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Abstract
We consider the problem of designing locality
sensitive hashes (LSH) for inner product simi-
larity, and of the power of asymmetric hashes in
this context. Shrivastava and Li (2014a) argue
that there is no symmetric LSH for the problem
and propose an asymmetric LSH based on dif-
ferent mappings for query and database points.
However, we show there does exist a simple sym-
metric LSH that enjoys stronger guarantees and
better empirical performance than the asymmet-
ric LSH they suggest. We also show a variant of
the settings where asymmetry is in-fact needed,
but there a different asymmetric LSH is required.

1. Introduction
Following Shrivastava and Li (2014a), we consider the
problem of Maximum Inner Product Search (MIPS): given
a collection of “database” vectors S ⊂ Rd and a query
q ∈ Rd, find a data vector maximizing the inner product
with the query:

p = arg max
x∈S

q>x (1)

MIPS problems of the form (1) arise, e.g. when using
matrix-factorization based recommendation systems (Ko-
ren et al., 2009; Srebro et al., 2005; Cremonesi et al., 2010),
in multi-class prediction (Dean et al., 2013; Jain et al.,
2009) and structural SVM (Joachims, 2006; Joachims
et al., 2009) problems and in vision problems when scor-
ing filters based on their activations (Dean et al., 2013) (see
Shrivastava and Li, 2014a, for more about MIPS). In order
to efficiently find approximate MIPS solutions, Shrivastava
and Li (2014a) suggest constructing a Locality Sensitive
Hash (LSH) for inner product “similarity”.

Locality Sensitive Hashing (Indyk and Motwani, 1998) is
a popular tool for approximate nearest neighbor search and
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is also widely used in other settings (Gionis et al., 1999;
Datar et al., 2004; Charikar, 2002). An LSH is a random
mapping h(·) from objects to a small, possibly binary, al-
phabet, where collision probabilities P[h(x) = h(y)] relate
to the desired notion of similarity sim(x, y). An LSH can
in turn be used to generate short hash words such that ham-
ming distances between hash words correspond to similar-
ity between objects. Recent studies have also explored the
power of asymmetry in LSH and binary hashing, where two
different mappings f(·), g(·) are used to approximate simi-
larity, sim(x, y) ≈ P[h(x) = g(y)] (Neyshabur et al., 2013;
2014). Neyshabur et al. showed that even when the similar-
ity sim(x, y) is entirely symmetric, asymmetry in the hash
may enable obtaining an LSH when a symmetric LSH is
not possible, or enable obtaining a much better LSH yield-
ing shorter and more accurate hashes.

Several tree-based methods have also been proposed for
inner product search (Ram and Gray, 2012; Koenigstein
et al., 2012; Curtin et al., 2013). Shrivastava and Li (2014a)
argue that tree-based methods, such as cone trees, are
impractical in high dimensions while the performance of
LSH-based methods is in a way independent of dimension
of the data. Although the exact regimes under which LSH-
based methods are superior to tree-based methods and vice
versa are not fully established yet, the goal of this paper is
to analyze different LSH methods and compare them with
each other, rather than comparing to tree-based methods,
so as to understand which LSH to use and why, in those
regimes where tree-based methods are not practical.

Considering MIPS, Shrivastava and Li (2014a) argue that
there is no symmetric LSH for inner product similarity, and
propose two distinct mappings, one of database objects and
the other for queries, which yields an asymmetric LSH for
MIPS. But the caveat is that they consider different spaces
in their positive and negative results: they show nonexis-
tence of a symmetric LSH over the entire space Rd, but
their asymmetric LSH is only valid when queries are nor-
malized and data vectors are bounded. Thus, they do not
actually show a situation where an asymmetric hash suc-
ceeds where a symmetric hash is not possible. In fact, in
Section 4 we show a simple symmetric LSH that is also
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valid under the same assumptions, and it even enjoys im-
proved theoretical guarantees and empirical performance!
This suggests that asymmetry might actually not be re-
quired nor helpful for MIPS.

Motivated by understanding the power of asymmetry, and
using this understanding to obtain the simplest and best
possible LSH for MIPS, we conduct a more careful study
of LSH for inner product similarity. A crucial issue here is
what is the space of vectors over which we would like our
LSH to be valid. First, we show that over the entire space
Rd, not only is there no symmetric LSH, but there is also no
asymmetric LSH either (Section 3). Second, as mentioned
above, when queries are normalized and data is bounded, a
symmetric LSH is possible and there is no need for asym-
metry. But when queries and data vectors are bounded and
queries are not normalized, we do observe the power of
asymmetry: here, a symmetric LSH is not possible, but an
asymmetric LSH exists (Section 5).

As mentioned above, our study also yields an LSH for
MIPS, which we refer to as SIMPLE-LSH, which is not only
symmetric but also parameter-free and enjoys significantly
better theoretical and empirical compared to L2-ALSH(SL)
proposed by Shrivastava and Li (2014a). In the supplemen-
tary material we show that all of our theoretical observa-
tions about L2-ALSH(SL) apply also to the alternative hash
SIGN-LSH(SL) put forth by Shrivastava and Li (2014b).

The transformation at the root of SIMPLE-LSH was also re-
cently proposed by Bachrach et al. (2014), who used it in
a PCA-Tree data structure for speeding up the Xbox rec-
ommender system. Here, we study the transformation as
part of an LSH scheme, investigate its theoretical proper-
ties, and compare it to LS-ALSH(SL).

2. Locality Sensitive Hashing
A hash of a set Z of objects is a random mapping from
Z to some alphabet Γ, i.e. a distribution over functions h :
Z → Γ. The hash is sometimes thought of as a “family” of
functions, where the distribution over the family is implicit.

When studying hashes, we usually study the behavior when
comparing any two points x, y ∈ Z . However, for our
study here, it will be important for us to make different
assumptions about x and y—e.g., we will want to assume
w.l.o.g. that queries are normalized but will not be able to
make the same assumptions on database vectors. To this
end, we define what it means for a hash to be an LSH over
a pair of constrained subspaces X ,Y ⊆ Z . Given a sim-
ilarity function sim : Z × Z → R, such as inner product
similarity sim(x, y) = x>y, an LSH is defined as follows1:

1This is a formalization of the definition given by Shrivastava
and Li (2014a), which in turn is a modification of the definition
of LSH for distance functions (Indyk and Motwani, 1998), where

Definition 1 (Locality Sensitive Hashing (LSH)). A hash
is said to be a (S, cS, p1, p2)-LSH for a similarity function
sim over the pair of spaces X ,Y ⊆ Z if for any x ∈ X
and y ∈ Y:

• if sim(x, y) ≥ S then Ph[h(x) = h(y)] ≥ p1,
• if sim(x, y) ≤ cS then Ph[h(x) = h(y)] ≤ p2.

When X = Y , we say simply “over the space X”.

Here S > 0 is a threshold of interest, and for efficient
approximate nearest neighbor search, we need p1 > p2
and c < 1. In particular, given an (S, cS, p1, p2)-LSH, a
data structure for finding S-similar objects for query points
when cS-similar objects exist in the database can be con-
structed in time O(nρ log n) and space O(n1+ρ) where
ρ = log p1

log p2
. This quantity ρ is therefore of particular inter-

est, as we are interested in an LSH with minimum possible
ρ, and we refer to it as the hashing quality.

In Definition 1, the hash itself is still symmetric, i.e. the
same function h is applied to both x and y. The only asym-
metry allowed is in the problem definition, as we allow re-
quiring the property for differently constrained x and y.
This should be contrasted with a truly asymmetric hash,
where two different functions are used, one for each space.
Formally, an asymmetric hash for a pair of spaces X
and Y is a joint distribution over pairs of mappings (f, g),
f : X → Γ, g : Y → Γ. The asymmetric hashes we con-
sider will be specified by a pair of deterministic mappings
P : X → Z and Q : Y → Z and a single random map-
ping (i.e. distribution over functions) h : Z → Γ, where
f(x) = h(P (x)) and g(y) = h(Q(y)). Given a similarity
function sim : X × Y → R we define:

Definition 2 (Asymmetric Locality Sensitive Hash-
ing (ALSH)). An asymmetric hash is said to be an
(S, cS, p1, p2)-ALSH for a similarity function sim over
X ,Y if for any x ∈ X and y ∈ Y:

• if sim(x, y) ≥ S then P(f,g)[f(x) = g(y)] ≥ p1,
• if sim(x, y) ≤ cS then P(f,g)[f(x) = g(y)] ≤ p2.

Referring to either of the above definitions, we also say
that a hash is an (S, cS)-LSH (or ALSH) if there exists
p2 > p1 such that it is an (S, cS, p1, p2)-LSH (or ALSH).
And we say it is a universal LSH (or ALSH) if for every
S > 0, 0 < c < 1 it is an (S, cS)-LSH (or ALSH).

3. No ALSH over Rd

Considering the problem of finding an LSH for inner prod-
uct similarity, Shrivastava and Li (2014a) first observe that
for any S > 0, 0 < c < 1, there is no symmetric (S, cS)-

we also allow different constraints on x and y. Even though inner
product similarity could be negative, this definition is only con-
cerned with the positive values.



On Symmetric and Asymmetric LSHs for Inner Product Search

LSH for sim(x, y) = x>y over the entire space X = Rd,
which prompted them to consider asymmetric hashes. In
fact, we show that asymmetry doesn’t help here, as there
also isn’t any ALSH over the entire space:

Theorem 3.1. For any d ≥ 2, S > 0 and 0 < c < 1 there
is no asymmetric hash that is an (S, cS)-ALSH for inner
product similarity over X = Y = Rd.

Proof. Assume for contradiction there exists some S >
0, 0 < c < 1 and p1 > p2 for which there exists an
(S, cS, p1, p2)-ALSH (f, g) for inner product similarity
over R2 (an ALSH for inner products over Rd, d > 2, is
also an ALSH for inner products over a two-dimensional
subspace, i.e. over R2, and so it is enough to consider R2).
Consider the following two sequences of points:

xi = [−i, 1]

yj = [S(1− c), S(1− c)j + S].

For any N (to be set later), define the N ×N matrix Z as
follows:

Z(i, j) =


1 x>i yj ≥ S
−1 x>i yj ≤ cS
0 otherwise.

(2)

Because of the choice of xi and yj , the matrix Z does not
actually contain zeros, and is in-fact triangular with +1 on
and above the diagonal and −1 below it. Consider also
the matrix P ∈ RN×N of collision probabilities P (i, j) =
P(f,g)[f(xi) = g(xj)]. Setting θ = (p1 + p2)/2 < 1 and
ε = (p1 − p2)/2 > 0, the ALSH property implies that for
every i, j:

Z(i, j)(P (i, j)− θ) ≥ ε (3)

or equivalently:

Z � P − θ
ε
≥ 1 (4)

where � denotes element-wise (Hadamard) product. Now,
for a sign matrix Z, the margin complexity of Z is defined
as mc(Z) = infZ�X≥1 ‖X‖max (see Srebro and Shraib-
man, 2005, and also for the definition of the max-norm
‖X‖max), and we know that the margin complexity of an
N×N triangular matrix is bounded bymc(Z) = Ω(logN)
(Forster et al., 2003), implying

‖(P − θ)/ε‖max = Ω(logN). (5)

Furthermore, any collision probability matrix has max-
norm ‖P‖max ≤ 1 (Neyshabur et al., 2014), and shifting
the matrix by 0 < θ < 1 changes the max-norm by at
most θ, implying ‖P − θ‖max ≤ 2, which combined with
(5) implies ε = O(1/ logN). For any ε = p1 − p2 > 0,
selecting a large enough N we get a contradiction.

For completeness, we also include in the supplementary
material a full definition of the max-norm and margin com-
plexity, as well as the bounds on the max-norm and margin
complexity used in the proof above.

4. Maximum Inner Product Search
We saw that no LSH, nor ALSH, is possible for inner prod-
uct similarity over the entire space Rd. Fortunately, this is
not required for MIPS. As pointed out by Shrivastava and
Li (2014a), we can assume the following without loss of
generality:

• The query q is normalized: Since given a vector q, the
norm ‖q‖ does not affect the argmax in (1), we can
assume ‖q‖ = 1 always.

• The database vectors are bounded inside the unit
sphere: We assume ‖x‖ ≤ 1 for all x ∈ S . Other-
wise we can rescale all vectors without changing the
argmax.

We cannot, of course, assume the vectors x are normal-
ized. This means we can limit our attention to the behav-
ior of the hash over X• =

{
x ∈ Rd

∣∣ ‖x‖ ≤ 1
}

and Y◦ ={
q ∈ Rd

∣∣ ‖q‖ = 1
}

. Indeed, Shrivastava and Li (2014a)
establish the existence of an asymmetric LSH, which we
refer to as L2-ALSH(SL), over this pair of database and
query spaces. Our main result in this section is to show
that in fact there does exists a simple, parameter-free, uni-
versal, symmetric LSH, which we refer to as SIMPLE-LSH,
over X•,Y◦. We see then that we do need to consider the
hashing property asymmetrically (with different assump-
tions for queries and database vectors), but the same hash
function can be used for both the database and the queries
and there is no need for two different hash functions or two
different mappings P (·) and Q(·).

But first, we review L2-ALSH(SL) and note that it is not
universal—it depends on three parameters and no setting
of the parameters works for all thresholds S. We also com-
pare our SIMPLE-LSH to L2-ALSH(SL) (and to the recently
suggested SIGN-ALSH(SL)) both in terms of the hashing
quality ρ and empirically of movie recommendation data
sets.

4.1. L2-ALSH(SL)

For an integer parameterm, and real valued parameters 0 <
U < 1 and r > 0, consider the following pair of mappings:

P (x) = [Ux; ‖Ux‖2 ; ‖Ux‖4 ; . . . ; ‖Ux‖2
m

]

Q(y) = [y; 1/2; 1/2; . . . ; 1/2],
(6)

combined with the standard L2 hash function

hL2

a,b(x) =

⌊
a>x+ b

r

⌋
(7)
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where a ∼ N (0, I) is a spherical multi-Gaussian random
vector, b ∼ U(0, r) is a uniformly distributed random vari-
able on [0, r]. The alphabet Γ used is the integers, the in-
termediate space is Z = Rd+m and the asymmetric hash
L2-ALSH(SL), parameterized by m,U and r, is then given
by

(f(x), g(q)) = (hL2

a,b(P (x)), hL2

a,b(Q(q))). (8)

Shrivastava and Li (2014a) establish2 that for any 0 < c <
1 and 0 < S < 1, there exists 0 < U < 1, r > 0, m ≥ 1,
such that L2-ALSH(SL) is an (S, cS)-ALSH over X•,Y◦.
They furthermore calculate the hashing quality ρ as a func-
tion of m,U and r, and numerically find the optimal ρ over
a grid of possible values for m,U and r, for each choice of
S, c.

Before moving on to presenting a symmetric hash for the
problem, we note that L2-ALSH(SL) is not universal (as de-
fined at the end of Section 2). That is, not only might the
optimal m,U and r depend on S, c, but in fact there is no
choice of the parameters m and U that yields an ALSH for
all S, c, or even for all ratios c for some specific threshold
S or for all thresholds S for some specific ratio c. This is
unfortunate, since in MIPS problems, the relevant thresh-
old S is the maximal inner product maxx∈S q

>x (or the
threshold inner product if we are interested in the “top-k”
hits), which typically varies with the query. It is therefore
desirable to have a single hash that works for all thresholds.
Lemma 1. For any m,U, r, and for any 0 < S < 1 and

1− U2m+1−1(1− S2m+1

)

2S
≤ c < 1,

L2-ALSH(SL) is not an (S, cS)-ALSH for inner product
similarity overX• = {x|‖x‖ ≤ 1} and Y◦ = {q|‖q‖ = 1}.

Proof. Assume for contradiction that it is an (S, cS)-
ALSH. For any query point q ∈ Y◦, let x ∈ X• be a vector
s.t. q>x = S and ‖x‖2 = 1 and let y = cSq, so that
q>y = cS. We have that:

p1 ≤ P
[
hL2

a,b(P (x)) = hL2

a,b(Q(q))
]

= Fr(‖P (x)−Q(q)‖2)

p2 ≥ P
[
hL2

a,b(P (y)) = hL2

a,b(Q(q))
]

= Fr(‖P (y)−Q(q)‖2)

where Fr(δ) is a monotonically decreasing function of δ
(Datar et al., 2004). To get a contradiction it is therefor
enough to show that ‖P (y)−Q(q)‖2 ≤ ‖P (x)−Q(q)‖2.
We have:

‖P (y)−Q(q)‖2 = 1 +
m

4
+ ‖y‖2

m+1

− 2q>y

= 1 +
m

4
+ (cSU)2

m+1

− 2cSU

2Shrivastava and Li (2014a) have the scaling by U as a sepa-
rate step, and state their hash as an (S0, cS0)-ALSH over {‖x‖ ≤
U}, {‖q‖ = 1}, where the threshold S0 = US is also scaled by
U . This is equivalent to the presentation here which integrates the
pre-scaling step, which also scales the threshold, into the hash.

using 1− U2m+1−1(1−S2m+1
)

2S ≤ c < 1:

< 1 +
m

4
+ (SU)2

m+1

− 2cSU

≤ 1 +
m

4
+ U2m+1

− 2SU

= ‖P (x)−Q(q)‖2

Corollary 4.1. For any U,m and r, L2-ALSH(SL) is not
a universal ALSH for inner product similarity over X• =
{x|‖x‖ ≤ 1} and Y◦ = {q|‖q‖ = 1}. Furthermore, for
any c < 1, and any choice of U,m, r there exists 0 <
S < 1 for which L2-ALSH(SL) is not an (S, cS)-ALSH
over X•,Y◦, and for any S < 1 and any choice of U,m, r
there exists 0 < c < 1 for which L2-ALSH(SL) is not an
(S, cS)-ALSH over X•,Y◦.

In the supplemental material, we show a similar non-
universality result also for SIGN-ALSH(SL).

4.2. SIMPLE-LSH

We propose here a simpler, parameter-free, symmetric
LSH, which we call SIMPLE-LSH.

For x ∈ Rd, ‖x‖ ≤ 1, define P (x) ∈ Rd+1 as follows:

P (x) =
[
x;
√

1− ‖x‖22
]

(9)

For any x ∈ X• we have ‖P (x)‖ = 1, and for any q ∈ Y◦,
since ‖q‖ = 1, we have:

P (q)>P (x) =
[
q; 0
]>[

x;
√

1− ‖x‖22
]

= q>x (10)

Now, to define the hash SIMPLE-LSH, take a spherical ran-
dom vector a ∼ N (0, I) and consider the following ran-
dom mapping into the binary alphabet Γ = {±1}:

ha(x) = sign(a>P (x)). (11)

Theorem 4.2. SIMPLE-LSH given in (11) is a universal
LSH over X•,Y◦. That is, for every 0 < S < 1 and
0 < c < 1, it is an (S, cS)-LSH over X•,Y◦. Further-
more, it has hashing quality:

ρ =

log

(
1−

cos−1(S)
π

)
log

(
1−

cos−1(cS)
π

) .
Proof. For any x ∈ X• and q ∈ Y◦ we have (Goemans and
Williamson, 1995):

P[ha(P (q)) = ha(P (x))] = 1− cos−1(q>x)

π
. (12)

Therefore:
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Figure 1. The optimal hashing quality ρ∗ for different hashes (lower is better).

• if q>x ≥ S, then

P
[
ha(P (q)) = ha(P (x))

]
≥ 1− cos−1(S)

π

• if q>x ≤ cS, then

P
[
ha(P (q)) = ha(P (x))

]
≤ 1− cos−1(cS)

π

Since for any 0 ≤ x ≤ 1, 1 − cos−1(x)
π is a monotonically

increasing function, this gives us an LSH.

4.3. Theoretical Comparison

Earlier we discussed that an LSH with the smallest possible
hashing quality ρ is desirable. In this Section, we compare
the best achievable hashing quality and show that SIMPLE-
LSH allows for much better hashing quality compared to
L2-ALSH(SL), as well as compared to the improved hash
SIGN-LSH(SL).

For L2-ALSH(SL) and SIGN-ALSH(SL), for each desired
threshold S and ratio c, one can optimize over the parame-
ters m and U , and for L2-ALSH(SL) also r, to find the hash
with the best ρ. This is a non-convex optimization problem
and Shrivastava and Li (2014a) suggest using grid search to
find a bound on the optimal ρ. We followed the procedure,
and grid, as suggested by Shrivastava and Li (2014a)3. For

3We actually used a slightly tighter bound—a careful analy-

SIMPLE-LSH no parameters need to be tuned, and for each
S, c the hashing quality is given by Theorem 5.3. In Figure
1 we compare the optimal hashing quality ρ for the three
methods, for different values of S and c. It is clear that the
SIMPLE-LSH dominates the other methods.

4.4. Empirical Evaluation

We also compared the hash functions empirically, fol-
lowing the exact same protocol as Shrivastava and Li
(2014a), using two collaborative filtering datasets, Netflix
and Movielens 10M.

For a given user-item matrix Z, we followed the pureSVD
procedure suggested by Cremonesi et al. (2010): we first
subtracted the overall average rating from each individ-
ual rating and created the matrix Z with these average-
subtracted ratings for observed entries and zeros for unob-
served entries. We then take a rank-f approximation (top f
singular components, f = 150 for Movielens and f = 300
for Netflix) Z ≈WΣR> = Y and define L = WΣ so that
Y = LR>. We can think of each row of L as the vector
presentation of a user and each row ofR as the presentation
for an item.

The database S consists of all rowsRj ofR (corresponding
to movies) and we use each row Li of L (corresponding to

sis shows the denominator in equation 19 of Shrivastava and Li
(2014a) can be logFr(

√
1 +m/2− 2cSU + (cSU)2m+1))
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Figure 2. Netflix: Precision-Recall curves (higher is better) of retrieving top T items by hash code of length K. SIMPLE-LSH is
parameter-free. For L2-ALSH(SL), we fix the parameters m = 3, U = 0.84, r = 2.5 and for SIGN-ALSH(SL) we used two differ-
ent settings of the parameters: m = 2, U = 0.75 and m = 3, U = 0.85.

users) as a query. That is, for each user i we would like
to find the top T movies, i.e. the T movies with highest
〈Li, Rj〉, for different values of T .

To do so, for each hash family, we generate hash codes of
length K, for varying lengths K, for all movies and a ran-
dom selection of 60000 users (queries). For each user, we
sort movies in ascending order of hamming distance be-
tween the user hash and movie hash, breaking up ties ran-
domly. For each of several values of T and K we calculate
precision-recall curves for recalling the top T movies, aver-
aging the precision-recall values over the 60000 randomly
selected users.

In Figures 2 and 3, we plot precision-recall curves of re-
trieving top T items by hash code of length K for Net-
flix and Movielens datasets where T ∈ {1, 5, 10} and
K ∈ {64, 128, 256, 512}. For L2-ALSH(SL) we used
m = 3, U = 0.83, r = 2.5, suggested by the authors
and used in their empirical evaluation. For SIGN-ALSH(SL)
we used two different settings of the parameters suggested
by Shrivastava and Li (2014b): m = 2, U = 0.75 and
m = 3, U = 0.85. SIMPLE-LSH does not require any pa-
rameters.

As can be seen in the Figures, SIMPLE-LSH shows a dra-
matic empirical improvement over L2-ALSH(SL). Follow-
ing the presentation of SIMPLE-LSH and the comparison
with L2-ALSH(SL), Shrivastava and Li (2014b) suggested
the modified hash SIGN-ALSH(SL), which is based on ran-
dom projections, as is SIMPLE-LSH, but with an asym-
metric transform similar to that in L2-ALSH(SL). Perhaps
not surprising, SIGN-ALSH(SL) does indeed perform al-
most the same as SIMPLE-LSH (SIMPLE-LSH has only a
slight advantage on Movielens), however: (1) SIMPLE-LSH
is simpler, and uses a single symmetric lower-dimensional
transformation P (x); (2) SIMPLER-LSH is universal and
parameter free, while SIGN-ALSH(SL) requires tuning two
parameters (its authors suggest two different parameter set-
tings for use). Therefor, we see no reason to prefer SIGN-
ALSH(SL) over the simpler symmetric option.

5. Unnormalized Queries
In the previous Section, we exploited asymmetry in the
MIPS problem formulation, and showed that with such
asymmetry, there is no need for the hash itself to be asym-
metric. In this Section, we consider LSH for inner product
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Figure 3. Movielens: Precision-Recall curves (higher is better) of retrieving top T items by hash code of length K. SIMPLE-LSH is
parameter-free. For L2-ALSH(SL), we fix the parameters m = 3, U = 0.84, r = 2.5 and for SIGN-ALSH(SL) we used two different
settings of the parameters: m = 2, U = 0.75 and m = 3, U = 0.85.

similarity in a more symmetric setting, where we assume
no normalization and only boundedness. That is, we ask
whether there is an LSH or ALSH for inner product similar-
ity over X• = Y• = {x | ‖x‖ ≤ 1}. Beyond a theoretical
interest in the need for asymmetry in this fully symmetric
setting, the setting can also be useful if we are interested in
using sets X and Y interchangeably as query and data sets.
In user-item setting for example, one might be also inter-
ested in retrieving the top users interested in a given item
without the need to create a separate hash for this task.

We first observe that there is no symmetric LSH for
this setting. We therefore consider asymmetric hashes.
Unfortunately, we show that neither L2-ALSH(SL) (nor
SIGN-ALSH(SL)) are ALSH over X•. Instead, we pro-
pose a parameter-free asymmetric extension of SIMPLE-
LSH, which we call SIMPLE-ALSH, and show that it is a
universal ALSH for inner product similarity over X•.

To summarize the situation, if we consider the problem
asymmetrically, as in the previous Section, there is no need
for the hash to be asymmetric, and we can use a single hash
function. But if we insist on considering the problem sym-
metrically, we do indeed have to use an asymmetric hash.

5.1. No symmetric LSH

We first show we do not have a symmetric LSH:

Theorem 5.1. For any 0 < S ≤ 1 and 0 < c < 1 there is
no (S, cS)-LSH (by Definition 1) for inner product similar-
ity over X• = Y• = {x | ‖x‖ ≤ 1}.

Proof. The same argument as in Shrivastava and Li (2014a,
Theorem 1) applies: Assume for contradiction h is an
(S, cS, p1, p2)-LSH (with p1 > p2). Let x be a vector such
that ‖x‖ = cS < 1. Let q = x ∈ X• and y = 1

cx ∈ X•.
Therefore, we have q>x = cS and q>y = S. However,
since q = x, Ph(h(q) = h(x)) = 1 ≤ p2 < p1 =
Ph(h(q) = h(y)) ≤ 1 and we get a contradiction.

5.2. L2-ALSH(SL)

We might hope L2-ALSH(SL) is a valid ALSH here. Un-
fortunately, whenever S < (c + 1)/2, and so in particular
for all S < 1/2, it is not:

Theorem 5.2. For any 0 < c < 1 and any 0 < S <
(c+ 1)/2, there are no U,m and r such that L2-ALSH(SL)
is an (S, cS)-ALSH for inner product similarity over X• =
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Y• = {x | ‖x‖ ≤ 1}.

Proof. Let q1 and x1 be unit vectors such that q>1 x1 = S.
Let x2 be a unit vector and define q2 = cSx2. For any U
and m:

‖P (x2)−Q(q2)‖2 = ‖q2‖+
m

4
+ ‖Ux2‖2

m+1

− 2q>2 x

= c2S2 +
m

4
+ U2m+1

− 2cSU

≤ 1 +
m

4
+ U2m+1

− 2SU

= ‖P (x2)−Q(q2)‖2

where the inequality follows from S < (c + 1)/2. Now,
the same arguments as in Lemma 1 using monotonicity
of collision probabilities in ‖P (x)−Q(q)‖ establish LS-
ALSH(SL) is not an (S, cS)-ALSH.

In the supplementary material, we show a stronger negative
result for SIGN-ALSH(SL): for any S > 0 and 0 < c < 1,
there are no U,m such that SIGN-ALSH(SL) is an (S, cS)−
ALSH .

5.3. SIMPLE-ALSH

Fortunately, we can define a variant of SIMPLE-LSH, which
we refer to as SIMPLE-ALSH, for this more general case
where queries are not normalized. We use the pair of trans-
formations:

P (x) =
[
x;
√

1− ‖x‖22; 0
]

(13)

Q(x) =
[
x; 0;

√
1− ‖x‖22

]
and the random mappings f(x) = ha(P (x)), g(y) =
ha(Q(x)), where ha(z) is as in (11). It is clear that by
these definitions, we always have that for all x, y ∈ X•,
P (x)>Q(y) = x>y and ‖P (x)‖ = ‖Q(y)‖ = 1.

Theorem 5.3. SIMPLE-ALSH is a universal ALSH over
X• = Y• = {x | ‖x‖ ≤ 1}. That is, for every 0 < S, c <
1, it is an (S, cS)-ALSH over X•,Y•.

Proof. The choice of mappings ensures that for all x, y ∈
X• we have P (x)>Q(y) = x>y and ‖P (x)‖ = ‖Q(y)‖ =

1, and so P[ha(P (x)) = ha(Q(y))] = 1− cos−1(q>x)
π . As

in the proof of Theorem 4.2, monotonicity of 1 − cos−1(x)
π

establishes the desired ALSH properties.

Shrivastava and Li (2015) also showed how a modification
of SIMPLE-ALSH can be used for searching similarity mea-
sures such as set containment and weighted Jaccard simi-
larity.

6. Conclusion
We provide a complete characterization of when symmetric
and asymmetric LSH are possible for inner product similar-
ity:

• Over Rd, no symmetric nor asymmetric LSH is possi-
ble.

• For the MIPS setting, with normalized queries ‖q‖ =
1 and bounded database vectors ‖x‖ ≤ 1, a universal
symmetric LSH is possible.

• When queries and database vectors are bounded but
not normalized, a symmetric LSH is not possible, but
a universal asymmetric LSH is. Here we see the power
of asymmetry.

This corrects the view of Shrivastava and Li (2014a), who
used the nonexistence of a symmetric LSH over Rd to mo-
tivate an asymmetric LSH when queries are normalized and
database vectors are bounded, even though we now see that
in these two settings there is actually no advantage to asym-
metry. In the third setting, where an asymmetric hash is
indeed needed, the hashes suggested by Shrivastava and Li
(2014a;b) are not ALSH, and a different asymmetric hash
is required (which we provide). Furthermore, even in the
MIPS setting when queries are normalized (the second set-
ting), the asymmetric hashes suggested by Shrivastava and
Li (2014a;b) are not universal and require tuning param-
eters specific to S, c, in contrast to SIMPLE-LSH which is
symmetric, parameter-free and universal.

It is important to emphasize that even though in the MIPS
setting an asymmetric hash, as we define here, is not
needed, an asymmetric view of the problem is required. In
particular, to use a symmetric hash, one must normalize the
queries but not the database vectors, which can legitimately
be viewed as an asymmetric operation which is part of the
hash (though then the hash would not be, strictly speak-
ing, an ALSH). In this regard Shrivastava and Li (2014a)
do indeed successfully identify the need for an asymmetric
view of MIPS, and provide the first practical ALSH for the
problem.
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