Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

A. Proof of Lemma[3

Lemma 3. The stability parameter of a performance measure V(-) can be written as 6(e) < Ly - € iff its sufficient dual
region is bounded in a ball of radius © (Ly).

Proof. Let us denote primal variables using the notation x = (u,
proof follows from the fact that any value of @ for which U*(8)
region.

v) and dual variables using the notation 8 = («, /3). The
= —oo can be safely excluded from the sufficient dual

For proving the result in one direction suppose ¥ is stable with §(¢) = Le for some L > 0. Now consider some 6 € R?
such that ||@||, > L. Now set xc = —C - 8. Then we have

U7 (9) = inf {(6,x) — ¥(x)}

< ér;fo{w,xc) - ¥(xc)}

:égfo{—OHBII;—‘I/(XC)}

< ér;fo{—CHOHg —\11(0)+OL||0||00}
< ngfo{70||0||§7\11(0)+CL||9||2}
= inf {=C0], (|0ll, - L)} — ¥(0)
< inf {-C0]l, ~ ¥(0)}

Thus, we can conclude that no dual vector with norm greater than L can be a part of the sufficient dual region. This shows
that the sufficient dual region is bounded inside a ball of radius L. For proving the result in the other direction, suppose the
dual sufficient region is indeed bounded in a ball of radius R. Consider two points x;, X2 such that

6] = argmin {(0,x1) — ¥*(0)}
0c Ay

65 = argmin {(0,x2) — ¥*(0)}
0c Ay

Now define f(0,x) := (6,x) — ¥*(0) so that, by the above definition, f(07,x1) = ¥(x1) and f(65,x2) = ¥U(x3). Now
we have

U(x) = f(87,x1) < f(65,%x1)

< f(85.%2) + [(05,x1 — x2)|
V(x2) + [(03,%1 — X2)|

)\

(x2) + R [|x1 — %2y,

<
where the fourth step follows from the norm bound on 3. Similarly we have

\IJ(X2) < ‘I/(Xl) + R HXl — X2H2

This establishes the result. O
B. Proof of Theorem 4
Theorem 4. Suppose we are given a stream of random samples (X1,y1), - - ., (X7, yr) drawn from a distribution D over

X x Y. Let V(-) be a concave, Lipschitz link function. Let Algorithm|l| be executed with a dual feasible set A O Ag,

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

ne = 1/t and n, = 1/\/t. Then, the average model W = 7 Zle w; output by the algorithm satisfies, with probability
at least 1 — 6,
1 2L2 B2 1

282 1
Po(W) > sup Py(w™) -4 Tl — (L3 +4B%) —= — (L3 L2 + R} = log
\P()_w*erl)/v v (W) \I/< g(5> (\If)2\/T (‘l! W)Q\/T T 5

Proof. For this proof we shall assume that U is Ly-Lipschitz so that its sufficient dual region can be bounded by an
application of Lemma Notice that the updates for (v, 8) can be written as follows:

(at+176t+1) — H.A\p ((ataﬂt) - ntv(a,ﬂ)gg(ataﬂt)))

where .
ta, B) = art(wyxe, ye) — U (a, B) ify, >0
L Bro(wexe,ye) — ¥ (o,) ifye <O
which can be interpreted as simple gradient descent with ¢;. Moreover, since ¥* is concave, £¢ is convex with respect to

(c, 8) for every t. Note that the terms 7 (wy; x¢, y;) and 7~ (Wy; X, y¢) do not involve «, 3 and hence act as arbitrary
bounded positive constants for this part of the analysis.

Note that by Lemma [3] we have the radius of Ay bounded by Ly. Also, since ¥ is a monotone function, by a similar
argument, ¥*(«, 8) can be shown to be a U(B,., B,.)-Lipschitz function. For all the performance measures considered,
we have ¥(B,, B,) < B,. Thus, ¢¢(a,) is a 2B,-Lipschitz function. Hence, using a standard GIGA-style analysis
(Zinkevich, [2003)) on the (descent) updates on «; and 3; in Algorithm we have (for n; = %)

T
1 _ *
g ourt (wes xe,) + Bar” (Wi X, y) — U (Oét,ﬁt)}
T

T
1 1
< {7 D or v) + B xew) = @B} + (L3 4BY) o

) <aﬂ>6A{“1§T+ v + 2_3 W) < W)} (T 48
- RS + (- 1 & .) o1
= (T;T (We; Xe, Y1), f;r (we; Xt,yt)> + (L% +4B?) g
where the last step follows from Fenchel conjugacy.
Further, noting that Ey, ., [[T+(Wt; Xt, Yt) ’X1:t71ay1:t71]] = P(w;), and Ey, ,, [[r‘(wt; Xt, Yt) ’Xlztfl,qu]] —

N(w;), we use the standard online-batch conversion bounds (Cesa-Bianchi et al., [2001) to the loss functions r+ and r—

individually to obtain w.h.p.
2B? 1
rH(we X, y) <) P(wy) + T log 3
2B2 1
N ~ log —
0+ 27 e

=

N
M=

~
I
—

t=1

el
M=
[M]=

T (Wi X, y0) <

~
Il
—

t=1

By monotonicity of ¥, we get

T
1
T > [awr™ (wis xe,01) + Ber™ (wis x0,40) — U™ (au, Br)]
t=1
e [2B2 1) o1
< = P(—r1 N(=1 L 4B;) —
(T; (we) og(S TZ (wy) T 0g5>+(\1,+ T)Q\/T
T T
1 1 2B2 1) o1

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

1 « 1 — 28?2 1

U7t = L7 = +5(L)+L2+4Bf

(T (T;Wt> ' (T;Wt» vV o)+ (B aB) T
2

. - 2DB2 1) N
U (P(W), N(W)) + (5\1/< 7 log 5) + (L +4B7) ST (1)

IN

where the second inequality follows from stability of ¥, and the third inequality follows from concavity of ¥ and 7,
Jensen’s inequality, and stability of .

Similarly, the update to w can be written as
Wi < Iy (W — V) (W) ,
where II,y is the projection operator for the domain W and

®(w) = —ourt(wixe, ye) + U (o, Br) ify; >0
—Ber™ (Wi xe, y) + V¥ (o, Br) ify, <0

Since 7, 7~ are concave and the term ¥* (o, 8;) does not involve w, ¢} is convex in w for all £. Also, we can show that

2 (w) is an (Ly - L,.)-Lipschitz function. Hence, applying a standard GIGA analysis (Zinkevich, 2003) to the (ascent)
update on w; in Algorithm 1 (with 9, = %), we have for any w* € W,

T
Z g (Wi Xe,) + Ber ™ (Weixe, ye) — U (au, By)]

T
1 1
tz:; ar T (W xe,) + Ber T (Whxe,) — U ew, B)] — (LG L2 + Rjy) T

Again, observing that by linearity of expectation, we have
Ex,,y: [[atTJr(W*;Xtvyt) + Ber™ (WX, yt) ’Xufl,yl:tfl]] = o P(W") + BN (w"),

which gives us, through an online-batch conversion argument (Cesa-Bianchi et al., 2001)) w.h.p,

T

1 — *

= E our T (Wi xe,) + Bery (Wi xe,) — U (o, Br)]
=1

>1TP* N(w* 1T\1/* \/WLQLQR2
= TZ[O% (W) + BeN(w™)] — Z (o, Br) I +) PWis

N

1 & 1w 1 L2B2
= f;[atp(w) + BN (wH)] — W*(Tgau ;m) W Nog £ — (LLL2 + RY) \F
— aP(w") + BN(w*) — U*(a, B) — 2L\I,B? log(ls (L3L2 + R?)%
2 2
> int{aPw) + AN - (0, 0)} - 2L BT — (L3I + RY) —— f
= U(P(w*), N(w")) QLQTBS (15 (LY L7 + Ry)ﬁ, ©)

where the second step follows from concavity of ¥ and Jensen’s inequality, in the third step & = % Zthl a; and f =
% Zle B¢, and the last step follows from Fenchel conjugacy.

Combining Eq. (T) and (@) gives us the desired result. O

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

C. Proof of Theorem 5

Theorem 5. Suppose we have the problem setting in Theorem @ with the U G.pean performance measure being optimized
for. Consider a modification to Algorithm |I| wherein the reward functions are changed to v/ (-) = r*(-) + €(t), and
Ty () =717 () +e(t) for e(t) = ; L =7 Zthl w; output by the algorithm satisfies, with
probability at least 1 — 6,

_ o o= 1
PG e (W) > S P e (W) = O (T1/4> :

Proof. Suppose W (u +¢,v+¢€) < W(u,v) + dy(€) as before. Let ;7 (-) = r+(-) +e(t), and r; (-) = r—(-) +€(t). Let us

make all updates with respect to 7,7, 7. Let r(€) be the radius of the sufficient dual domain .A for a given regularization e.
Also leté = + ZiT=1 €(t). We will assume throughout that €(¢) = O(1). Then we have:

T
Z iy (Wes Xe,ye) + Bery (Wi Xe,ye) — W (v, Br)]

< inf {1 tzT;[OWj(Wt; Xt Yt) + Bry (Wi Xe,yt) — \Il*(a,ﬂ)]} O <7\§?>

(a,B8)€A T

_ inf {al ZT+Wt7Xtvyt +e+ = Zr wt,xt,yt)+€—\11*(a,ﬁ)}+(’)(i§;)

(B €A =1 t 1
T T

1 _ _ T(e))
- J(= E + . — E . A
(t:lr (“’tv Xt7yt)+67 thlr (“ta Xt7yt)+€) + O(\/T (3)

— (;FF Wi Xt, Yt)s Z’" Wf’xt’yt) +6\p()+0<\§;)

We can now use online to batch conversion bounds (Cesa-Bianchi et al., 2001), and monotonicity of ¥ to get

N~

el

T
Z g (Wit Xe,ye) + Ber ™ (wes xi,91) — U (au, Br)]

< U(P(W), N(W)) + o (6 (&)) + 0y(6) + O (J(T)) : (4)

For the primal updates, we get, for any w* € W,

T
1
- E oury (Wi,) + Bery (Wi, p) — U (Oétyﬁt)]
t=1

~

|
N =
E

[atTtJF(W X, Ye) + Bery (W, y) — U (o, Bt —0 (ﬁ)

t=1

[atr+(W*;Xt>yt) + Btr_(W*§Xtayt) - ataﬂt

Il
N =
[M]=
l’
—
m
5?
l’
S
|
(G}
VRS
=
Sz
~

t:l

*, — *, _ *(o M @
Lot (W xe,y0) + Bar™ (WHx0,41) — U* (o, Bi)] O<ﬁ>7

~
Il
-

1

Y

I\/ Il

1

T
since €(t), oy, B¢

0. Again using an online-batch conversion argument (Cesa-Bianchi et al., 2001) we get w.h.p,
1 « = (&)
TZ L™ (Wes xe, ye) + Biry (Wisxe,y) — U¥(ay, Be)] > U(P(w*), N(w*)) — O (\/T) . &)

t=1

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

Combining Eq. (@) and (®) gives us

¥(Pw). V) = ¥(Pv), M) - 0 (50) <au(6 (=)) - sut@

For G-mean, 6y (z) = \/z, and by an application of Lemma[3}we have r(¢) = O(1/+/€). Thus we have

of)-

U (P(W), N(W)) > ¥(P(w*), N(w*)) — O (\/%)

Fore =0 (4%/:?) we get

D. Proof of Theorem

Theorem 8. Let Algorithm |2| be executed with a performance measure P4 vy and reward functions that offer values in
g p (a,b)

the range [0,m). Let P* := supycyy Pab)(W). Also let Ay = P* — Pa 1) (W;) be the excess error for the model w

generated at time t. Then there exists a value n(m) < 1 such that for Ay < Ag - n(m)*.

Proof. In order to be generic in its treatment, the proof will require the following regularity conditions on the performance
measure

1. bg #0
2. a—P(w)-y>0forallw e W
3. B—P(w)-6>0forallw e W
4, 1< f<~v-P(w)+d6-N(w)<gforallwe W
Define e; := V(wyy1,v:) — v;. Then we can state the following lemmata which together yield the convergence bound

proof.

Lemma 10. 1itf > P —

Proof. Assume that for some w*, P(w*) = v; + e; + ¢’ where €’ > 0. Then we have

V(iw*,v) = (1_€:f—|—e’> (14+~-P(w*)+0-N(w")) — e
> (lf:f+€'>(1+f)—€t
= 1+ f)>0,

which contradicts the fact that no classifier can achieve a valuation greater than v; + e, at level v, thus proving the desired
result. O]

Lemma 11. For any w that achieves V (w,v) = v + e such that e > 0, we have

e
> -
P(w) v+g+1

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

Proof. Letv' = v+ —£=. We will show that V(w,v") > v' which will establish the result by pseudo-linearity. We have

g+1
Viw,')—=v" = c+ (a—v"y) P(w)+(B8—2'8) N(w)—1
- c+(a—v7)~P(w)+(6—v5)~N(w)—v’—gil(w-P(w)—ké-N(w))
- v+efv’—gil('y~P(w)+5~N(w))
> v+e—v — g€ __ ,
g+1
where we have used the bounds on y - P(w) + ¢ - N(w) and the fact that 1 + g > 0. O

Given the above results we can establish the convergence bound. More specifically, we can show the following: let
A; = P* — P(wy). Then we have
9—Ff
A < =—=-A
t+1 = PES

To see this, consider the following

Appr = PP =P(wip1) <P — <vt + =) <P - (’Ut + MM)

g+1 g+1
. W+ NP —Pw) _x 141 _g-F
_p _(P<wt>+ -)_ o a=tt o,

which proves the result. Notice that Table 2] gives the rates of convergence for the different performance measures by
calculating bounds on the value of TT{ for those performance measures. O
E. An analysis of the AMP Algorithm under Inexact Maximizations

For this and the next section, we will, for the sake of simplicity, we will focus only on the F-measure for 3 = 1 and p = 1/2
so that § = 1. For this setting, the F-measure looks like the following: F'(P,N) = %, and the valuation function
looks like V(w,v) = (1 —v/2) - P(w)+v/2- N(w). We shall denote the performance measure as F'(w), and its optimal
value as F™*. We will assume that the reward functions give bounded rewards in the range [0, m).

So far we assumed that Step 4 in the Algorithm AMP gave us w1 such that

Vi(w v¢) = max V(w,v
(t+1, t) wew (9 t)
Now we will only assume that w, satisfies

V(wepr,vp) = max V(w,v) — e

- wew
We also assume that the level v, is only approximated in Step 5 of AMP, i.e. using Lemma[7] we have
Ve = F (Wt) + (St

where ; is a signed real number.

Given these approximations, we can prove the following results
Lemma 12. The following hold for the setting described above
1. If6; < Othene; >0
2. If5t > Othenet Z *575 (14’%)
3. If F* < vy (Which can happen only if 6y > 0), then e; < 0

4. Ife; <0then F* < vy

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

5. We have
(a) If ey > 0, then ey > (%Tm) (F* — vy).
(b) Ife; <0, then e, > (2+T) (F™* —).
6. If V(w,v) =v+e, then
(a) Ife > 0 then F(w) > v+ 2¢

24+m
(b) Ife < 0then F(w) > v+ 23767”

Proof. We give the proof in parts

—_—

. If §; < 0 then this means that there exists a w such that F'(w) > v;. The result then follows from pseudo linearity.

2. vy = F(wy) + 0; gives us, by pseudo linearity of F-measure,

(1 —v/2) - P(We) + vt /2 N(Wy) = v — 0y (1+P(Wt>;N(Wt>> th—(st(l-i-%).

The bound on e; now follows from its definition.

3. Suppose e; > 0 then by pseudo linearity of F-measure, we have, for some w, V' (w, v;) > v; which means F'(w) > v,
which contradicts the assumption.

4. Suppose there exists w* with F(w*) = v; + ¢’ with ¢’ > 0 then we have
* * / P -
(1=v/2)-P(W*)+v/2- Nw*)=v;+e [1+ ————=

which contradicts the fact that e; < 0.

5. Part (a) is simply Lemma 10. For part (b), we will prove that F* < v, + 224:7’71 Since %im > 0, the result will follow.
Assume the contrapositive that some w* achieves F(w*) = v; + QQ_F% + ¢’ for some ¢/ > 0. Using the pseudo

2eq

, h
o te), this can be expressed as

linearity of F-measure (and using the shorthand v' = v; +
(1—-2"/2)- P(w*) +v'/2- N(w*) =2/

where for some ¢’ > 0. Then we have

1 2e
(1—v/2) - P(W") +v/2 - NW*) —vp —e; =0 — vy —ep + = L) (P(w*) = N(w"))
2\2+m
2675 ’ 1 2615 /
-~ o - P * 7N *
st ety (e) (Pw) = N(w)
2ey , 2e4 /
> _
297 +e —e + 5 (2+
= (1+5) +e 2 +
- 2 “\2+ 2+m
=€ (1 —>>O
c (T3 ’
where we have assumed that €’ is chosen small enough so that 224% + ¢’ < 0 still and used the fact that P(w*) —
N(w*) <m.
6. Part (a) is simply Lemma 11. To prove part (b), we let v’ = v + 2Eem,then we have
(1-2) Pw) + 5 N(w) —0) = (1= 2)-Plw) + & N(w) —/ + 55— (N(w) ~ P(w))
- —=)-P(w —-N(w)—-v = - =) -P(w —-Nw)—v + —— w)— P(w
2 2 2 2 2—m

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

v v me
> (1—-=)-P - N —v
> (1= 2) P(w)+ 5 N(w)— v/ + 57

4 i 2e i me
= v4+e— (v

2—m 2—m
2 m

= 1 —=2 4+ 0

e(2m+2m)

= 0’

where the second inequality follows since N (w)—P(w) < mand e < 0 by using the bounds on the reward functions.
This proves the result.

E.1. Convergence analysis

We have the following cases with us

1. Case 1 (§; < 0): In this case we are setting v; to a value less than the F-measure of the current classifier. This should
hurt performance - we know that v; = F'(w;) + §; which gives us, on applying part (a) of the previous lemma using
F* — v, = Ay — 4y, the following

2—m
2
Note that we are guaranteed that e; > 0 in this case. Now since the maximization in step 4 is also carried our
approximately, we have V (w1, v¢) = vy + ¢; — ¢;. Now we have two sub cases

ey >

(A — 6).

(a) Case 1.1 (e; < ey): In this case we can apply part 6(a) of the previous lemma to get the following result

2m 2m 2¢;
A < Ay — —
t+1_2+m t 2+mt+2m

(b) Case 1.2 (¢ > e;): In this case we are actually making negative progress in the maximization step (since we
have V(wy41,v:) < v;) and we can only invoke Lemma 5.6(b) to get

2615

Ay <
=9 m

Note that the above result should not be interpreted as a one shot step to a very good classifier. The above result
holds along with the condition that ¢; > e;. Thus the performance of the classifier is lower bounded by e; which
depends on how far the current classifier is from the best.

2. Case 2 (6; > 0): In this case we are setting v; to the value higher than the F-measure of the current classifier. This can
mislead the classifier and results in the following two sub-cases

(a) Case 2.1 (F'* > v;): In this case we are still setting v; to a legitimate value, i.e. one that is a valid F-measure
for some classifier in the hypothesis class. This can only benefit the next optimization stage (in fact if we set
v; = F*, then we would obtain the best classifier in this very iteration!). In this case e; > 0 and we can use the
analyses of Cases 1.1 and 1.2.

(b) Case 2.2 (F* < vy): In this case we are setting v, to an illegal value, one that is an unachievable value of F-
measure. Consequently, using part 3 of the previous lemma, e; < 0 and using part(b) of the previous lemma we

get
24+ m

e > B (A —dy),

which, upon applying part 6(b) of the previous lemma (since e; — ¢; < e; < 0) will give us
2m 2675
App1 < — (6 — A
t+1_2—m(t t)+2—m
S 2m 6t + 26,5

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

We can combine the cases together as follows

2 o'm 2€t 2m 26t
Ay < 1{6<0}- Ay — 5 1ie > g
Hlmax{ {6 <0} {2+m ¢ 2+mt+2+m} {ee>ed- 5 { _mt+2—m}}
'm 2m 2¢€; 2¢4 2m 2¢
< A 5 1 .)
_max{2+ f+2+ |f|+2+m7 {er > er} 2—m’2—m|t|+2_m}
2m 2m 2¢;
<A 75
S 5Tm t+2 |t|Jr

If we let p = and & = |0¢| + €:/m, then this gives us

2+m’77 = 2 m’
App1 <A+ 1,

which gives us
, T—1
Ap <" Ao+ % Y o'
i=0

This concludes our analysis.

F. Proof of Theorem

Theorem 9. Let Algorithm be executed with a performance measure P, 1) and reward functions with range [0, m). Let
n = n(m) be the rate of convergence guaranteed for P, v by the AMP algorithm. Set the epoch lengths to s, s, =

O (3

Moreover the number of samples consumed till this point is at most O (6%)

.) Then after e = log 1 (% log? %) epochs, we can ensure with probability at least 1 — 0 that P* — P(a py(We) < €.
1e

Proof. Using Hoeffding’s inequality, standard regret and online-to-batch guarantees (Cesa-Bianchi et al.| | 2001; |Zinkevich,
2003)), we can ensure that, if the stream lengths for the Model optimization stage and Challenge level estimation stage
procedures are s, and s/, respectively, then for some fixed ¢ > 0 that is independent of the stream length, we have

1
67|6t|§6

e €

SO

log

|5t‘ SC'

Let T = log1 (Llog®1) and s, = (%)2 (%)26 log L and s, = 4c? (%)% log L - this gives us, for each e, with
probability at least 1 — 6/,
£ <n°
Thus, using a union bound, with probability at least 1 — §, we have, by the discussion in the previous section,
/ T-1 /
Ap <n"Do+ % ST <A + %TnT

=0

1 ! 1 1 1
<eAglog™2 = + T log 1 (log?) elog™2 =
e n "u\e € €

/
€ A0—|— N 1 s
7710g;

where the last step follows from the fact that for any € < 1/e?, we have

1 1 1
log (log?) <log? =
€ € €

Optimizing Non-decomposable Performance Measures: A Tale of Two Classes

’ 2e
Letd = (AO + 1712?) so that we can later set ¢’ = €/d, and s = 4c? (1 + 1) so that s, + s, = s (%) log L. The
K

total number of samples required can then be calculated as

T T 2e T
I 1 r 1 1 r 1 1 1
’ 4
g Sc + 5, =slog 5 Eﬁ () = slog 51 ” () < slog ST .2 7 = log p

This gives the number of samples required as

1 1 1 1
O | < log* = (loglog— +1log =) |,
€2 € €)

to get an e-accurate solution with confidence 1 — 4. O

