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Abstract
Modern classification problems frequently
present mild to severe label imbalance as well
as specific requirements on classification char-
acteristics, and require optimizing performance
measures that are non-decomposable over the
dataset, such as F-measure. Such measures
have spurred much interest and pose specific
challenges to learning algorithms since their
non-additive nature precludes a direct applica-
tion of well-studied large scale optimization
methods such as stochastic gradient descent.

In this paper we reveal that for two large families
of performance measures that can be expressed
as functions of true positive/negative rates, it is
indeed possible to implement point stochastic up-
dates. The families we consider are concave
and pseudo-linear functions of TPR, TNR which
cover several popularly used performance mea-
sures such as F-measure, G-mean and H-mean.

Our core contribution is an adaptive linearization
scheme for these families, using which we de-
velop optimization techniques that enable truly
point-based stochastic updates. For concave
performance measures we propose SPADE, a
stochastic primal dual solver; for pseudo-linear
measures we propose STAMP, a stochastic al-
ternate maximization procedure. Both methods
have crisp convergence guarantees, demonstrate
significant speedups over existing methods - of-
ten by an order of magnitude or more, and give
similar or more accurate predictions on test data.
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1. Introduction
Learning applications with binary classification problems
involving severe label imbalance abound, often accompa-
nied with specific requirements in terms of false positive,
or negative rates. Examples included spam classification,
anomaly detection, and medical applications. Class imbal-
ance is also often introduced as a result of the reduction
of a problem to binary classification, such as in multi-class
problems (Bishop, 2006) and multi-label problems due to
extreme label sparsity (Hsu et al., 2009).

Traditional performance measures such as misclassification
rate are ill-suited in such situations as it is usually trivial to
optimize them by constantly predicting the majority class.
Instead, the performance measures of choice in such cases
are those that perform a more holistic evaluation over the
entire data. Naturally, these performance measures are non-
decomposable over the dataset and cannot be cannot be ex-
pressed as a sum of errors on individual data points. Popu-
lar examples include F-measure, G-mean, H-mean etc.

A consistent effort directed at optimizing these perfor-
mance measures has, over the years, resulted in the de-
velopment of two broad approaches - 1) surrogate based
approaches (e.g. SVMPerf (Joachims et al., 2009)) that
design convex surrogates for these performance measures,
and 2) indirect approaches which include cost-sensitive
classification-based approaches (Parambath et al., 2014)
which solve weighted classification problems, and plug-in
approaches (Koyejo et al., 2014; Narasimhan et al., 2014)
which rely on consistent estimates of class probabilities.

Both these approaches are known to work fairly well on
small datasets but do not scale very well to large ones,
especially those large enough to not even fit in memory.
SVMPerf-style approaches, which employ cutting plane
methods do not scale well. On the other hand, plug-in ap-
proaches first need to solve a class probability estimation
problem optimally and then tune a threshold. This two-
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stage approach prevents the method from exploiting better
classifiers to automatically obtain better thresholds. More-
over, for multi-class problems with C classes, jointly esti-
mating C parameters can take time exponential in C.

For large datasets, streaming methods such as stochastic
gradient descent (Shalev-Shwartz et al., 2011) that take
only a few passes over the entire data are preferable.
However, traditional SGD techniques cannot handle non-
decomposable losses. Recently, (Kar et al., 2014) pro-
posed optimizing SVMPerf-style surrogates using SGD
techniques. Although their method is generic, allowing
optimization of performance measures such as F-measure
and partial AUC, they require maintaining a large buffer to
compute online gradient estimates that can be prohibitive.

Motivated by the state of the art, we develop novel methods
for optimizing two broad families of non-decomposable
performance measures. Our methods incorporate truly
point-wise updates, i.e. do not require a buffer, and require
only a few passes over data. At an intuitive level, at the
core of our work are adaptive linearization strategies for
these performance measures, which make these measures
amenable to SGD-style point-wise updates. Moreover, our
linearizations are able to feed off the improvements made in
learning a better classifier, resulting in faster convergence.

We consider two classes of performance measures

Concave Performance Measures (see Table 1): These
measures can be written as concave functions of true posi-
tive (TPR) and negative (TNR) rates and include G-mean,
H-mean etc. We exploit the dual structure of these func-
tions via their Fenchel dual to linearize them in terms of the
TPR, TNR variables. Our method then, in parallel, tunes
the dual variables in this linearization and maximizes the
weighted TPR-TNR combination. These updates are done
in an online fashion using stochastic mirror descent steps.

Pseudo-linear Performance Measures (see Table 2):
These measures can be written as fractional linear func-
tions of TPR, TNR and include F-measure and the Jaccard
coefficient. These functions need not be concave and the
techniques outlined above do not apply. Instead, we exploit
the pseudo-linear structure to linearize the function and de-
velop a technique to alternately optimize the combination
weights and the classifier model via stochastic updates. Al-
though such “alternate-maximization” strategies in general
need not converge even to a local optima, we show that our
strategy converges to an ε-approximate global optimum af-
ter log

(
1
ε

)
batch updates or O(1/ε2) stochastic updates.

Finally, we present an empirical validation of our meth-
ods. Our experiments reveal that for a range of perfor-
mance measures in both classes, our methods can be sig-
nificantly faster than either plug-in or SVMPerf-style meth-
ods, as well as give higher or comparable accuracies.

2. Related Works
As noted in Section 1, existing methods for optimizing
performance measures that we study can be divided into
surrogate-based approaches and indirect approaches based
on cost-sensitive classification or plug-in methods. A third
approach applicable to certain performance measures is
the decision-theoretic method that learns a class probabil-
ity estimate and computes predictions that maximize the
expected value of the performance measure on a test set
(Lewis, 1995; Ye et al., 2012). In addition to these there
exist methods dedicated to specific performance measures.

For instance (Parambath et al., 2014) focus on optimiz-
ing F-measure by exploiting the pseudo-linearity of the
function along with a cross validation-based strategy. Our
STAMP method, on the other hand uses an alternating
maximization strategy that does not require cross validation
which considerably improves training time (see Figure 3).
It is important to note that these performance measures
have also been studied in multi-label settings where these
no longer remain non-decomposable. For instance, (Dem-
bczyński et al., 2013) study plug-in style methods for max-
imizing F-measure in multi-label settings whereas works
such as (Koyejo et al., 2014; Narasimhan et al., 2014; Ye
et al., 2012) study plug-in approaches for the same problem
in the more challenging binary classification setting.

Historically, online learning algorithms have played a key
role in designing solvers for large-scale batch problems.
However, for non-decomposable loss functions, defining
an online learning framework and providing efficient al-
gorithms with small regret itself is challenging. (Rakhlin
et al., 2011) propose a generic method for such loss func-
tions; however the algorithms proposed therein run in ex-
ponential time. (Kar et al., 2014) also study such measures
with the aim of designing stochastic gradient-style meth-
ods. However, their methods require a large buffer to be
maintained, which causes them to have poorer convergence
guarantees and in practice be slower than our methods.

By exploiting the special structure in our function classes,
we are able to do away with such requirements. Our meth-
ods make use of standard online convex optimization prim-
itives (Zinkevich, 2003). However, their application re-
quires special care in order to avoid divergent behavior.

3. Problem Setting
Let X ⊂ Rd denote the instance space and Y = {−1,+1}
the label space, with some distribution D over X × Y . Let
p := Pr

(x,y)∼D
[y = +1] denote the proportion of positives in

the population. Let T = {(x1, y1), . . . , (xT , yT )} denote a
sample of training points sampled i.i.d. fromD. For sake of
simplicity we shall present our algorithms and analyses for
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a set of linear modelsW ⊆ Rd. LetRX andRW denote the
radii of the domain X and hypothesis classW respectively.

We consider performance measures that can be expressed
in terms of the true positive and negative rates of a classi-
fier. To represent these measures, we shall use the notion
of a reward function r that assigns a reward r(y, ŷ) to a
prediction ŷ ∈ R when the true label is y ∈ Y . We will use

r+(w;x, y) =
1

p
· r(y,w>x) · 1(y = 1)

r−(w;x, y) =
1

1− p
· r(y,w>x) · 1(y = −1)

to calculate rewards on positive and negative points. Since
E

(x,y)
Jr+(w; x, y)K = E

(x,y)

q
r(y,w>x)|y = 1

y
, setting

r0−1(y, ŷ) = 1 (yŷ > 0) gives us E
(x,y)

Jr+(w; x, y)K =

TPR(w). For sake of convenience, we will use P (w) =
E

(x,y)
Jr+(w;x, y)K and N(w) = E

(x,y)
Jr−(w;x, y)K to

denote population averages of the reward functions. We
shall assume that our reward functions are concave, Lr-
Lipschitz, and take values in a bounded range [−Br, Br].

4. Concave Performance Measures
The first class of performance measures we analyze are
concave performance measures. These measures can be
written as concave functions of the TPR and TNR i.e.

PΨ(w) = Ψ (P (w), N(w))

for some concave link function Ψ : R2 → R. A large
number of popular performance measures fall in this fam-
ily since these measures are relevant in situations with se-
vere label imbalance or in situations where cost-sensitive
classification is required such as detection theory (Vincent,
1994). Table 1 gives a list of such performance measures
along with some of their relevant properties and references
to works that utilize these performance measures.

We shall find it convenient to define the (concave) Fenchel
conjugate of the link functions for our performance mea-
sures. For any concave function Ψ and α, β ∈ R, define

Ψ∗(α, β) = inf
u,v∈R

{αu+ βv −Ψ(u, v)} .

By the concavity of Ψ, we have, for any u, v ∈ R,

Ψ(u, v) = inf
α,β∈R

{αu+ βv −Ψ∗(α, β)} .

We shall use the notation Ψ to denote, both the link func-
tion, as well as the performance measure it induces.

4.1. A Stochastic Primal-dual Method for Optimizing
Concave Performance Measures

We now present a novel online stochastic method for opti-
mizing the class of concave performance measures. The

Algorithm 1 SPADE: Stochastic PrimAl-Dual mEthod

Input: Primal/dual step sizes ηt, η′t, feasible setsW,A
Output: Classifier w ∈ W

1: w0 ← 0, t← 1
2: while data stream has points do
3: Receive data point (xt, yt)
4: /* Perform primal ascent */
5: if yt > 0 then
6: wt+1 ← ΠW

(
wt + ηt · αt∇wr

+(wt;xt, yt)
)

7: else
8: wt+1 ← ΠW

(
wt + ηt · βt∇wr

−(wt;xt, yt)
)

9: end if
10: /* Perform dual descent */
11: (a, b)← (αt, βt)− η′t · ∇(α,β)Ψ

∗(αt, βt)
12: if yt > 0 then
13: a← a− η′t · r+(wt;xt, yt)
14: else
15: b← b− η′t · r−(wt;xt, yt)
16: end if
17: (αt+1, βt+1)← ΠA((a, b))
18: t← t+ 1
19: end while
20: return w = 1

t

∑t
τ=1 wτ

use of stochastic gradient techniques for these measures
presents specific challenges due to the non-decomposable
nature of these measures which makes it difficult to ob-
tain cheap, unbiased estimates of the gradient using a sin-
gle point. Recent works (Kar et al., 2013; 2014) have tried
to resolve this issue by looking at mini-batch methods or by
using a buffer to maintain a sketch of the stream. However,
such techniques bring in a bias into the learning algorithm
in the form of buffer size or mini batch length which re-
sults in slower convergence. Indeed, the 1PMB method of
(Kar et al., 2014) is only able to guarantee a −4

√
T rate of

convergence, whereas SGD techniques are usually able to
guarantee −2

√
T rates. This is indicative of suboptimal per-

formance and our experiments confirm this (see Figure 3).

Here we show that for the class of concave performance
measures, such workarounds are not necessary. To this end
we present the SPADE algorithm (Algorithm 1) which ex-
ploits the dual structure of the performance measures to ob-
tain efficient point updates which do not require the use of
mini-batches or online buffers. SPADE is able to offer con-
vergence guarantees identical to those that stochastic meth-
ods offer for additive performance measures such as least
squares, without the presence of any algorithmic bias.

Let W ⊂ X and AΨ ⊂ R2 be convex regions within the
model and dual spaces respectively, and ΠW and ΠAΨ de-
note projection operators for these. Table 1 lists the relevant
dual regions for the performance measures listed therein.

4.2. Convergence Analysis for SPADE

This section presents a convergence analysis for the
SPADE algorithm. The convergence proof is formally
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Table 1. List of concave performance measures Ψ(P,N) along with their monotonicity and Lipschitz properties, sufficient dual regions,
and expressions for dual subgradients. B(0, r) denotes the ball of radius r around the origin. R2

+ denotes the positive quadrant.
Name Expression (P,N) Mon.? Lip.? δ(ε) Sufficient dual Region AΨ ∇Ψ∗(α, β).

Min ((Vincent, 1994)) min{P,N} X X ε {α+ β = 1} ∩ R2
+ 0

H-mean ((Kennedy et al., 2010)) 2PN
P+N

X X 4ε
{√

α+
√
β ≥
√

2
}
∩ B(0, 2) 0

Q-mean ((Liu & Chawla, 2011)) 1−
√

(1−P )2+(1−N)2

2
X X ε

{
α2 + β2 ≤ 1/2

}
∩ R2

+ 1

G-mean ((Daskalaki et al., 2006))
√
PN X 7 3

√
ε {αβ ≥ 1/4} ∩ R2

+ 0

stated in Theorem 4. Apart from demonstrating the utility
of the algorithm, the proof also sheds light on the choice of
algorithm parameters, such as primal/dual feasible regions.

We shall work with performance measures that are mono-
tonically increasing in the true positive and negative rates
of the classifier i.e. if u ≥ u′, v ≥ v′ then Ψ(u, v) ≥
Ψ(u′, v′). This is a natural assumption and is satisfied by
all performance measures considered here (see Table 1).
We now introduce two useful concepts.

Definition 1 (Stable Performance Measure). A perfor-
mance measure Ψ will be called δ-stable if for some func-
tion δ : R→ R, we have for all u, v ∈ R and ε ∈ R+,

Ψ (u+ ε, v + ε) ≤ Ψ(u, v) + δ(ε).

Table 1 lists the stability parameters of all the concave per-
formance measures. Clearly, a performance measure has a
linear stability parameter i.e. δ(ε) ≤ L ·ε iff its correspond-
ing link function is Lipschitz. We now define the notion of
a sufficient dual region for a performance measure

Definition 2 (Sufficient Dual Region). For any link func-
tion Ψ, define its sufficient dual region AΨ ⊆ R2 to be the
minimal set such that for all (u, v) ∈ R2, we have

Ψ(u, v) = inf
(α,β)∈AΨ

{αu+ βv −Ψ∗(α, β)} .

The reason for defining this quantity will become clear in
a moment. A closer look at Algorithm 1 indicates that it
is performing online gradient descent steps with the dual
variables. Clearly, for this procedure to have statistical con-
vergence properties, the magnitude of the updates must be
bounded in some sense otherwise the learning procedure
may diverge. This motivates the projection step in Step
17. However, in order for the updated dual variables to
be informative about the current primal function value, the
projection step must be done in a way that does not dis-
tort the link function. The notion of a sufficient dual region
formally captures the notion of such a projection step.

Having said that, there is no apriori guarantee that the
sufficient region for a given performance measure would
be bounded, in which case this entire exercise counts for
naught. However, the following lemma, by closely link-
ing the stability properties of a performance measure with

the size of its sufficient dual region, shows that for well-
behaved link functions, this will not be the case .
Lemma 3. The stability parameter of a performance mea-
sure Ψ(·) can be written as δ(ε) ≤ LΨ · ε iff its sufficient
dual region is bounded in a ball of radius LΨ.

The proof of this result follows from elementary manip-
ulations and can be found in Appendix A. In some sense
this result can be seen as a realization of the well known
connection between the Fenchel dual of a function and its
Lipschitz properties.

To simplify the initial analysis, we shall first concentrate
on performance measures whose link functions are Lips-
chitz. It is easy to see that these are exactly the performance
measures whose gradients do not diverge within any com-
pact region of the real plane. Of the performance measures
listed in Table 1, all measures except G-mean have asso-
ciated link functions that are Lipschitz. Subsequently, we
shall address the more involved case of non-Lipschitz per-
formance measures such as G-mean as well.
Theorem 4. Suppose we are given a stream of random
samples (x1, y1), . . . , (xT , yT ) drawn from a distribution
D over X × Y . Let Ψ(·) be a concave, Lipschitz link func-
tion. Let Algorithm 1 be executed with a dual feasible set
A ⊇ AΨ, ηt = 1/

√
t and η′t = 1/

√
t. Then, the average

model w = 1
T

∑T
t=1 wt output by the algorithm satisfies,

with probability at least 1− δ,

PΨ(w) ≥ sup
w∗∈W

PΨ(w∗)−O

(
δΨ

(√
1

T
log

1

δ

))
.

We refer the reader to Appendix B for a proof and explicit
constants. The proof closely analyzes the primal ascent and
dual descent steps, tying them together using the Fenchel
dual of Ψ.

4.3. The Case of non-Lipschitz Link Functions

Non-Lipschitz link functions, such as the one used in the
G-mean performance measure, pose a particular challenge
to the previous analysis. Owing to their non-Lipschitz na-
ture, their sufficient dual region is unbounded. Indeed as
Table 1 indicates, the sufficient region for ΨG-mean extends
indefinitely along both coordinate axes. More precisely,
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what happens is that the gradients of the ΨG-mean function
diverge as either u → 0, or v → 0. This poses a stum-
bling block for the proof of Theorem 4 since the regret and
online-to-batch conversion results used therein fail.

A natural way to solve this problem is to ensure that the
reward functions r+, r− always assign rewards that are
bounded away from zero. More specifically, for some
ε > 0, we have r+(w;x, y), r−(w;x, y) ≥ ε for all
w ∈ W and x ∈ X . For this restricted reward region,
one can show, using Lemma 3, that the sufficient dual re-
gion can be restricted to a ball of radius O

(√
1/ε
)

.

The above discussion suggests that we regularize the re-
ward function i.e. at each time step t, we add a small
value ε(t) to the original reward function. However, the
amount of regularization remains to be decided since over
regularization could cause our resulting excess risk bound
to be vacuous with respect to the original reward function.
It turns out that setting ε(t) ≈ 1

t1/4 strikes a fine balance
between regularization and fidelity to the original reward
function - this seems intuitive since the regularization be-
comes milder and milder as learning progresses. The fol-
lowing extension of Theorem 4 formalizes this statement.

Theorem 5. Suppose we have the problem setting in The-
orem 4 with the ΨG-mean performance measure being opti-
mized for. Consider a modification to Algorithm 1 wherein
the reward functions are changed to r+

t (·) = r+(·) + ε(t),
and r−t (·) = r−(·)+ε(t) for ε(t) = 1

t1/4 . Then, the average
model w = 1

T

∑T
t=1 wt output by the algorithm satisfies,

with probability at least 1− δ,

PΨG-mean(w) ≥ sup
w∗∈W

PΨG-mean(w
∗)− Õ

(
1

T 1/4

)
.

The proof of this theorem can be found in Appendix C.
We note here that primal dual frameworks have been uti-
lized before in diverse areas such as distributed optimiza-
tion (Jaggi et al., 2014) and multi-objective optimization
(Mahdavi et al., 2013). However, these works simply as-
sume the functions involved therein to be Lipschitz and/or
smooth and do not address cases where they fail to be so.
Theorem 5 on the other hand, is able to recover a non-
trivial, albeit weaker, statement even for locally Lipschitz
functions.

5. Pseudo-linear Performance Measures
The second class of performance measures we analyze are
pseudo-linear performance measures. These measures have
a fractional linear function as the link function and can be
written as follows:

P(a,b)(w) =
a0 + a1 · P (w) + a2 ·N(w)

b0 + b1 · P (w) + b2 ·N(w)
,

for some weighing coefficients a,b. Several popularly
used performance measures, most notably the F-measure,
can be represented as pseudo-linear functions. Table 2 enu-
merates some popular pseudo-linear performance measures
as well as their properties.

We note that these performance measures are usually rep-
resented in literature using the entries of the confusion ma-
trix. However, for the sake of our analysis, we shall find
it useful to represent them in terms of the true positive and
true negative rates. To do so, we shall use p to denote the
proportion of positives in the population and θ = 1−p

p to
denote the label skew.

5.1. Alternate-maximization for Optimizing
Pseudo-linear Performance Measures

Pseudo-linear functions are named so since their level sets
can be defined using linear half-spaces. More specifically,
every pseudo-linear function Ψ over Rd has an associated
“level-finder” function a : R → Rd and b : R → R such
that Ψ(v) ≥ t iff 〈v, a(t)〉 ≥ b(t). We refer the reader
to (Parambath et al., 2014) for a more relaxed introduction
to these functions and their properties. For our purposes,
however, it suffices to notice that this property immediately
points toward a cost-sensitive method to optimize these per-
formance measures.

This fact was noticed by (Parambath et al., 2014) who
exploited this to develop a cost-sensitive classification
method for optimizing the F-measure by simply searching
for the best weights with which to perform cost-sensitive
classification. However, we notice that instead of perform-
ing such a brute force search, one can adaptively tune the
weights to better and better values and obtain much faster
convergence. To develop this intuition, we first define the
notion of a valuation function below.

Definition 6 (Valuation Function). The valuation function
of a performance measure P(a,b), for a classifier w ∈ W ,
and at a level v ∈ R is defined as

V(a,b)(w, v) := c+ (α− vγ) · P (w) + (β − vδ) ·N(w),

where c = a0

b0
, α = a1

b0
, β = a2

b0
, γ = b1

b0
, δ = b2

b0
.

The following well-known lemma closely links the valua-
tion function to the performance measure.

Lemma 7. For any performance measure P(a,b), w ∈ W
and v ∈ R we have P(a,b)(w) ≥ v iff V(a,b)(w, v) ≥ v.
Moreover, in such a situation we say that classifier w has
achieved valuation at level v.

Lemma 7 indicates that the performance of a classifier is
intimately linked to its valuation. This suggests a natural
alternate maximization approach wherein we alternate be-
tween posing a challenge level to the classifier and training
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Table 2. List of pseudo-linear performance measures P(a,b)(P,N) along with their popular forms, canonical expressions in terms of
(reward functions representative of) true positive (P) and negative (N) rates, monotonicity properties, acceptable range of reward values,
and rate of convergence of the Alt-Max procedure for the performance measure when rewards take values in the range [0,m).

Name Popular Form Canonical Form (P,N) Mon.? Range P,N Rate η(m)

Fβ-measure (Manning et al.) (1+β2)·TP
(1+β2)·TP+β2·TP+FP

(1+β2)·P
β2+θ+P−θ·N X

(
0, 1 + β2

θ

)
m(1+θ)

m+β2+θ

Jaccard Coefficient (Koyejo et al.) TP
TP+FP+FN

P
1+θ−θ·N X

(
0, 1+θ

θ

)
mθ
1+θ

Gower-Legendreσ<1 (Sokolova & Lapalme) TP+TN
TP+σ(FP+FN)+TN

P+θ·N
σ(1+θ)+(1−σ)·P+θ(1−σ)·N X (0,∞) (1−σ)m

(1−σ)m+σ

Gower-Legendreσ>1 (Sokolova & Lapalme) TP+TN
TP+σ(FP+FN)+TN

P+θ·N
σ(1+θ)+(1−σ)·P+θ(1−σ)·N X

(
0, σ

σ−1

)
(σ−1)m

σ

Algorithm 2 AMP: Alternate Maximization Procedure
Input: Performance measure P(a,b), feasible setW , tolerance ε
Output: An ε-optimal classifier w ∈ W

1: Construct valuation function V(a,b)

2: w0 ← 0, t← 1
3: while vt > vt−1 + ε do
4: wt+1 ← arg maxw∈W V(a,b)(w, vt)
5: vt+1 ← arg maxv>0 v such that V(a,b)(wt+1, v) ≥ v
6: t← t+ 1
7: end while
8: return wt

a classifier to achieve that level. The resulting algorithm
AMP is detailed in Algorithm 2. Note that using Lemma 7,
step 5 in the algorithm can be executed simply by setting
vt+1 = P(a,b)(wt+1). Thus, in a very natural manner, the
current classifier challenges the next classifier to beat its
own performance. It turns out that this approach results in
rapid convergence as outlined in the following theorem.

Theorem 8. Let Algorithm 2 be executed with a perfor-
mance measure P(a,b) and reward functions that offer val-
ues in the range [0,m). Let P∗ := supw∈W P(a,b)(w).
Also let ∆t = P∗ − P(a,b)(wt) be the excess error for the
model wt generated at time t. Then there exists a value
η(m) < 1 such that ∆t ≤ ∆0 · η(m)t.

The proof of this theorem can be found in Appendix D.
Table 2 gives values for the convergence rates of all the
pseudo-linear performance measures, as well as the al-
lowed range of values that the reward functions can take for
those measures. This is important since performance mea-
sures such as the F-measure diverge if the reward function
values approach 2. Other performance measures like the
Gower-Legendre measure do not impose any such restric-
tions. Note that the above result shows that Algorithm 2
will always terminate in O

(
log 1

ε

)
steps.

At this point it would be apt to make a historical note.
Pseudo-linear functions have enjoyed a fair amount of
interest in the optimization community (Schaible, 1976;
Dinkelbach, 1967; Jagannathan, 1966) within the sub-
field of fractional programming. Of the many meth-
ods that have been developed to optimize these functions,
the Dinkelbach-Jagannathan (DJ) procedure (Dinkelbach,

Algorithm 3 STAMP: STochastic Alt-Max Procedure

Input: Feasible setW , Step sizes ηt, epoch lengths se, s′e
Output: Classifier w ∈ W

1: v ← 0, t← 0, e← 0,w0 ← 0
2: repeat
3: /* Model optimization stage */
4: w̃← we

5: while t < se do
6: Receive sample (x, y)
7: w̃← w̃+ηt∇w

(
(1− ve

2
)r+(w̃;x, y) + ve

2
r−(w̃;x, y)

)
8: t← t+ 1
9: end while

10: t← 0, e← e+ 1,we+1 ← w̃
11: /* Challenge level estimation stage */
12: v+ ← 0, v− ← 0
13: while t < s′e do
14: Receive sample (x, y)
15: vy ← vy + ry(we;x, y)
16: t← t+ 1
17: end while
18: t← 0, ve ← 2v+

2+v+−v−
19: until stream is exhausted
20: return we

1967; Jagannathan, 1966) is of specific interest to us. It
turns out that the AMP method can be seen as performing
DJ-style updates over parameterized spaces (the parameter
being the model w). It is known (for instance see (Schaible,
1976)) that the DJ process is able to offer a linear conver-
gence rates. Our proof of Theorem 8, which was obtained
independently, can then be seen as giving a similar result in
the parameterized setting.

However, we wish to move one step further and optimize
these performance measures in an online stochastic man-
ner. To this end, we observe that the AMP algorithm can
be executed in an online fashion by using stochastic up-
dates to train the intermediate models. The resulting algo-
rithm STAMP, is presented in Algorithm 3. However, this
algorithm is much harder to analyze because unlike AMP
which has the luxury of offering exact updates, STAMP
offers inexact, even noisy updates. Indeed, even exist-
ing works in the optimization community (for example
(Schaible, 1976)) do not seem to have analyzed DJ-style
methods with noisy updates.
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Figure 1. Comparison of stochastic primal-dual method (SPADE) with baseline methods on QMean maximization tasks. SPADE
achieves similar/better accuracies while consistently requiring about 3-4x less time than other baseline approaches.
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Figure 2. Comparison of stochastic primal-dual method (SPADE) with baseline methods on Min-TPR/TNR maximization tasks

Our next contribution hence, is an analysis of the conver-
gence rate offered by the AMP algorithm when neither
of the two maximizations is carried out exactly. For the
sake of simplicity, we present the STAMP algorithm and
its analysis for the case of F1 measure. Suppose at each
time step, for some εt ≥ 0, δt, we have

V (wt+1, vt) = max
w∈W

V (w, vt)− εt

vt = F (wt) + δt,

then for some η < 1, we have

∆T ≤ ηT∆0 +

T−1∑
i=0

ηT−i (|δt|+ εt)

As a corollary we present a convergence analysis for the
STAMP algorithm in Theorem 9.

Theorem 9. Let Algorithm 3 be executed with a perfor-
mance measure P(a,b) and reward functions with range
[0,m). Let η = η(m) be the rate of convergence
guaranteed for P(a,b) by the AMP algorithm. Set the

epoch lengths to se, s
′
e = Õ

(
1
η2e

)
. Then after e =

log 1
η

(
1
ε log2 1

ε

)
epochs, we can ensure with probability at

least 1−δ thatP∗−P(a,b)(we) ≤ ε. Moreover the number
of samples consumed till this point is at most Õ

(
1
ε2

)
.

The convergence analysis for noisy AMP can be found in
Appendix E. The proof of this theorem can be found in

Appendix F. Both results require a fine grained analysis of
how errors accumulate throughout the learning process.

6. Experimental Results
We shall now compare our methods with the state-of-the-
art on various performance measures and datasets.

Datasets: We evaluated our methods on 5 publicly avail-
able benchmark datasets: a) PPI, b) KDD Cup 2008, c)
IJCNN, d) Covertype, e) MNIST. All datasets exhibited
moderate to severe label imbalance with the KDD Cup
2008 dataset having just 0.61% positives.

Methods: We instantiated the SPADE algorithm (Algo-
rithm 1) on the Q-mean and Min-TPR/TNR performance
measures. We also instantiated the STAMP method (Al-
gorithm 3) on F1-measure and the JAC coefficient. In
both cases we compared to the SVMPerf method (Joachims
et al., 2009) and plug-in method (Koyejo et al., 2014) spe-
cialized to these measures. For the sake of reference, we
also compared to the standard logistic regression method
for (unweighted) binary classification. Additionally for F1-
measure, we also compared to the 1PMB stochastic gradi-
ent descent method proposed recently by (Kar et al., 2014).
All methods were implemented in C.

Parameters: We used 70% of the dataset for training and
the rest for testing. Tunable parameters, including thresh-
olds for the plug-in approaches, were cross-validated on a
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Figure 3. Comparison of stochastic alternating minimization procedure (STAMP) with baseline methods on F1 maximization tasks
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Figure 4. Comparison of stochastic alternating minimization procedure (STAMP) with baseline methods on JAC maximization tasks

validation set. All results reported here were averaged over
5 random train-test splits. We used hinge-loss based re-
ward functions for our methods. STAMP was executed by
setting the challenge level to the actual F-measure/JAC at
each stage. We used a state of the art LBFGS solver to im-
plement the plug-in methods and used standard implemen-
tations of the SVMPerf algorithm. Since our methods are
able to take a single pass over the data very rapidly, SPADE
was allowed to run for 25 passes over the data and STAMP
was allowed 25 passes with an initial epoch length of 100
which was doubled after every iteration. The SVMPerf al-
gorithm was allowed a runtime of up to 50× of that given
to our method after which it was terminated. The LBFGS
solver was always allowed to run till convergence.

Figures 1 and 2 compare the SPADE method with the
baseline methods for the Q-mean and Min-TPR/TNR mea-
sures. In general, SPADE was found to offer comparable
or superior accuracies with greatly accelerated convergence
as compared to other methods. On the IJCNN and Cov-
type datasets, SPADE outperformed every other method by
about 2-3%. As SPADE is a stochastic first order method,
it is expected to rapidly find out a fairly accurate solution.
Indeed, the method was found to offer greatly accelerated
convergence without fail. For instance, on the MNIST
dataset, SPADE found out the best solution as much as
60× faster than any other method whereas on the KDD
Cup and PPI datasets it was 12× and 2× faster respectively.
The SVMPerf method, on the other hand, was found to be
extremely slow in general and require at least an order of
magnitude time more than SPADE to find reasonably ac-

curate solutions. It is also notable that in all cases, simple
binary classification gave very poor accuracies due to the
severe label imbalance in these datasets.

Figures 3 and 4 report the performance of the STAMP
method applied to pseudo-linear functions. Similar to the
concave measures, STAMP was found to provide compet-
itive accuracies as compared to the baseline methods but
require at least 3 − 4× less computational time. Interest-
ingly, for the F1-measure, the 1PMB method, which is an-
other stochastic gradient descent-based method, was found
to struggle to obtain accuracies similar to that of STAMP or
else offer much slower convergence. We suspect two main
reasons for the suboptimal behavior of this other stochas-
tic method. Firstly these results confirm the adverse ef-
fect of the dependence on an in-memory buffer on these
methods. It is notable that this dependence causes even
the theoretical convergence rates for these methods to be
weaker as was noted earlier in the discussion. Secondly,
we note that both SVMPerf and 1PMB optimize the same
“struct-SVM” style surrogate for the F-measure (Kar et al.,
2014). This surrogate has been observed to give poor accu-
racies when compared to plug-in methods in several previ-
ous works (Koyejo et al., 2014; Narasimhan et al., 2014).
STAMP on the other hand, works directly with F-measure
in a manner similar to, but faster than, the plug-in methods
which might explain its better performance.
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