Supplementary Material: On Symmetric and Asymmetric LSHs for Inner Product Search

Behnam Neyshabur Nathan Srebro

Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

1. Another variant

To benefit from the empirical advantages of random projection hashing, Shrivastava and Li (2014) also proposed a modified asymmetric LSH, which we refer to here as SIGN-ALSH(SL). SIGN-ALSH(SL) uses two different mappings P(x), Q(q), similar to those of L2-ALSH(SL), but then uses a random projection hash $h_a(x)$, as is the one used by SIMPLE-LSH, instead of the quantized hash used in L2-ALSH(SL). In this appendix we show that our theoretical observations about L2-ALSH(SL) are also valid for SIGN-ALSH(SL).

SIGN-ALSH(SL) uses the pair of mappings:

$$P(x) = [Ux; 1/2 - ||Ux||^2; \dots; 1/2 - ||Ux||^{2^m}]$$

$$Q(y) = [y; 0; 0; \dots; 0],$$
(1)

where m and U are parameters, as in L2-ALSH(SL). SIGN-ALSH(LS) is then given by $f(x) = h_a(P(x))$, $g(y) = h_a(Q(x))$, where h_a is the random projection hash given in (11). SIGN-ALSH(LS) therefor depends on two parameters, and uses a binary alphabet $\Gamma = \{\pm 1\}$.

In this section, we show that, like L2-ALSH(LS), SIGN-ALSH(LS) is not a universal ALSH over \mathcal{X}_{\bullet} , \mathcal{Y}_{\circ} , and moreover for any S > 0 and 0 < c < 1 it is not an (S, cS)-ALSH over $\mathcal{X}_{\bullet} = \mathcal{Y}_{\bullet}$:

Lemma 1. For any m, U, r, and for any 0 < S < 1 and

$$\min\left\{\sqrt{1 - \frac{U^{2^{m+1}}(1 - S^{2^{m+1}})}{U^{2^{m+1}} + m/4}}, \frac{\sqrt[2^{m+1}]{\frac{2^{m+1}}{2^{m+1}-2}}}{SU}\right\} \le c < 1$$

SIGN-ALSH(SL) is not an (S, cS)-ALSH for inner product similarity over $\mathcal{X}_{\bullet} = \{x | ||x|| \le 1\}$ and $\mathcal{Y}_{\circ} = \{q | ||q|| = 1\}$.

Proof. Assume for contradiction that:

$$\sqrt{1 - \frac{U^{2^{m+1}}(1 - S^{2^{m+1}})}{U^{2^{m+1}} + m/4}} \le c < 1$$

and SIGN-ALSH(SL) is an (S, cS)-ALSH. For any query point $q \in \mathcal{Y}_{\circ}$, let $x \in \mathcal{X}_{\bullet}$ be a vector s.t. $q^{\top}x = S$ and

BNEYSHABUR@TTIC.EDU NATI@TTIC.EDU

 $||x||_2 = 1$ and let y = cSq, so that $q^{\top}y = cS$. We have that:

$$\frac{(P(y)^{\top}Q(q))^2}{\|P(y)\|^2} = \frac{c^2 S^2 U^2}{m/4 + \|y\|^{2^{m+1}}}$$
$$= \frac{c^2 S^2 U^2}{m/4 + (cSU)^{2^{m+1}}}$$

Using $1 - \frac{U^{2^{m+1}}(1-S^{2^{m+1}})}{U^{2^{m+1}} + m/4} \le c^2 < 1$:

$$> \frac{c^2 S^2 U^2}{m/4 + (SU)^{2^{m+1}}}$$

$$\ge \frac{S^2 U^2}{m/4 + U^{2^{m+1}}}$$

$$= \frac{(P(x)^\top Q(q))^2}{\|P(x)\|^2}$$

The monotonicity of $1 - \frac{\cos^{-1}(x)}{\pi}$ establishes a contradiction. To get the other bound on c, let $\alpha_m = \sqrt[2^{m+1}]{\frac{(m/2)}{2^{m+1}-2}}$ and assume for contradiction that:

$$\frac{\alpha_m}{SU} = \frac{\frac{2^{m+1}\sqrt{\frac{(m/2)}{2^{m+1}-2}}}{SU} \le c < 1$$

and SIGN-ALSH(SL) is an (S, cS)-ALSH. For any query point $q \in \mathcal{Y}_{o}$, let $x \in \mathcal{X}_{o}$ be a vector s.t. $q^{\top}x = S$ and $||x||_2 = 1$ and let $y = (\alpha_m/U)q$. By the monotonicity of $1 - \frac{\cos^{-1}(x)}{\pi}$, to get a contradiction is enough to show that

$$\frac{P(x)^{\top}Q(q)}{\|P(x)\|} \le \frac{P(y)^{\top}Q(q)}{\|P(y)\|}$$

We have:

$$\frac{(P(y)^{\top}Q(q))^2}{\|P(y)\|^2} = \frac{\alpha_m^2}{m/4 + \|\alpha_m\|^{2^{m+1}}}$$
$$= \frac{\sqrt[2^m]{\sqrt{\frac{2^m}{2^{m+1}-2}}}}{m/4 + \frac{(m/2)}{2^{m+1}-2}}$$

Since this is the maximum value of the function $f(U) = U^2/(m/4 + U^{2^{m+1}})$:

$$\geq \frac{U^2}{m/4 + U^{2^{m+1}}} \\ \geq \frac{S^2 U^2}{m/4 + U^{2^{m+1}}} \\ = \frac{(P(x)^\top Q(q))^2}{\|P(x)\|^2}$$

which is a contradiction.

Corollary 1.1. For any U, m and r, SIGN-ALSH(SL) is not a universal ALSH for inner product similarity over $\mathcal{X}_{\bullet} = \{x | ||x|| \leq 1\}$ and $\mathcal{Y}_{\circ} = \{q | ||q|| = 1\}$. Furthermore, for any c < 1, and any choice of U, m, r there exists 0 < S < 1 for which SIGN-ALSH(SL) is not an (S, cS)-ALSH over $\mathcal{X}_{\bullet}, \mathcal{Y}_{\circ}$, and for any S < 1 and any choice of U, m, r there exists 0 < c < 1 for which SIGN-ALSH(SL) is not an (S, cS)-ALSH over $\mathcal{X}_{\bullet}, \mathcal{Y}_{\circ}$.

Lemma 2. For any S > 0 and 0 < c < 1 there are no U and m such that SIGN-ALSH(SL) is an (S, cS)-ALSH for inner product similarity over $\mathcal{X}_{\bullet} = \mathcal{Y}_{\bullet} = \{x \mid ||x|| \le 1\}$.

Proof. Similar to the proof of Theorem 5.2, for any S > 0 and 0 < c < 1, let q_1 and x_1 be unit vectors such that $q_1^{\top} x_1 = S$. Let x_2 be a unit vector and define $q_2 = cSx_2$. For any U and m:

$$\frac{P(x_2)^{\top}Q(q_2)}{\|P(x_2)\| \|Q(q_2)\|} = \frac{cSU}{cS\sqrt{m/4} + \|U\|^{2^{m+1}}}$$
$$= \frac{U}{\sqrt{m/4} + \|U\|^{2^{m+1}}}$$
$$\geq \frac{SU}{\sqrt{m/4} + \|U\|^{2^{m+1}}}$$
$$= \frac{P(x_1)^{\top}Q(q_1)}{\|P(x_1)\| \|Q(q_1)\|}$$

Now, the same arguments as in Lemma 1 using monotonicity of collision probabilities in ||P(x) - Q(q)|| establish SIGN-ALSH(SL) is not an (S, cS)-ALSH.

2. Max-norm and margin complexity

Max-norm

The max-norm (aka $\gamma_2: \ell_1 \rightarrow \ell_\infty$ norm) is defined as (Srebro et al., 2005):

$$\|X\|_{\max} = \min_{X=UV^{\top}} \max(\|U\|_{2,\infty}^2, \|V\|_{2,\infty}^2)$$
 (2)

where $||U||_{2,\infty}$ is the maximum over ℓ_2 norms of rows of matrix U, i.e. $||U||_{2,\infty} = \max_i ||U[i]||$.

For any pair of sets $(\{x_i\}_{1 \le i \le n}, \{y_i\}_{1 \le i \le m})$ and hashes (f,g) over them, let P be the collision probability matrix, i.e. $P(i,j) = \mathbb{P}[f(x_i) = g(y_j)]$. In the following lemma we prove that $\|P\|_{\max} \le 1$:

Lemma 3. For any two sets of objects and hashes over them, if P is the collision probability matrix, then $||P||_{\max} \leq 1$.

Proof. For each f and g, define the following biclustering matrix:

$$\kappa_{f,g}(i,j) = \begin{cases} 1 & f(x_i) = g(y_j) \\ 0 & \text{otherwise.} \end{cases}$$
(3)

For any function $f : \mathbb{Z} \to \Gamma$, let $R_f \in \{0, 1\}^{n \times |\Gamma|}$ be the indicator of the values of function f:

$$R_h(i,\gamma) = \begin{cases} 1 & h(x_i) = \gamma \\ 0 & \text{otherwise,} \end{cases}$$
(4)

and define $R_g \in \{0,1\}^{m \times |\Gamma|}$ similarly. It is easy to show that $\kappa_{f,g} = R_f R_g^{\top}$ and since $||R_f||_{2,\infty} = ||R_g||_{2,\infty} =$ 1, by the definition of the max-norm, we can conclude that $||\kappa_{f,g}||_{\max} \leq 1$. But the collision probabilities are given by $P = \mathbb{E}[\kappa_{f,g}]$, and so by convexity of the maxnorm and Jensen's inequality, $||P||_{\max} = ||\mathbb{E}[\kappa_{f,g}]||_{\max} \leq$ $\mathbb{E}[||\kappa_{f,g}||_{\max}] \leq 1$.

It is also easy to see that $1_{n \times n} = RR^{\top}$ where $R = 1_{n \times 1}$. Therefore for any $\theta \in \mathbb{R}$,

$$\left\|\theta_{n \times n}\right\|_{\max} = \theta \left\|1_{n \times n}\right\|_{\max} \le |\theta|$$

MARGIN COMPLEXITY

For any sign matrix Z, the margin complexity of Z is defined as:

$$\min_{Y} \quad \left\|Y\right\|_{\max}$$
 (5)
s.t. $Y(i,j)X(i,j) \ge 1 \quad \forall i,j$

Let $Z \in \{\pm 1\}^{N \times N}$ be a sign matrix with +1 on and above the diagonal and -1 below it. Forster et al. (2003) prove that the margin complexity of matrix Z is $\Omega(\log N)$.

References

- Forster, J., Schmitt, N., Simon, H., and Suttorp, T. (2003). Estimating the optimal margins of embeddings in euclidean half spaces. *Machine Learning*, 51:263281.
- Shrivastava, A. and Li, P. (2014). Improved asymmetric locality sensitive hashing (alsh) for maximum inner product search (mips). *arXiv:1410.5410*.
- Srebro, N., Rennie, J., and Jaakkola, T. (2005). Maximum margin matrix factorization. *NIPS*.