≥ vt. The result then follows from pseudo linearity.

2. vt = F (wt) + δt gives us, by pseudo linearity of F-measure,

(1− vt/2) · P (wt) + vt/2 ·N(wt) = vt − δt
(

1 +
P (wt)−N(wt)

2

)
≥ vt − δt

(
1 +

m

2

)
.

The bound on et now follows from its definition.

3. Suppose et ≥ 0 then by pseudo linearity of F-measure, we have, for some w, V (w, vt) ≥ vt which means F (w) ≥ vt
which contradicts the assumption.

4. Suppose there exists w∗ with F (w∗) = vt + e′ with e′ ≥ 0 then we have

(1− vt/2) · P (w∗) + vt/2 ·N(w∗) = vt + e′
(

1 +
P (w∗)−N(w∗)

2

)
≥ 0,

which contradicts the fact that et < 0.

5. Part (a) is simply Lemma 10. For part (b), we will prove that F ∗ ≤ vt + 2et
2+m . Since 2

2+m > 0, the result will follow.
Assume the contrapositive that some w∗ achieves F (w∗) = vt + 2et

2+m + e′ for some e′ > 0. Using the pseudo
linearity of F-measure (and using the shorthand v′ = vt + 2et

2+m + e′), this can be expressed as

(1− v′/2) · P (w∗) + v′/2 ·N(w∗) = v′

where for some e′ > 0. Then we have
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1
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+ et
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)
= e′

(
1 +
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> 0,

where we have assumed that e′ is chosen small enough so that 2et
2+m + e′ < 0 still and used the fact that P (w∗) −

N(w∗) ≤ m.

6. Part (a) is simply Lemma 11. To prove part (b), we let v′ = v + 2e
2−m , then we have

(1− v′

2
) · P (w) +

v′

2
·N(w)− v′ = (1− v

2
) · P (w) +

v

2
·N(w)− v′ + e

2−m
(N(w)− P (w))
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≥ (1− v

2
) · P (w) +

v

2
·N(w)− v′ + me

2−m

= v + e−
(
v +

2e

2−m

)
+

me

2−m

= e

(
1− 2

2−m
+

m

2−m

)
= 0,

where the second inequality follows sinceN(w)−P (w) ≤ m and e < 0 by using the bounds on the reward functions.
This proves the result.

E.1. Convergence analysis

We have the following cases with us

1. Case 1 (δt ≤ 0): In this case we are setting vt to a value less than the F-measure of the current classifier. This should
hurt performance - we know that vt = F (wt) + δt which gives us, on applying part (a) of the previous lemma using
F ∗ − vt = ∆t − δt, the following

et ≥
2−m

2
(∆t − δt).

Note that we are guaranteed that et ≥ 0 in this case. Now since the maximization in step 4 is also carried our
approximately, we have V (wt+1, vt) = vt + et − εt. Now we have two sub cases

(a) Case 1.1 (εt ≤ et): In this case we can apply part 6(a) of the previous lemma to get the following result

∆t+1 ≤
2m

2 +m
∆t −

2m

2 +m
δt +

2εt
2m

(b) Case 1.2 (εt > et): In this case we are actually making negative progress in the maximization step (since we
have V (wt+1, vt) ≤ vt) and we can only invoke Lemma 5.6(b) to get

∆t+1 ≤
2εt

2−m

Note that the above result should not be interpreted as a one shot step to a very good classifier. The above result
holds along with the condition that εt > et. Thus the performance of the classifier is lower bounded by et which
depends on how far the current classifier is from the best.

2. Case 2 (δt > 0): In this case we are setting vt to the value higher than the F-measure of the current classifier. This can
mislead the classifier and results in the following two sub-cases

(a) Case 2.1 (F ∗ ≥ vt): In this case we are still setting vt to a legitimate value, i.e. one that is a valid F-measure
for some classifier in the hypothesis class. This can only benefit the next optimization stage (in fact if we set
vt = F ∗, then we would obtain the best classifier in this very iteration!). In this case et ≥ 0 and we can use the
analyses of Cases 1.1 and 1.2.

(b) Case 2.2 (F ∗ < vt): In this case we are setting vt to an illegal value, one that is an unachievable value of F-
measure. Consequently, using part 3 of the previous lemma, et < 0 and using part(b) of the previous lemma we
get

et ≥
2 +m

2
(∆t − δt),

which, upon applying part 6(b) of the previous lemma (since et − εt ≤ et < 0) will give us

∆t+1 ≤
2m

2−m
(δt −∆t) +

2εt
2−m

≤ 2m

2−m
δt +

2εt
2−m



Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

We can combine the cases together as follows

∆t+1 ≤ max

{
1 {δ ≤ 0} ·

{
2m

2 +m
∆t −

2m

2 +m
δt +

2εt
2 +m

}
,1 {εt > et} ·

2εt
2−m

,1 {δ > 0} ·
{

2m

2−m
δt +

2εt
2−m

}}
≤ max

{
2m

2 +m
∆t +

2m

2 +m
|δt|+

2εt
2 +m

,1 {εt > et} ·
2εt

2−m
,

2m

2−m
|δt|+

2εt
2−m

}
≤ 2m

2 +m
∆t +

2m

2−m
|δt|+

2εt
2−m

If we let η = 2m
2+m , η′ = 2m

2−m , and ξt = |δt|+ εt/m, then this gives us

∆t+1 ≤ η∆t + η′ξt,

which gives us

∆T ≤ ηT∆0 +
η′

η
·
T−1∑
i=0

ηT−iξi

This concludes our analysis.

F. Proof of Theorem 9
Theorem 9. Let Algorithm 3 be executed with a performance measure P(a,b) and reward functions with range [0,m). Let
η = η(m) be the rate of convergence guaranteed for P(a,b) by the AMP algorithm. Set the epoch lengths to se, s′e =

Õ
(

1
η2e

)
. Then after e = log 1

η

(
1
ε log2 1

ε

)
epochs, we can ensure with probability at least 1− δ that P∗−P(a,b)(we) ≤ ε.

Moreover the number of samples consumed till this point is at most Õ
(

1
ε2

)
.

Proof. Using Hoeffding’s inequality, standard regret and online-to-batch guarantees (Cesa-Bianchi et al., 2001; Zinkevich,
2003), we can ensure that, if the stream lengths for the Model optimization stage and Challenge level estimation stage
procedures are se and s′e respectively, then for some fixed c > 0 that is independent of the stream length, we have

|δt| ≤ c ·

√
log 1

δ

s′e
, |εt| ≤ c

√
log 1

δ

se

Let T = log 1
η

(
1
ε log2 1

ε

)
and se =

(
2c
m

)2 ( 1
η

)2e

log T
δ and s′e = 4c2

(
1
η

)2e

log T
δ - this gives us, for each e, with

probability at least 1− δ/T ,
ξe ≤ ηe

Thus, using a union bound, with probability at least 1− δ, we have, by the discussion in the previous section,

∆T ≤ ηT∆0 +
η′

η

T−1∑
i=0

ηT−iξi ≤ ηT∆0 +
η′

η
TηT

≤ ε∆0 log−2 1

ε
+
η′

η
log 1

η

(
1

ε
log2 1

ε

)
ε log−2 1

ε

≤ ε

(
∆0 +

η′

η log 1
η

)
,

where the last step follows from the fact that for any ε < 1/e2, we have

log

(
1

ε
log2 1

ε

)
≤ log2 1

ε
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Let d =
(

∆0 + η′

η log 1
η

)
so that we can later set ε′ = ε/d, and s = 4c2

(
1 + 1

m2

)
so that se + s′e = s

(
1
η

)2e

log T
δ . The

total number of samples required can then be calculated as

T∑
e=1

se + s′e = s log
T

δ

T∑
e=1

(
1

η

)2e

= s log
T

δ

1

1− η2

(
1

η2

)T
≤ s log

T

δ

1

1− η2

1

ε2
log4 1

ε

This gives the number of samples required as

O
(

1

ε2
log4 1

ε

(
log log

1

ε
+ log

1

δ

))
,

to get an ε-accurate solution with confidence 1− δ.


