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Notations. Let λ be the base measure over ∆n given by the uniform random variable (say U ) over ∆n. Hence, for
all measurable A ⊆ ∆n, λ(A) = P(U ∈ A). Also, η : X→∆n is the mapping that gives the conditional probability
vector η(x) = [P(Y = 1 |X = x), . . . ,P(Y = n |X = x)]> ∈ ∆n for a given instance x ∈ X . Let ν be the
probability measure over the simplex induced by the random variable η(X); in particular, for all measurable A ⊆ ∆n,
ν(A) = PX∼µ(η(X) ∈ A). For a matrix L ∈ [0, 1]n×n we let `1, `2, . . . , `n be the columns of L. For any set A ⊆ Rd,
the set A denotes its closure. For any vector v ∈ Rn, we let (v)(i) denote the ith element when the components of v are
sorted in ascending order. For any y ∈ [n], we shall denote rand(y) = [1(y = 1), . . . ,1(y = n)]>.

A. Supplementary Material For Section 2 (Complex Performance Measures)
A.1. Details of Micro F1-measure

We consider the form of the micro F1 used in the BioNLP challenge (Kim et al., 2013), which treats class 1 as a ‘default’
class (in information extraction, this class pertains to examples for which no information is required to be extracted). One
can then define the micro precision of a classifier h : X→[n] with confusion matrix C = CD[h] as the probability of an
instance being correctly labelled, given that it was assigned by h a class other than 1:

microPrec(C) = P(h(X) = Y |h(X) 6= 1) =

∑n
i=2 Cii∑n

i=2

∑n
j=1 Cji

=

∑n
i=2 Cii

1−
∑n
i=1 Ci1

Similarly, the micro recall of h can be defined as the probability of an instance being correctly labelled, given that its true
class was not 1:

microRec(C) = P(h(X) = Y |Y 6= 1) =

∑n
i=2 Cii∑n

i=2

∑n
j=1 Cij

=

∑n
i=2 Cii

1−
∑n
i=1 C1i

.

The micro F1 that we analyze is the harmonic mean of the micro precision and micro recall given above:

ψmicroF1(C) =
2×microPrec(C)×microRec(C)

microPrec(C) + microRec(C)
=

2
∑n
i=2 Cii

2−
∑n
i=1 C1i −

∑n
i=1 Ci1

.

Note that the above performance measure can be written as a ratio-of-linear function: ψmicroF1(C) = 〈A,C〉
〈B,C〉 , where

A11 = 0, Aii = 2,∀i 6= 1, Aij = 0,∀i 6= j, and B11 = 0, B1i = Bi1 = 1,∀i 6= 1, Bij = 2,∀i 6= j. Also, note that this
performance measure satisfies the condition in Theorem 17 with supC∈CD ψ

microF1(C) ≤ 1, and minC∈CD 〈B,C〉 ≥
1− π1 > 0, and hence Algorithm 2 is consistent for this performance measure.

Recently, Parambath et al. (2014) also considered a form of micro F1 similar to that used in the BioNLP challenge. The
expression they use is slightly simpler than ours and differs slightly from the BioNLP performance measure:

ψmicroF1(C) =
2
∑n
i=2 Cii

1 +
∑n
i=2 Cii − C11

.

Another popular variant of the micro F1 involves averaging the entries of the ‘one-versus-all’ binary confusion matrices
for all classes, and computing the F1 for the averaged matrix; as pointed out by Manning et al. (2008), this form of micro
F1 effectively reduces to the 0-1 classification accuracy.

B. Supplementary Material for Section 3 (Bayes Optimal Classifiers)
B.1. Example Distribution Where the Optimal Classifier Needs to be Randomized

We present an example distribution where the optimal performance for the G-mean measure can be achieved only by a
randomized classifier.



Consistent Multiclass Algorithms for Complex Performance Measures

Example 5 (Distribution where the optimal classifier needs to be randomized). Let D be a distribution over {x} × {1, 2}
with η1(x) = η2(x) = 1

2 and suppose we are interested in finding the optimal classifier for the G-mean performance
measure (see Example 3) under D. The two deterministic classifiers for this setting, namely, one which predicts 1 on x and
the other that predicts 2 on x, yield a G-mean of 0. However, the randomized classifier h∗(x) =

[
1
2 ,

1
2

]>
has a G-mean

value of 1
4 > 0 and can be verified to be the unique optimal classifier for G-mean under D.

We next present the proofs for the theorems/lemmas/propositions in Section 3.

B.2. Proof of Theorem 11

Theorem (Form of Bayes optimal classifier for ratio-of-linear ψ). Let ψ : [0, 1]n×n→R+ be a ratio-of-linear performance
measure of the form ψ(C) = 〈A,C〉

〈B,C〉 for some A,B ∈ Rn×n with 〈B,C〉 > 0 ∀C ∈ CD. Let t∗D = Pψ,∗D . Let

L̃∗ = −(A − t∗DB), and let L∗ ∈ [0, 1]n×n be obtained by scaling and shifting L̃∗ so its entries lie in [0, 1]. Then any
classifier that is ψL∗ -optimal is also ψ-optimal.

In the following, we omit the subscript on t∗D for easy of presentation. We first state the following lemma using which we
prove the above theorem.

Lemma 18. Let ψ : [0, 1]n×n→R+ be such that ψ(C) = 〈A,C〉
〈B,C〉 , for some matrices A,B ∈ Rn×n with 〈B,C〉 > 0 for

all C ∈ CD. Let t∗ = supC∈CD ψ(C). Then supC∈CD 〈A− t
∗B,C〉 = 0.

Proof. Define φ : R→R as φ(t) = supC∈CD 〈A− tB,C〉. It is easy to see that φ (being a point-wise supremum of linear
functions) is convex, and hence a continuous function over R. By definition of t∗, we have for all C ∈ CD,

〈A,C〉
〈B,C〉

≤ t∗ or equivalently φ(t∗) = 〈A− t∗B,C〉 ≤ 0.

Thus

φ(t∗) = sup
C∈CD

〈A− t∗B,C〉 ≤ 0 . (2)

Also, for any t < t∗, there exists C ∈ CD such that

〈A,C〉
〈B,C〉

> t or equivalently φ(t) = 〈A− tB,C〉 > 0.

Thus for all t < t∗,
φ(t) = sup

C∈CD
〈A− tB,C〉 > 0 .

Next, by continuity of φ, for any monotonically increasing sequence of real numbers {ti}∞i=1 converging to t∗, we have
that φ(ti) converges to φ(t∗); since for each ti in this sequence φ(ti) > 0, at the t∗, we have that φ(t∗) ≥ 0. Along with
Eq. (2), this gives us

sup
C∈CD

〈A− t∗B,C〉 = φ(t∗) = 0.

We next give the proof for Theorem 11

Proof of Theorem 11. Let h∗ : X→∆n be a ψL∗ -optimal classifier. We shall show that h∗ is also ψ-optimal, which will
also imply existence of the ψ-optimal classifier. Then we have

1− 〈L∗,CD[h∗]〉 = sup
h:X→∆n

1− 〈L∗,CD[h]〉 = sup
C∈CD

1− 〈L∗,C〉.

Since L∗ is a scaled and translated version of L̃∗ = A− t∗B (where t∗ = Pψ,∗), we further have

〈A− t∗B,CD[h∗]〉 = sup
C∈CD

〈A− t∗B,C〉.
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Now, from Lemma 18 we know that 〈A− t∗B,CD[h∗]〉 = 0. Hence,

〈A,CD[h∗]〉
〈B,CD[h∗]〉

= t∗,

or equivalently,

ψ(CD[h∗]) = sup
C∈CD

ψ(C).

Thus h∗ is also ψ-optimal, which completes the proof.

B.3. Proof of Proposition 10

Proposition. CD is a convex set.

Proof. Let C1,C2 ∈ CD. Let λ ∈ [0, 1]. We will show that λC1 + (1− λ)C2 ∈ CD.

By definition of CD, there exists randomized classifiers h1, h2 : X→∆n such that C1 = CD[h1] and C2 = CD[h2].

Consider the randomized classifier hλ : X→∆n defined as

hλ(x) = λh1(x) + (1− λ)h2(x) .

It can be seen that
CD[hλ] = λC1 + (1− λ)C2 .

B.4. Supporting Technical Lemmas For Lemma 12 and Theorem13

In this subsection we give some supporting technical lemmas which will be useful in the proofs for Lemma 12 and Theorem
13.

Lemma 19 (Confusion matrix as an integration). Let f : ∆n→∆n. Then

CD[f ◦ η] =

∫
p∈∆n

p(f(p))>dν(p) .

Proof.

CDi,j [f ◦ η] = E(X,Y )∼D[fj(η(X)) · 1(Y = i)]

= Ep∼νE(X,Y )∼D
[
fj(p) · 1(Y = i)

∣∣η(X) = p
]

= Ep∼ν
[
pi · fj(p)

]
.

Proposition 20 (Sufficiency of conditional probability). Let D be a distribution over X × Y . For any randomized
classifier h : X→∆n there exists another randomized classifier h′ : X→∆n such that CD[h] = CD[h′] and h′ is such
that h′ = f ◦ η, for some f : ∆n→∆n.

Proof. Let h : X→∆n. Define f : ∆n→∆n as follows,

f(p) = EX∼µ[h(X)|η(X) = p] .

We then have for any i, j ∈ [n] that,

CDi,j [h] = E(X,Y )∼D[hj(X) · 1(Y = i)]

= Ep∼νE(X,Y )∼D[hj(X) · 1(Y = i)|η(X) = p]
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= Ep∼ν
[
E(X,Y )∼D[hj(X)|η(X) = p] ·E(X,Y )∼D[1(Y = i)|η(X) = p]

]
= Ep∼ν

[
fj(p) · pi

]
= CDi,j [f ◦ η

]
where the third equality follows because, given η(X), the random variablesX and Y are independent, and the last inequal-
ity follows from Lemma 19.

Lemma 21 (Continuity of the CD mapping). Let D be a distribution over X × Y . Let f1, f2 : ∆n→∆n. Then∣∣∣∣CD[f1 ◦ η]−CD[f2 ◦ η]
∣∣∣∣

1
≤
∫
p∈∆n

||f1(p)− f2(p)||1dν(p) .

Proof. Let f1, f2 : ∆n→∆n

CD[f1 ◦ η]−CD[f2 ◦ η] =

∫
p∈∆n

p(f1(p)− f2(p))>dν(p)

∣∣∣∣CD[f1 ◦ η]−CD[f2 ◦ η]
∣∣∣∣

1
≤

∫
p∈∆n

||p(f1(p)− f2(p))>||1dν(p)

=

∫
p∈∆n

||p||1||f1(p)− f2(p)||1dν(p)

=

∫
p∈∆n

||f1(p)− f2(p)||1dν(p).

Lemma 22 (Volume of a inverse linear map of an interval). Let d > 0 be any integer. Let V ⊆ Rd be compact and
convex. Let f : Rd→R be an affine function such that it is non-constant over V . Let V be a vector valued random variable
taking values uniformly over V . Then, there exists a constant α > 0 such that for all c ∈ R and ε ∈ R+ we have

P(f(V ) ∈ [c, c+ ε]) ≤ αε .

Proof. Let us assume for now that affine hull of V is the entire space Rd.

For any integer i and set A, let voli(A) denote the i-th dimensional volume of the set A. Note that voli(A) is undefined if
the affine-hull dimension of A is greater than i and is equal to zero if the affine-hull dimension of A is lesser than i.

For any r > 0 and any integer i > 0 let Bi(r) ⊆ Ri denote the set Bi(r) = {x ∈ Ri : ||x||2 ≤ r}. Also let R be the
smallest value such that V ⊆ Bd(R).

Let the affine function f be such that for all x ∈ Rd, the value f(x) = g>x + u. By the assumption of non-constancy of
f on V we have that g 6= 0.

We now have that

P(f(V ) ∈ [c, c+ ε]) =
vold

(
{v ∈ V : c− u ≤ g>v ≤ c− u+ ε}

)
vold(V)

≤
vold

(
{v ∈ Bd(R) : c− u ≤ g>v ≤ c− u+ ε}

)
vold(V)

≤ ε ·
vold−1

(
Bd−1(R)

)
vold(V)||g||2

.

The last inequality follows from the observation that d-volume of a strip of a d dimensional sphere of radius r is at most
the d − 1 volume of a d − 1 dimensional sphere of radius r times the width of the strip, and the width of the strip under
consideration here is simply ε

||g||2
.

Finally, if the affine hull of V is not the entire space Rd, one can simply consider the affine-hull of V to be the entire (lesser
dimensional) space and all the above arguments hold with some affine transformations and a smaller d.
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Lemma 23 (Fraction of instances with the best and second best prediction being similar in performance is small).
Let L ∈ [0, 1]n×n be such that no two columns are identical. Let the distribution D over X × Y be such that the measure
over conditional probabilities ν, is absolutely continuous w.r.t. the base measure λ. Let c ≥ 0. Let Ac ⊆ ∆n be the set

Ac = {p ∈ ∆n : (p>L)(2) − (p>L)(1) ≤ c}

Let r : R+→R+ be the function defined as
r(c) = ν(Ac) .

Then

(a) r is a monotonically increasing function.

(b) There exists a C > 0 such that r is a continuous function over [0, C].

(c) r(0) = 0.

Proof. Part (a):

The fact that r is a monotonically increasing function is immediately obvious from the observation that Aa ⊆ Ab for any
a < b.

Part (b):

Let
C =

1

2
min{d ∈ R : `y − `y′ = de for some y, y′ ∈ [n], y 6= y′} ,

where e is the all ones vector. If there exists no y, y′ such that `y−`y′ is a scalar multiple of e, then we simply set C =∞.
Note that by our assumption on unequal columns on L, we always have C > 0.

For any c > 0 and y, y′ ∈ [n] with y 6= y′, define the set Ay,y′c as

Ay,y
′

c = {p ∈ ∆n : p>`y − p>`y′ ≤ c} .

For any c, ε > 0, it can be clearly seen that

ν(Ac+ε)− ν(Ac) = ν(Ac+ε \ Ac) ,

Ac+ε \ Ac ⊆
⋃

y,y′∈[n],y 6=y′

(
Ay,y

′

c+ε \ Ay,y
′

c

)
,

ν(Ac+ε \ Ac) ≤
∑

y,y′∈[n],y 6=y′
ν
(
Ay,y

′

c+ε \ Ay,y
′

c

)
.

Hence, our proof for continuity of r would be complete, if we show that ν
(
Ay,y

′

c+ε \ Ay,y
′

c

)
goes to zero as ε goes to zero

for all y 6= y′ and c ∈ [0, C].

Let c ∈ [0, C] and y, y′ ∈ [n] with y 6= y′

Ay,y
′

c+ε \ Ay,y
′

c = {p ∈ ∆n : c < p>(`y − `y′) ≤ c+ ε} .

If `y − `y′ = de for some d, we have that p>(`y − `y′) = d and d > C by definition of C. Hence for small enough ε the
set Ay,y

′

c+ε \ Ay,y
′

c is empty.

If `y − `y′ is not a scalar multiple of e, then p>(`y − `y′) is a non-constant linear function of p over ∆n. From Lemma

22, λ
(
Ay,y

′

c+ε \Ay,y
′

c

)
goes to zero as ε goes to zero. And by the absolute continuity of ν w.r.t. λ, we have ν

(
Ay,y

′

c+ε \Ay,y
′

c

)
goes to zero as ε goes to zero.

As the above arguments hold for any c ∈ [0, C] and y, y′ ∈ [n] with y 6= y′, the proof of part (b) is complete.
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Part (c):

We have,

A0 ⊆
⋃

y,y′∈[n],y 6=y′

(
Ay,y

′

0 ∩ Ay
′,y

0

)
.

To show r(0) = 0, we show λ
(
Ay,y

′

0 ∩ Ay
′,y

0

)
= 0 for all y 6= y′. Let y, y′ ∈ [n] with y 6= y′, then(

Ay,y
′

0 ∩ Ay
′,y

0

)
= {p ∈ ∆n : p>(`y − `y′) = 0} .

If `y − `y′ = de for some d 6= 0, the above set is clearly empty. If `y − `y′ is not a scalar multiple of e, then p>(`y − `y′)
is a non-constant linear function of p over ∆n, and hence by Lemma 22, we have that λ

(
Ay,y

′

0 ∩ Ay
′,y

0

)
= 0. By the

absolute continuity of ν w.r.t. λ we have that ν
(
Ay,y

′

0 ∩ Ay
′,y

0

)
= 0.

As the above arguments hold for any y, y′ ∈ [n] with y 6= y′, the proof of part (c) is complete.

Lemma 24 (The uniqueness of ψL-optimal classifier). Let the distribution D over X ×Y be such that the measure over
conditional probabilities ν, is absolutely continuous w.r.t. the base measure λ. Let L ∈ Rn×n be such that no two columns
are identical. Then, all ψL optimal classifiers have the same confusion matrix. i.e. the minimizer over CD of 〈L,C〉 is
unique.

Proof. If x ∈ X is such that argminy∈[n] η(x)>`y is a singleton, then any ψL-optimal classifier h∗ is such that

h∗(x) = argminy∈[n] η(x)>`y

We just show that the set of instances in X , such that argminy∈[n] η(x)>`y is not a singleton, has measure zero. For any
v ∈ Rn, let (v)(i) be the ith element when the components of v are arranged in ascending order.

µ
(
{x ∈ X : | argminy∈[n] η(x)>`y| > 1}

)
= µ

(
{x ∈ X : (η(x)>L)(1) = (η(x)>L)(2)}

)
= ν

(
{p ∈ ∆n : (p>L)(1) = (p>L)(2)}

)
Thus, by Lemma 23 (part c), we have that set of instances in X such that argminy∈[n] η(x)>`y is not a singleton, has
measure zero. Thus any pair of ψL-optimal classifiers are same µ almost everywhere, and hence all the ψL-optimal
classifiers have the same confusion matrix.

Next we give the master Lemma which uses every result in this section, and will actually be the only tool in the proofs of
Lemma 12 and Theorem 13.

Lemma 25 (Master Lemma). Let the distribution D over X ×Y be such that the measure over conditional probabilities
ν, be absolutely continuous w.r.t. the base measure λ. Let L ∈ [0, 1]n×n be such that no two columns are identical. Then,

argminC∈CD 〈L,C〉 = argminC∈CD 〈L,C〉.

Moreover, the above set is a singleton.

Proof. The first part of the proof where one shows argminC∈CD 〈L,C〉 is a singleton is exactly what is given by Lemma
24. Let

C∗ = CD[h∗] = argminC∈CD 〈L,C〉 .

The classifier h∗ : X→∆n is such that CD[h∗] = C∗, and is fixed for convenience as the following classifier,

h∗(x) = rand(argmin∗y∈[n] η(x)>`y) .
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Also let f∗ : ∆n→∆n be such that, h∗ = f∗ ◦ η, i.e.

f∗(p) = rand(argmin∗y∈[n] p
>`y) .

In the rest of the proof we simply show that C∗ is the unique minimizer of 〈L,C〉 over CD as well. To do so, we first
assume that C′ ∈ argminC∈CD 〈L,C〉 and C′ 6= C∗. We then go on to show a contradiction, the brief details of which
are given below:

1. As C′ 6= C∗, we have ||C∗ −C′||1 = ξ > 0.

2. As C′ ∈ CD, there exists a sequence of classifiers h1, h2, . . . , such that their confusion matrices converge to C′.

3. The confusion matrices of the classifiers h1, h2, . . . , are bounded away from C∗ as ξ > 0.

4. Due to the continuity of the CD mapping (Lemma 21), the classifiers h1, h2, . . . are also bounded away from h∗ – i.e.
they must predict differently from h∗ on a significant fraction of the instances.

5. Due to Lemma 23, we have that for most instances the second best prediction (in terms of loss L) is significantly
worse than the best prediction. The classifiers h1, h2, . . . all predict differently from h∗ (which always predicts the
best label for any given instance) for a large fraction of the instances, hence they must predict a significantly worse
label for a large fraction of instances.

6. From the above reasoning, the classifiers h1, h2, . . . , all perform worse by a constant additive factor than h∗, on the
ψL performance measure. But, as the the confusion matrices of these classifiers converge to C′, the ψL performance
of these classifiers must approach the optimal. Thus providing a contradiction.

The full details of the above sketch is given below.

Let
||C′ −C∗||1 = ξ > 0 .

As C′ ∈ CD, we have that for all ε > 0, there exists Cε ∈ CD, such that ||Cε − C′||1 ≤ ε. By triangle inequality, this
implies that

||Cε −C∗||1 ≥ ξ − ε , (3)

Let fε : ∆n→∆n be s.t. Cε = CD[fε ◦ η]. Now we describe the set of conditional probabilities p ∈ ∆n for which fε(p)
differs significantly from f∗(p). Denote this ‘bad’ set as B. Let

B = {p ∈ ∆n : ||f∗(p)− fε(p)||1 ≥
ξ

4
} .

We now show that this set is ‘large’. Applying Eq. 3 and Lemma 21 we have

ξ − ε ≤
∣∣∣∣CD[f∗ ◦ η]−CD[fε ◦ η]

∣∣∣∣
1

≤
∫
p∈∆n

||f∗(p)− fε(p)||1dν(p)

≤
∫
p∈B

2dν(p) +

∫
p/∈B

ξ

4
dν(p)

= 2ν(B) +
ξ

4
(1− ν(B))

≤ 2ν(B) +
ξ

4

ν(B) ≥ 3ξ

8
− ε

2
(4)
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Now we consider the set of conditional probabilities p ∈ ∆n, such that the second best and best predictions (in terms of
L) are ‘close’ in performance. We show that this set is ‘small’.

For any c > 0, define Ac ⊆ ∆n as

Ac = {p ∈ ∆n : (p>L)(2) − (p>L)(1) ≤ c} .

From Lemma 23 we have that ν(Ac) is a continuous function of c close to 0 and ν(A0) = 0. Let c > 0 be such that

ν(Ac) ≤
ξ

16
. (5)

From Eq. 4 and 5, we have

ν(B \ Ac) ≥
5ξ

16
− ε

2

Any p ∈ B \ Ac is such that fε(p) is different from f∗(p), and the second best prediction is significantly worse than the
best prediction, i.e.

(p>L)(2) − (p>L)(1) > c and ||f∗(p)− fε(p)||1 ≥
ξ

4
.

For any p ∈ ∆n, we have f∗(p) ∈ ∆n, has a 1 at the index argmin∗y∈[n] p
>`y and zero elsewhere. For any p ∈ B \ Ac,

we have ||f∗(p) − fε(p)||1 ≥ ξ
4 , and hence the value of fε(p) corresponding to the index argmin∗y∈[n] p

>`y , is at most
(1− ξ

8 ). In particular, we have

p>Lfε(p) ≥
(

1− ξ

8

)
(p>L)(1) +

(
ξ

8

)
(p>L)(2) . (6)

By using Lemma 19 and Eq. 6 we have,

〈L,Cε〉 − 〈L,C∗〉 =

∫
p∈∆n

p>L(fε(p)− f∗(p))dν(p)

=

∫
p∈B\Ac

p>L(fε(p)− f∗(p))dν(p) +

∫
p∈∆n\(B\Ac)

p>L(fε(p)− f∗(p))dν(p)

≥
∫
p∈B\Ac

p>L(fε(p)− f∗(p))dν(p)

≥
∫
p∈B\Ac

((
1− ξ

8

)
(p>L)(1) +

(
ξ

8

)
(p>L)(2) − (p>L)(1)

)
dν(p)

=

∫
p∈B\Ac

ξ

8

(
(p>L)(2) − (p>L)(1)

)
dν(p)

≥ ξc

8

(
5ξ

16
− ε

2

)

If ε ≤ ξ
2 , we have

〈L,Cε〉 − 〈L,C∗〉 ≥
ξ2c

128
. (7)

The above holds for any ε ∈ (0, ξ2 ], and both ξ and c do not depend on ε.

However, we have C′ ∈ argminC∈CD 〈L,C〉, and ||Cε −C′||1 ≤ ε. Hence,

〈L,Cε〉 = 〈L,C′〉+ 〈L,Cε −C′〉
≤ 〈L,C′〉+ ||L||∞||Cε −C′||1
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≤ 〈L,C′〉+ ε

≤ min
C∈CD

〈L,C〉+ ε

= 〈L,C∗〉+ ε (8)

It can be clearly seen that, for small enough ε, Eqs. 7 and 8 contradict each other. And thus we have that C′ = C∗.

B.5. Proof of Lemma 12

Lemma (Existence of Bayes optimal classifier for monotonic ψ). Let D be such that the probability measure associated
with the random vector η(X) = (η1(X), . . . , ηn(X))> is absolutely continuous w.r.t. the base probability measure as-
sociated with the uniform distribution over ∆n, and let ψ be a performance measure that is differentiable and bounded
over CD, and is monotonically increasing in Cii for each i and non-increasing in Cij for all i, j. Then ∃h∗ : X→∆n s.t.
PψD[h∗] = Pψ,∗D .

Proof. Let C∗ = argmaxC∈CD ψ(C). Such a C∗ always exists by compactness of CD and continuity of ψ. We will
show that this C∗ is also in CD, thus proving the existence of h∗ : X→∆n which is such that C∗ = CD[h∗] and hence
PψD[h∗] = Pψ,∗D .

By first order optimality, and convexity of CD, we have that for all C ∈ CD

〈∇ψ(C∗),C∗〉 ≥ 〈∇ψ(C∗),C〉 .

Let L∗ be the scaled and shifted version of −∇ψ(C∗) with entries in [0, 1], then we have that

C∗ ∈ argminC∈CD 〈L
∗,C〉 .

Due to the monotonicity condition on ψ the diagonal elements of its gradient ∇ψ(C∗) are positive, and the off-diagonal
elements are non-positive, and hence no two columns of L∗ are identical. Thus by Lemma 25, we have that C∗ ∈ CD.

B.6. Proof of Theorem 13

Theorem (Form of Bayes optimal classifier for monotonic ψ). Let D, ψ satisfy the conditions of Lemma 12. Let h∗ :
X→∆n be a ψ-optimal classifier and let C∗ = CD[h∗]. Let L̃∗=−∇ψ(C∗), and let L∗ ∈ [0, 1]n×n be obtained by
scaling and shifting L̃∗ so its entries lie in [0, 1]. Then any classifier that is ψL∗ -optimal is also ψ-optimal.

Proof. Clearly
ψ(C∗) = max

C∈CD
ψ(C) .

Hence by the differentiability of ψ, first order conditions for optimality and convexity of CD we have ∀C ∈ CD,

〈∇ψ(C∗),C∗〉 ≥ 〈∇ψ(C∗),C〉 .

By definition of L∗, this implies that ∀C ∈ CD,

〈L∗,C∗〉 ≤ 〈L∗,C〉 .

Thus, we have that h∗ is a ψL∗ -optimal classifier.

Due to the monotonicity condition on ψ the diagonal elements of its gradient ∇ψ(C∗) are positive, and the off-diagonal
elements are non-positive, and hence no two columns of L∗ are identical. By Lemma 24 (or Lemma 25), we have that
all ψL∗ -optimal classifiers have the same confusion matrix, which is equal to CD[h∗] = C∗. And thus all ψL∗ optimal
classifiers are also ψ-optimal.
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C. Supplementary Material for Section 5 (Consistency)
C.1. Proof of Lemma 14

Lemma (L-regret of multiclass plug-in classifiers). For a fixed L ∈ [0, 1]n×n and class probability estimation model
η̂ : X→∆n, let ĥ : X→[n] be a classifier ĥ(x) = argmin∗j∈[n]

∑n
i=1 η̂i(x)Lij . Then

PL,∗
D − PL

D[ĥ] ≤ EX

[∥∥η̂(X) − η(X)
∥∥

1

]
.

Proof. Let h∗ : X→∆n be such that
h∗(x) = argmin∗y∈[n] `

>
y η(x) .

By Proposition 6, we have that

h∗ ∈ argmaxh:X→∆n
PL
D[h] .

We then have

PL,∗
D − PL

D[ĥ] = 〈L,CD[ĥ]〉 − 〈L,CD[h∗]〉
= EX

[
η(X)>`ĥ(X)

]
−EX

[
η(X)>`h∗(X)

]
= EX

[
η̂(X)>`ĥ(X)

]
+ EX

[
(η(X)− η̂(X)>`ĥ(X)

]
−EX

[
η(X)>`h∗(X)

]
≤ EX

[
η̂(X)>`h∗(X)

]
+ EX

[
(η(X)− η̂(X)>`ĥ(X)

]
−EX

[
η(X)>`h∗(X)

]
= EX

[
(η(X)− η̂(X))>(`ĥ(X) − `h∗(X))

]
≤ EX

[∥∥η(X)− η̂(X)
∥∥

1
·
∥∥`ĥ(X) − `h∗(X)

∥∥
∞

]
≤ EX

[∥∥η(X)− η̂(X)
∥∥

1

]
,

as desired.

C.2. Proof of Lemma 15

Lemma (Uniform convergence of confusion matrices). For q : X→∆n, let

Hq = {h:X→[n], h(x) = argmin∗j∈[n]

n∑
i=1

qi(x)Lij |L ∈ [0, 1]n×n} .

Let S ∈ (X × [n])m be a sample drawn i.i.d. from Dm. For any δ ∈ (0, 1], w.p. at least 1− δ (over draw of S from Dm),

sup
h∈Hq

∥∥CD[h] − ĈS [h]
∥∥
∞ ≤ C

√
n2 log(n) log(m) + log(n2/δ)

m
,

where C > 0 is a distribution-independent constant.

Proof. For any a, b ∈ [n] we have,

sup
h∈Hq

∣∣∣ĈSa,b[h]− CDa,b[h]
∣∣∣ = sup

h∈Hq

∣∣∣∣∣ 1

m

m∑
i=1

(1(yi = a, h(xi) = b)−E[1(Y = a, h(X) = b)])

∣∣∣∣∣
= sup

h∈Hbq

∣∣∣∣∣ 1

m

m∑
i=1

(1(yi = a, h(xi) = 1)−E[1(Y = a, h(X) = 1)])

∣∣∣∣∣ ,
where for a fixed b ∈ [n], Hbq = {h : X→{0, 1} : ∃L ∈ [0, 1]n×n,∀x ∈ X , h(x) = 1(b = argmin∗y∈[n] `

>
y q(x))}. The

set Hbq can be seen as hypothesis class whose concepts are the intersection of n halfspaces in Rn (corresponding to q(x))
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through the origin. Hence we have from Lemma 3.2.3 of Blumer et al. (1989) that the VC-dimension of Hbq is at most
2n2 log(3n). From standard uniform convergence arguments we have that for each a, b ∈ [n], the following holds with at
least probability 1− δ,

sup
h∈Hq

∣∣∣ĈSa,b[h]− CDa,b[h]
∣∣∣ ≤ C

√
n2 log(n) log(m) + log( 1

δ )

m

where C > 0 is some constant. Applying union bound over all a, b ∈ [n] we have that the following holds with probability
at least 1− δ

sup
h∈Hq

∣∣∣∣∣∣ĈS [h]−CD[h]
∣∣∣∣∣∣
∞
≤ C

√
n2 log(n) log(m) + log(n

2

δ )

m
.

C.3. Proof of Theorem 16

Theorem (ψ-regret of Frank-Wolfe method based algorithm). Let ψ : [0, 1]n×n→R+ be concave over CD, and L-Lipschitz
and β-smooth w.r.t. the `1 norm. Let S = (S1, S2) ∈ (X × [n])m be a training sample drawn i.i.d. from D. Further,
let η̂ : X→∆n be the CPE model learned from S1 in Algorithm 1 and hFW

S : X→∆n be the classifier obtained after κm
iterations. Then for any δ ∈ (0, 1], with probability at least 1− δ (over draw of S from Dm),

Pψ,∗D − PψD[hFW
S ] ≤ 4LEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 4
√

2βn2C

√
n2 log(n) log(m) + log(n2/δ)

m
+

8β

κm+ 2
,

where C > 0 is a distribution-independent constant.

We first prove an important lemma where we bound the approximation error of the linear optimization oracle used in the
algorithm using Lemma 14 and 15. This result coupled with the standard convergence analysis for the Frank-Wolfe method
(Jaggi, 2013) will then allow us to prove the above theorem.

Lemma 26. Let ψ : [0, 1]n×n→R+ be concave over CD, and L-Lipschitz and β-smooth w.r.t. the `1 norm. Let classifiers
ĝ1, . . . , ĝT , and h0, h1, . . . , hT be as defined in Algorithm 1. Then for any δ ∈ (0, 1], with probability at least 1− δ (over
draw of S from Dm), we have for all 1 ≤ t ≤ T

〈∇ψ(CD[ht−1]),CD[ĝt]〉 ≥ max
g:X :→∆n

〈∇ψ(CD[ht−1]),CD[g]〉 − εS

where

εS = 2LEX

[∥∥η(X)− η̂(X)
∥∥

1

]
+ 2
√

2Cβn2

√
n2 log(n) log(m) + log(n

2

δ )

m
.

Proof. For any 1 ≤ t ≤ T , let gt,∗ ∈ argmaxg:X→∆n
〈∇ψ(CD[ht−1]),CD[g]〉. We then have

max
g:X :→∆n

〈∇ψ(CD[ht−1]),CD[g]〉 − 〈∇ψ(CD[ht−1]),CD[ĝt]〉

= 〈∇ψ(CD[ht−1]),CD[gt,∗]〉 − 〈∇ψ(CD[ht−1]),CD[ĝt]〉
= 〈∇ψ(CD[ht−1]),CD[gt,∗]〉 − 〈∇ψ(ĈS2 [ht−1]),CD[gt,∗]〉︸ ︷︷ ︸

term1

+ 〈∇ψ(ĈS2 [ht−1]),CD[gt,∗]〉 − 〈∇ψ(ĈS2 [ht−1]),CD[ĝt]〉︸ ︷︷ ︸
term2

+ 〈∇ψ(ĈS2 [ht−1]),CD[ĝt]〉 − 〈∇ψ(CD[ht−1]),CD[ĝt]〉︸ ︷︷ ︸
term3

.
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We next bound each of these terms. We start with term2. For any 1 ≤ t ≤ T , let L̂t be as defined in Algorithm 1. Since
L̂t is a scaled and translated version of the gradient ∇ψ(ĈS2 [ht−1]), we have ∇ψ(ĈS2 [ht−1]) = ct − atL̂t, for some
constant ct ∈ R and at ∈ [0, 2L]. Thus for all 1 ≤ t ≤ T ,

〈∇ψ(ĈS2 [ht−1]),CD[gt,∗]〉 − 〈∇ψ(ĈS2 [ht−1]),CD[ĝt]〉
= at · (〈L̂t,CD[ĝt]〉 − 〈L̂t,CD[gt,∗]〉)

= at · (P L̂t

D [gt,∗]− P L̂t

D [ĝt])

≤ at · (P L̂t,∗
D − P L̂t

D [ĝt])

≤ 2L · (P L̂t,∗
D − P L̂t

D [ĝt])

≤ 2L ·EX

[∥∥η(X)− η̂(X)
∥∥

1

]
,

where the third step uses the definition of P L̂t,∗
D and the last step follows from Lemma 14.

Next, for term1, we have by an application of Holder’s inequality

〈∇ψ(CD[ht−1]),CD[gt,∗]〉 − 〈∇ψ(ĈS2 [ht−1]),CD[gt,∗]〉
≤

∥∥∇ψ(ĈS2 [ht−1])−∇ψ(CD[ht−1])
∥∥
∞‖C

D[gt,∗]‖1
=

∥∥∇ψ(ĈS2 [ht−1])−∇ψ(CD[ht−1])
∥∥
∞(1)

≤ β
∥∥ĈS2 [ht−1]−CD[ht−1]

∥∥
1

≤ βn2
∥∥ĈS2 [ht−1]−CD[ht−1]

∥∥
∞

≤ βn2 max
i∈[t−1]

∥∥ĈS2 [ĝi]−CD[ĝi]
∥∥
∞

≤ βn2 sup
h∈Hη̂

∥∥ĈS2 [h]−CD[h]
∥∥
∞,

where the third step follows from β-smoothness of ψ. One can similarly bound term3. We thus have for all 1 ≤ t ≤ T ,

max
g:X→∆n

〈∇ψ(CD[ht−1]),CD[g]〉 − 〈∇ψ(CD[ht−1]),CD[ĝt]〉

≤ 2L ·EX

[∥∥η(X)− η̂(X)
∥∥

1

]
+ 2βn2 sup

h∈Hη̂

∥∥ĈS2 [h]−CD[h]
∥∥
∞ .

Applying Lemma 15 with |S2| = dm/2e examples, we have with probability 1− δ (over random draw of S2 from D), for
all 1 ≤ t ≤ T ,

max
g:X→∆n

〈∇ψ(CD[ht−1]),CD[g]〉 − 〈∇ψ(CD[ht−1]),CD[ĝt]〉

≤ 2LEX

[∥∥η(X)− η̂(X)
∥∥

1

]
+ 2
√

2Cβn2

√
n2 log(n) log(m) + log(n

2

δ )

m
.

We are now ready to prove Theorem 16.

Proof of Theorem 16. Our proof shall make use of Lemma 26 and the standard convergence result for the Frank-Wolfe
algorithm for maximizing a concave function over a convex set (Jaggi, 2013). We will find it useful to first define the
following quantity, referred to as the curvature constant in (Jaggi, 2013).

Cψ = sup
C1,C2∈CD,γ∈[0,1]

2

γ2

(
ψ
(
C1 + γ(C2 −C1)

)
− ψ

(
C1

)
− γ
〈
C2 −C1,∇ψ(C1)

〉)
.

Also, define two positive scalars εS and δapx required in the analysis of (Jaggi, 2013):

εS = 2LEX

[∥∥η(X)− η̂(X)
∥∥

1

]
+ 2
√

2Cβn2

√
n2 log(n) log(m) + log(n

2

δ )

m



Consistent Multiclass Algorithms for Complex Performance Measures

δapx =
(T + 1)εS

Cψ
,

where δ ∈ (0, 1] is as in the theorem statement. Further, let the classifiers ĝ1, . . . , ĝT , and h0, h1, . . . , hT be as defined in
Algorithm 1. We then have from Lemma 26 that the following holds with probability at least 1− δ, for all 1 ≤ t ≤ T ,〈

∇ψ
(
CD

[
ht−1

])
,CD

[
ĝt
]〉
≥ max

g:X :→∆n

〈
∇ψ

(
CD

[
ht−1

])
,CD [g]

〉
− εS

= max
C∈CD

〈
∇ψ

(
CD

[
ht−1

])
,C
〉
− εS

= max
C∈CD

〈
∇ψ

(
CD

[
ht−1

])
,C
〉
− εS

= max
C∈CD

〈
∇ψ

(
CD

[
ht−1

])
,C
〉
− 1

2
δapx

2

T + 1
Cψ

≥ max
C∈CD

〈∇ψ
(
CD

[
ht−1

])
,C〉 − 1

2
δapx

2

t+ 1
Cψ . (9)

Also observe that for the two sequences of iterates given by the confusion matrices of the above classifiers,

CD[ht] =

(
1− 2

t+ 1

)
CD[ht−1] +

2

t+ 1
CD[ĝt], . (10)

for all 1 ≤ t ≤ T . Based on Eq. (9) and Eq. (10), one can now apply the result of (Jaggi, 2013).

In particular, the sequence of iterates CD[h0],CD[h1], . . . ,CD[hT ] can be considered as the sequence of iterates arising
from running the Frank-Wolfe optimization method to maximize ψ over CD with a linear optimization oracle that is
1
2δapx

2
t+1Cψ accurate at iteration t. Since ψ is a concave function over the convex constraint set CD, one has from Theorem

1 in (Jaggi, 2013) that the following convergence guarantee holds with probability at least 1− δ:

PψD[hFW
S ] = ψ(CD[hFW

S ])

= ψ(CD[hT ])

≥ max
C∈CD

ψ(C)− 2Cψ
T + 2

(1 + δapx)

= max
C∈CD

ψ(C)− 2Cψ
T + 2

− 2εS(T + 1)

T + 2

≥ max
C∈CD

ψ(C)− 2Cψ
T + 2

− 2εS (11)

We can further upper bound Cψ in the above inequality in terms of the the smoothness parameter of ψ:

Cψ = sup
C1,C2∈CD,γ∈[0,1]

2

γ2

(
ψ
(
C1 + γ(C2 −C1)

)
− ψ

(
C1

)
− γ
〈
C2 −C1,∇ψ(C1)

〉)
≤ sup

C1,C2∈CD,γ∈[0,1]

2

γ2

(β
2
γ2||C1 −C2||21

)
= 4β ,

where the second step follows from the β-smoothness of ψ. Substituting back in Eq. (11), we finally have with probability
at least 1− δ,

PψD[hFW
S ] ≥ max

C∈CD
ψ(C)− 8β

T + 2
− 2εS

= Pψ,∗D − 4LEX

[∥∥η(X)− η̂(X)
∥∥

1

]
− 4
√

2Cβn2

√
n2 log(n) log(m) + log(n

2

δ )

m
− 8β

T + 2
,

which follows from the definition of εS . Setting T = κm completes the proof.
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C.4. Proof of Theorem 17

Theorem. Let ψ : [0, 1]n×n→R+ be such that ψ(C) = 〈A,C〉
〈B,C〉 where A,B ∈ Rn×n+ , supC∈CD ψ(C) ≤ 1, and

minC∈CD 〈B,C〉 ≥ b, for some b > 0. Let S = (S1, S2) ∈ (X × [n])m be a training sample drawn i.i.d. from D.
Let η̂ : X→∆n be the CPE model learned from S1 in Algorithm 2 and hBS

S : X→[n] be the classifier obtained after κm
iterations. Then for any δ ∈ (0, 1], with probability at least 1− δ (over draw of S from Dm),

P ,∗D − PD[hBS
S ] ≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 2
√

2Cτ

√
n2 log(n) log(m) + log(n2/δ)

m
+ 2−κm,

where τ = 1
b (‖A‖1 + ‖B‖1) and C > 0 is a distribution-independent constant.

We will find it useful to state the following lemmas:

Lemma 27 (Invariant in Algorithm 2). Let ψ be as defined in Theorem 17. Let Hη̂ = {h : X→[n], h(x) =
argmin∗j∈[n]

∑n
i=1 η̂i(x)Lij |L ∈ [0, 1]n×n}. Then the following invariant is true at the end of each iteration 0 ≤ t ≤ T

of Algorithm 2:
αt − τ ε̄ < ψ(CD[ht]) ≤ sup

C∈CD
ψ(C) ≤ βt + τ ε̄,

where τ = 1
b (‖A‖1 + ‖B‖1) and ε̄ = EX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ suph∈Hη̂

‖CD[h] − ĈS2 [h]
∥∥
∞.

Proof. We first have from Lemma 14, the following guarantee for the linear minimization step at each iteration t of
Algorithm 2:

〈L̂t, CD[ĝt]〉 ≤ min
C∈CD

〈L̂t, C〉 + EX

[∥∥η̂(X) − η(X)
∥∥

1

]
= min

C∈CD
〈L̂t, C〉 + ε (say). (12)

Further, let us denote ε′ = suph∈Hη
‖CD[h] − ĈS2 [h]

∥∥
∞. Notice that ε̄ = ε+ ε′.

We shall now prove this lemma by mathematical induction on the iteration number t. For t = 0, the invariant holds trivially
as 0 ≤ ψ(CD[h0]) ≤ 1. Assume the invariant holds at the end of iteration t − 1 ∈ {0, . . . , T − 1}; we shall prove that

the invariant holds at the end of iteration t. In particular, we consider two cases at iteration t. In the first case, ψ(Γ̂
t
) ≥ γt,

leading to the assignments αt = γt, βt = βt−1, and ht = ĝt. We have from the definition of ε′

〈A− γtB, CD[ĝt])〉 ≥ 〈A− γtB, Γ̂
t
〉 − ‖A− γtB‖1ε′

= 〈A, Γ̂
t
〉 − γt〈B, Γ̂

t
〉 − ‖A− γtB‖1ε′

= 〈B, Γ̂
t
〉
(
ψ(Γ̂

t
) − γt

)
− ‖A− γtB‖1ε′

≥ 0 − ‖A− γtB‖1ε′

> −‖A− γtB‖1(2ε+ ε′)

≥ −(‖A‖1 + ‖B‖1)(2ε+ ε′),

where the third step follows from our case assumption that ψ(Γ̂
t
) ≥ γt and 〈B, Γ̂

t
〉 > 0, the fifth step follows from ε > 0,

and the last step follows from triangle inequality and γt ≤ supC∈CD ψ(C) ≤ 1. The above inequality further gives us

〈A, CD[ĝt]〉
〈B, CD[ĝt]〉

> γt − ‖A‖1 + ‖B‖1
〈B,CD[ĝt]〉

(2ε+ ε′)

≥ γt − 1

b
(‖A‖1 + ‖B‖1)(2ε+ ε′)

= γt − τ(2ε+ ε′)

= γt − τ ε̄

= αt − τ ε̄,
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where the second step follows from min
C∈CD

〈B, C〉 > b and the last step follows from the assignment αt = γt. In other

words,

ψ
(
CD[ht]

)
= ψ(CD[ĝt]) =

〈A, CD[ĝt]〉
〈B, CD[ĝt]〉

> αt − τ ε̄.

Moreover, by our assumption that the invariant holds at the end of iteration t− 1, we have

βt + τ ε̄ = βt−1 + τ ε̄ ≥ max
C∈CD

ψ(C) ≥ ψ(CD[ht]) > αt − τ ε̄.

Thus under the first case, the invariant holds at the end of iteration t.

In the second case, ψ(Γ̂
t
) < γt at iteration t, which would lead to the assignments αt = αt−1, βt = γt, and ht = ht−1.

Since the invariant is assumed to hold at the end of iteration t− 1, we have

αt − τ ε̄ = αt−1 − τ ε̄ ≤ ψ(CD[ht−1]) = ψ(CD[ht]). (13)

Next, recall that L̂t ∈ [0, 1]n×n is a scaled and translated version of −(A − γtB); clearly, there exists ct ∈ R and
0 < at ≤ 2‖A− γtB‖∞ such that A− γtB = ct − atLt. Then for C∗ = argmax

C∈CD
〈A− γtB, C〉, we have

〈A− γtB, C∗〉 = ct − at〈L̂t, C∗〉
≤ ct − at〈L̂t,CD[ht]〉 + atε

≤ ct − at〈L̂t,CD[ht]〉 + 2‖A− γtB‖∞ε
= 〈A− γtB, CD[ht]〉 + 2‖A− γtB‖∞ε

≤ 〈A− γtB, Γ̂
t
〉 + ‖A− γtB‖1ε′ + 2‖A− γtB‖∞ε

= 〈A, Γ̂
t
〉 − γt〈B, Γ̂

t
〉 + ‖A− γtB‖1ε′ + 2‖A− γtB‖∞ε

= 〈B, Γ̂
t
〉(ψ(Γ̂

t
)− γt) + ‖A− γtB‖1ε′ + 2‖A− γtB‖∞ε

≤ 〈B, Γ̂
t
〉(0) + ‖A− γtB‖1ε′ + 2‖A− γtB‖∞ε

≤ ‖A− γtB‖1(2ε+ ε′)

≤ (‖A‖1 + ‖B‖1)(2ε+ ε′),

where the second step follows from Eq. (12), the third step uses at ≤ ‖A−γtB‖∞, the fifth step follows from the definition

of ε′ and Holder’s inequality, the seventh step follows from our case assumption that ψ(Γ̂
t
) ≤ γt and 〈B, Γ̂

t
〉 > 0, and

the last step follows from triangle inequality and γt ≤ sup
C∈CD

ψ(C) ≤ 1. In particular, we have for all C ∈ CD,

〈A− γtB, C〉 ≤ (‖A‖1 + ‖B‖1)(2ε+ ε′),

or
〈A, C〉
〈B, C〉

≤ γt +
‖A‖1 + ‖B‖1
〈B, C〉

(2ε+ ε′).

Since min
C∈CD

〈B, C〉 > b, we have from the above, for all C ∈ CD,

ψ(C) ≤ γt +
1

b
(‖A‖1 + ‖B‖1)(2ε+ ε′) = γt + τ ε̄ = βt + τ ε̄.

In other words,
sup

C∈CD
ψ(C) ≤ βt + τ ε̄.

By combining the above with Eq. (13), we can see that the invariant holds in iteration t under this case as well. This
completes the proof of the lemma.
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Lemma 28 (Multiplicative Progress in Each Iteration of Algorithm 2). Let ψ be as defined in Theorem 17. Then the
following is true in each iteration 1 ≤ t ≤ T of Algorithm 2:

βt − αt =
1

2

(
βt−1 − αt−1

)
.

Proof. We consider two cases in each iteration of Algorithm 2. If in an iteration t ∈ {1, . . . , T}, ψ(Γ̂
t
) ≥ γt, leading to

the assignment αt = γt, then

βt − αt = βt−1 − γt

= βt−1 − αt−1 + βt−1

2

=
1

2

(
βt−1 − αt−1

)
.

On the other hand, if ψ(Γ̂
t
) < γt, leading to the assignment βt = γt, then

βt − αt = γt − αt−1

=
αt−1 + βt−1

2
− αt−1

=
1

2
(βt−1 − αt−1).

Thus in both cases, the statement of the lemma is seen to hold.

We now prove Theorem 17.

Proof of Theorem 17. For the classifier hBS
S = hT output by Algorithm 2 after T iterations, we have from Lemma 27

P ,∗D − PD[hBS
S ] = sup

C∈CD
ψ(C) − ψ

(
CD[hT ]

)
< (βt + τ ε̄) − (αt − τ ε̄)

= βt − αt + 2τ ε̄

≤ 2−T
(
β0 − α0

)
+ 2τ ε̄

= 2−T
(
1− 0

)
+ 2τ ε̄

= 2−T + 2τ ε̄,

where ε̄ is as defined in Lemma 27; the fifth step above follows from Lemma 28. Setting T = κm thus gives us

P ,∗D − PD[hBS
S ] ≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 2τ sup

h∈Hη

‖CD[h] − ĈS2 [h]
∥∥
∞ + 2−κm.

By an application Lemma 15 to the second term in the right-hand side of the above inequality (noting that |S2| = bm/2c),
we then have for any δ > 0, with probability at least 1− δ,

P ,∗D − PD[ĥBS
S ] ≤ 2τEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 2
√

2Cτ

√
n2 log(n) log(m) + log(n2/δ)

m
+ 2−κm,

for a distribution-independent constant C > 0.

C.5. Extending Algorithm 1 to Non-Smooth Performance Measures

In Section 5, we showed that Algorithm 1 was consistent for any concave smooth performance measure (see Theorem 16).
We now extend this result to concave performance measures for which the associated ψ is non-smooth (but differentiable);
these include the G-mean, H-mean and Q-mean performance measures in 1. In particular, for these performance measures,
we prescribe that Algorithm 1 be applied to a suitable smooth approximation to ψ; if the quality of this approximation
improves with the size of the given training sample (at an appropriate rate), then the resulting algorithm can be shown to
be consistent for the original performance measure.
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Theorem 29. Let ψ : [0, 1]n×n→R+ be such that for any ρ ∈ R+, there exists ψρ : [0, 1]n×n→R+ which is concave over
CD, Lρ Lipschitz and βρ smooth w.r.t. the `1 norm with

sup
C∈CD

|ψ(C)− ψρ(C)| ≤ θ(ρ),

for some strictly increasing function θ : R+→R+. Let S = (S1, S2) ∈ (X × [n])m be a training sample drawn i.i.d.
from D. Further, let η̂ : X→∆n be the CPE model learned from S1 in Algorithm 1 and hFW,ρ

S : X→∆n be the classifier
obtained after κm iterations by Algorithm 1 when run for the performance measure ψρ. Then for any δ ∈ (0, 1], with
probability at least 1− δ (over draw of S from Dm),

Pψ,∗D − PψD[hFW,ρ
S ] ≤ 4LρEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 4
√

2βρn
2C

√
n2 log(n) log(m) + log(n2/δ)

m
+

8βρ
κm+ 2

+ 2θ(ρ),

where C > 0 is a distribution-independent constant.

Proof. From Theorem 16 we have that

Pψρ,∗D − PψρD [hFW,ρ
S ] ≤ 4LρEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 4
√

2βρn
2C

√
n2 log(n) log(m) + log(n2/δ)

m
+

8βρ
κm+ 2

. (14)

For simplicity assume that the ψ-optimal classifier exists; the proof can be easily extended when this is not the case. Let
h∗ : X→∆n be a ψ-optimal classifier; note that this classifier need not be ψρ-optimal. We then have that

Pψ,∗D − PψD[hFW,ρ
S ]

= ψ(CD[h∗])− ψ(CD[hFW,ρ
S ])

≤ ψρ(C
D[h∗])− ψρ(CD[hFW,ρ

S ]) + 2θ(ρ)

= PψρD [h∗] − PψρD [hFW,ρ
S ] + 2θ(ρ)

≤ Pψρ,∗D − PψρD [hFW,ρ
S ] + 2θ(ρ)

≤ 4LρEX

[∥∥η̂(X)− η(X)
∥∥

1

]
+ 4
√

2βρn
2C

√
n2 log(n) log(m) + log(n2/δ)

m
+

8βρ
κm+ 2

+ 2θ(ρ),

where the second step follows from our assumption that supC∈CD |ψ(C)−ψρ(C)| ≤ θ(ρ), and the fifth step follows from
the definition of Pψρ,∗ and the last step uses Eq. (14). This completes the proof.

We note that for each of G-mean, H-mean and Q-mean, one can construct a Lipschitz smooth approximation ψρ as required
in the above theorem. Now, suppose the CPE algorithm in Algorithm 1 is such that the class probability estimation error
term in the theorem EX

[∥∥η̂(X) − η(X)
∥∥

1

] P−→ 0 (as the number of training examples m→∞). Then for each of the
given performance measures, one can allow the parameter ρ (that determines the approximation quality of ψρ) to go to 0
as m→∞ (at appropriate rate), so that the right-hand side of the bound in the theorem goes to 0 (as m→∞), implying that
Algorithm 1 is ψ-consistent. We postpone the details to a longer version of the paper.

D. Supplementary Material for Section 6 (Experiments)
D.1. Computation of Class Probability Function for Distribution Considered in Synthetic Data Experiments

We provide the calculations for the class probability function for the distribution considered in synthetic data experiments
in Section 6. We present this for a more general distribution over Rd× [n], where for each class i, the class prior probability
is πi and the class conditional distribution is a Gaussian distribution with mean µi ∈ Rd and the same (symmetric positive
semidefinite) covariance matrix Σ ∈ Rd×d. We shall denote the pdf for the Gaussian corresponding to class i as fi(x) =

1√
(2π)d|Σ|

exp
(
− 1

2 (x− µi)>Σ−1(x− µi)
)
. The class probability function for this distribution is then given by

ηi(x) = P(Y = i |X = x)

=
πifi(x)∑n
j=1 πjfj(x)
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Table 6. Data sets used in experiments in Sections 6.2–6.4.
Data set # instances # features # classes

UCI car 1728 21 4
pageblocks 5473 10 5
glass 214 9 6
satimage 6435 36 6
covtype 581012 54 7
yeast 1484 8 10
abalone 4177 10 12

IR cora 2708 1433 4
news20 12199 61188 4
rcv1 15564 47236 11

=
exp

(
− 1

2 (x− µi)>Σ−1(x− µi) + lnπi
)∑n

j=1 exp
(
− 1

2 (x− µj)>Σ−1(x− µj) + lnπj
)

=
exp

(
µ>i Σ−1x − 1

2µ
>
i Σ−1µi + lnπi

)
exp

(
− 1

2x
>Σ−1x

)∑n
j=1 exp

(
µ>j Σ−1x − 1

2µ
>
j Σ−1µj + lnπj

)
exp

(
− 1

2x
>Σ−1x

)
=

exp(w>i x + bi)∑n
j=1 exp(w>j x + bj)

,

where wi = Σ−1µi and bi = − 1
2µ
>
i Σ−1µi + lnπi. Clearly, the class probability function for the distribution considered

can be obtained as a softmax of a linear function.

D.2. Additional Experimental Details/Results

In all our experiments, the regularization parameter for each algorithm was chosen from the range {10−4, . . . , 104} using
a held-out portion of the training set.

Synthetic data experiments. Since the distribution used to generate synthetic data and the four performance measures
considered satisfy the condition in Theorem 13, the optimal classifier for each performance measure can be obtained by
computing the ψL∗ -optimal classifier for some loss matrix L∗ ∈ [0, 1]n×n; we have a similar characterization for micro
F1 using Theorem 13. In our experiments, we computed the optimal performance for a given performance measure by
performing a search over a large range of n× n loss matrices L, used the true conditional class probability to compute a
ψL-optimal classifier for each such L (see Proposition 6), and chose among these classifiers the one which gave the highest
performance value (on a large sample drawn from the distribution). Moreover, since the class probability function here is a
softmax of linear functions, it follows that the Bayes optimal performance is also achieved by a linear classification model,
and therefore learning a linear model suffices to achieve consistency; we therefore learn a linear classification model in
all experiments. Also, recall that Algorithm 1 outputs a randomized classifier, while Algorithm 2 outputs a deterministic
classifier. In our experimental results, the ψ-performance of a randomized classifier was evaluated using the ‘expected’
(empirical) confusion matrix of the deterministic classifiers in its support.

Real data experiments. All real data sets used in our experiments have been listed in Table 6. The version of the CoRA
data set used in our experiments was obtained from http://membres-lig.imag.fr/grimal/data.html.
The 20 Newsgroup data was obtained from http://qwone.com/˜jason/20Newsgroups/. For the RCV1
data, we used a preprocessed version obtained from http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/. For each of the UCI data sets used in our experiments, the training set was normalized to 0 mean and unit
variance, and this transformation was applied on the test set. Table 7–9 contains results on UCI data sets not provided in
Section 6. Table 10–12 contains training times for Algorithm 1 (applied to the G-mean, H-mean and Q-mean measures)
and the baseline SVMperf and 0-1 logistic regression methods on all UCI data sets; in each case, the symbol × against
SVMperf indicates the method did not complete after 96 hrs.

Implementation details. The proposed Frank-Wolfe based and bisection based algorithms were implemented in MAT-
LAB; in order to learn a CPE model in these algorithms, we used the multiclass logistic regression solver provided
in http://www.cs.ubc.ca/˜schmidtm/Software/minFunc.html for the experiments on the synthetic and
UCI data sets, and the liblinear logistic regression implementation provided in www.csie.ntu.edu.tw/˜cjlin/

http://membres-lig.imag.fr/grimal/data.html
http://qwone.com/~jason/20Newsgroups/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
www.csie.ntu.edu.tw/~cjlin/liblinear
www.csie.ntu.edu.tw/~cjlin/liblinear
www.csie.ntu.edu.tw/~cjlin/liblinear
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car pageblocks glass satimage covtype yeast abalone
Frank-Wolfe (GM) 0.945 0.908 0.680 0.843 0.695 0.448 0.223
SVMperf (GM) 0.792 0.796 0.431 × × × ×
LogReg (0-1) 0.911 0.691 0.146 0.779 0.692 0.000 0.000

Table 7. Results for G-mean on UCI data sets.

car pageblocks glass satimage covtype yeast abalone
Frank-Wolfe (HM) 0.945 0.904 0.632 0.836 0.686 0.412 0.197
SVMperf (HM) 0.880 0.574 0.381 × × × ×
LogReg (0-1) 0.909 0.631 0.143 0.731 0.679 0.000 0.000

Table 8. Results for H-mean on UCI data sets.

car pageblocks glass satimage covtype yeast abalone
Frank-Wolfe (QM) 0.930 0.877 0.613 0.821 0.685 0.510 0.247
SVMperf (QM) 0.909 0.651 0.481 × × × ×
LogReg (0-1) 0.898 0.660 0.490 0.725 0.675 0.473 0.223

Table 9. Results for Q-mean on UCI data sets.

car pageblocks glass satimage covtype yeast abalone
Frank-Wolfe (GM) 1.96 5.89 0.27 9.66 139.60 1.68 7.31
SVMperf (GM) 8327.54 63667.67 1302.84 × × × ×
LogReg (0-1) 0.59 1.70 0.07 4.48 106.27 0.40 3.84

Table 10. Training time (in secs) for G-mean on UCI data sets.

car pageblocks glass satimage covtype yeast abalone
Frank-Wolfe (HM) 1.96 5.85 0.26 9.02 125.30 1.69 7.14
SVMperf (HM) 3342.08 35836.87 108.80 × × × ×
LogReg (0-1) 0.57 1.55 0.07 4.78 127.12 0.38 4.07

Table 11. Training time (in secs) for H-mean on UCI data sets.

car pageblocks glass satimage covtype yeast abalone
Frank-Wolfe (QM) 1.93 6.11 0.27 9.00 134.85 1.65 7.29
SVMperf (QM) 6795.87 54803.42 158.48 × × × ×
LogReg (0-1) 0.61 1.79 0.07 4.72 120.60 0.43 3.84

Table 12. Training time (in secs) for Q-mean on UCI data sets.

liblinear for the experiments on IR data. All run-time experiments were run on Intel Xeon quad-core machines (2.66
GHz, 12 MB cache) with 16 GB RAM.

We implemented SVMperf using a publicly available structural SVM API9. The SVMperf method (proposed originally for
binary performance measures (Joachims, 2005)) uses a cutting plane solver where computing the most-violated constraint
requires a search over of all valid confusion matrices for the given training sample. In the case of the G-mean, H-mean and
Q-mean measures, this search can be restricted to the diagonal entries of the confusion matrix, but will still require (in the
worst case) time exponential in the number of classes; in the case of the micro F1, this search is more expensive and will
involve searching over 3n− 3 entries of the confusion matrix. While we use an exact implementation of SVMperf for these
three performance measures, for the micro F1-measure, we use a version that optimizes an approximation to the micro F1

(in particular, optimizes the variant of micro F1 analyzed by (Parambath et al., 2014)) and requires fewer computations. The
tolerance parameter for the cutting-plane method in SVMperf was set to 0.01 for all experiments except on the Pageblocks
and CoRA data sets, where the tolerance was set to 0.1 to enable faster run-time.

9http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html

www.csie.ntu.edu.tw/~cjlin/liblinear
www.csie.ntu.edu.tw/~cjlin/liblinear
www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.cs.cornell.edu/people/tj/svm_light/svm_struct.html

