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Supplementary Material for “Preference Completion: Large-scale
Collaborative Ranking from Pairwise Comparisons”

A. Proof of Theorem 3.1
We write L(X) for the function being optimized; i.e.,

L(X) =
∑

(i,j,k)∈Ω

L(Yi,j,k(Xi,j −Xi,k)).

Note that for any fixed X , PX∗L(X) = mR(X) (where PX∗ denotes the expectation taken with respect to future samples
from PX∗ , as distinct from E which denotes the expectation over the samples used to generate X̂). Let K be the set of
d1 × d2 matrices with nuclear norm at most 1. The proof of Theorem 3.1 proceeds in three main steps.

1. By some algebraic of manipulations L, we reduce the problem to showing a uniform law of large numbers for the
family of functions {L(X) : X ∈

√
λd1d2K}.

2. Using symmetrization and duality properties ofK, we reduce the problem to bounding the norm of a matrixM whose
entries are sums of random signs.

3. We bound the norm of M using various concentration inequalities and a theorem of Seginer (Seginer, 2000).

Since X̂ , by definition, minimizes L(X̂), for any X̃ ∈
√
λd1d2K we can bound

PX∗ [L(X̂)− L(X̃)] ≤ PX∗ [L(X̂)]− L(X̂)−
(
PX∗ [L(X̃)]− L(X̃)

)
≤ 2 sup

X∈
√
λd1d2k

|PX∗L(X)− L(X)|.

In other words, it suffices to show a uniform law of large numbers for {L(X) : X ∈
√
λd1d2K}.

Let εi,j,k be i.i.d. ±1-valued variables and let ξi,j,k be the indicator that (i, j, k) ∈ Ω. By Giné-Zinn’s symmetrization (as
in (Davenport et al., 2013)),

E sup
X∈
√
λd1d2K

|PX∗L(X)− L(X)|

≤ 2E sup
X∈
√
λd1d2K

∣∣∣∣∣∣
∑

i,j,k∈Ω

εi,j,kL(Yi,j,k(Xi,j −Xi,k))

∣∣∣∣∣∣ .
Since L is 1-Lipschitz, we obtain

E sup
X∈
√
λd1d2K

|PX∗ [L(X)]− L(X)| ≤ 2E sup
X∈
√
λd1d2K

∣∣∣∣∣∣
∑

i,j,k∈Ω

εi,j,kYi,j,k(Xi,j −Xi,k)

∣∣∣∣∣∣
= 2E sup

X∈
√
λd1d2K

∣∣∣∣∣∣
∑
i,j,k

ξi,j,kεi,j,k(Xi,j −Xi,k)

∣∣∣∣∣∣ ,
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where in the last line, we recognized that εi,j,kYi,j,k has the same distribution as εi,j,k. Now, letM denote the matrix where
Mij =

∑
k(ξi,j,kεi,j,k − ξi,k,jεi,k,j). Then∑

i,j,k

ξi,j,kεi,j,k(Xi,j −Xi,k) = tr(MTX)

and so
sup

X∈
√
λd1d2K

∑
i,j,k

ξi,j,kεi,j,k(Xi,j −Xi,k) = sup
X∈
√
λd1d2K

tr(MTX) =
√
λd1d2‖M‖.

Putting everything together, we have (for any X̃ ∈
√
λd1d2K)

E
[
PX∗ [L(X̂)]− PX∗ [L(X̃)]

]
≤ 4
√
λd1d2E‖M‖.

Together with the following lemma (which we prove in Appendix B), this completes the proof of Theorem 3.1

Lemma A.1. With p = m
d1d2

,

E‖M‖ ≤ Cκ
√
p(d1 + d2) log(d1d2).

B. Proof of Lemma A.1
We will decompose M into two parts, M = M (1) −M (2), with

M
(1)
ij =

∑
k 6=j

ξi,j,kεi,j,k

M
(2)
ij =

∑
k 6=j

ξi,k,jεi,k,j .

Then ‖M‖ ≤ ‖M (1)‖+ ‖M (2)‖. Since M (1) and M (2) have the same distribution,

E‖M‖ ≤ 2E‖M (1)‖,

and so we are reduced to studying M (1), which has i.i.d. entries. Now, we apply Seginer’s theorem (Seginer, 2000):

E‖M (1)‖ ≤ C
(
Emax

i
‖M (1)

i∗ ‖2 + Emax
j
‖M (1)
∗j ‖2

)
, (1)

where M (1)
i∗ denotes the ith row of M (1) and M (1)

∗j denotes the jth column, and ‖ · ‖2 denotes the Euclidean norm.

We will separate the task of bounding Emaxi ‖M (1)
i∗ ‖2 into two parts: if ‖x‖0 denotes the number of non-zero coordinates

in x and ‖x‖∞ denotes maxj |xj | then ‖x‖2 ≤
√
‖x‖0‖x‖∞; with the Cauchy-Schwarz inequality, this implies that(

E
[
max
i
‖M (1)

i∗ ‖2
])2

≤ E
[
max
i
‖M (1)

i∗ ‖0
]
E
[
max
i
‖M (1)

i∗ ‖
2
∞

]
(2)

First, we will show that every row of M (1) is sparse. Let Zij =
∑
k 6=j ξi,j,k and let Yij be the indicator that Zij > 0.

Recalling that Eξi,j,k = pi,j,k, we have (by Assumption 3.1) EZij ≤ κp. Since Zij takes non-negative integer values, we
have Pr(Yij = 1) = Pr(Zij > 0) ≤ κp. By Bernstein’s inequality, for any fixed i

Pr(‖M (1)
i∗ ‖0 ≥ κd2p+ t) ≤ Pr(

d2∑
j=1

Yij ≥ κd2p+ t) ≤ exp

(
− t2/2

κpd2 + t/3

)
.

Integrating by parts, we have

E
[
‖M (1)

i∗ ‖0
]
≤ κd2p+

∫ ∞
κd2p

Pr(‖M (1)
i∗ ‖0 ≥ t) dt ≤ κd2p+

3

8
.
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Next, we will consider the size of the elements in M (1). First of all, M (1)
ij ≤ Zij (this fairly crude bound will lose us a

factor of
√

log(d1d2)). Now, Bernstein’s inequality applied to Zij gives

Pr(M
(1)
ij ≥ κp+ t) ≤ Pr(Zij ≥ κp+ t) ≤ exp

(
− t2/2

κp+ t/3

)
.

Taking a union bound over i and j, if t ≥ Cκ log(d1d2) then

Pr(max
ij

M
(1)
ij ≥ t) ≤ d1d2 exp (−ct) ≤ exp(−c′t).

Integrating by parts,

E
[
max
ij

M
(1)
ij

]
≤ κ log2(d1d2) +

∫ ∞
κ log2(d1d2)

Pr(max
ij

M
(1)
ij ≥

√
t) dt ≤ κ log2(d1d2) + C.

Going back to (2), we have shown that

Emax
i
‖M (1)

i∗ ‖ ≤ Cκ
√
pd2 log(d1d2).

The same argument applies to M (1)
∗j (but with

√
pd1 instead of

√
pd2), and so we conclude from (1) that

E‖M (1)‖ ≤ Cκ
√
p(d1 + d2) log(d1d2).

C. Proof of Theorem 3.2
C.1. A sketch of the proof

The proof of Theorem 3.2 uses Fano’s inequality.

1. We construct matrices X1, . . . , X`. These matrices all have small nuclear norm, and for every pair i, j the KL-
divergence between the induced observation distributions is Θ(log `). We construct these matrices randomly, using
concentration inequalities and a union bound to show that we can take ` of the order

√
λm(d1 + d2).

2. We apply Fano’s inequality to show that if we generate data according to a randomly chosen Xi, then any algorithm
has a reasonable chance to choose a different Xj (using the fact that the KL-divergence is O(log `)). Since the
KL-divergence is Ω(log `), this implies that the algorithm incurs a substantial penalty whenever it makes a wrong
choice.

In any application of Fano’s inequality, the key is to construct a large number of admissible models that are close to one
another in KL-divergence. Specifically, if we can construct distributions P1, . . . ,P` withD(Pi‖Pj)+1 ≤ 1

2 log ` for all i, j,
then given a single sample from some Pi, no algorithm can accurately identify which Pi it came from. In order to apply this
denote by PX,m the distribution of the data when the true parameters are X . We will construct X1 . . . , X` ∈

√
λd1d2K

such that for all i 6= j,

D(PXi,m‖PXj ,m) + 1 ≤ 1

2
log `, (3)

Rj(X
i) ≥ Rj(Xj) + c

log `

m
(4)

for some constant c > 0, where Rj denotes the expected risk when the true parameters are given by Xj . Given a single
observation from some PXj ,m, (3) will imply (by Fano’s inequality) that no algorithm can correctly identify which Xj

was the true parameter. On the other hand, (4) will imply that if the algorithm makes a mistake – say it chooses Xi

for i 6= j – then its risk will be c log `
m larger than the best in the class. In particular, if we can prove (3) and (4) with

log ` ∼
√
λm(d1 + d2) then it will imply Theorem 3.2.

We construct a set of matrices satisfying (3) and (4) using a probabilistic method. Supposing that d2 ≥ d1, we choose a
parameter γ > 0 and set B to be an integer that is approximately λγ−2. We define X1 by filling its top B × d2 block with
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independent, uniform ±γ entries, and then copying that top block B/d1 times to fill the matrix. Then let X2, . . . , X` be
independent copies of X1. First of all, each Xi ∈

√
λd1d2K because ‖Xi‖∗ ≤

√
rank(Xi)‖Xi‖F ≤

√
λd1d2.

Now, let us consider D(PX1,m‖PX2,m). For a single i, j, k triple, there is probability 1/4 of having X1
i,j −X1

i,k different
from X2

i,j −X2
i,k, in which case they differ by 4γ. If γ is bounded above, each different entry contributes Θ(α2γ2) to the

KL-divergence between PX1,m and PX2,m. Since about m entries are observed in PX1,m, we see that

D(PX1,m‖PX2,m) � mγ2. (5)

On the other hand, R1(X1) and R1(X2) differ by Θ(γ2), because for a constant fraction of triples i, j, k, the chance that
Yi,j,k is 1 differs by O(γ) in X1 and X2, and on the event that Yi,j,k differs in these two models the loss differs by another
O(γ) factor.

Applying standard concentration inequalities, we show that one can apply the union bound to ` = exp(cBd2) of these
matrices. In view of (3) and (5), we need to take Bd2 = λ2

γ2d1
� mγ2. Eliminating γ, we end up with log ` �

√
λm/d1

(which is within a constant factor of
√
λm(d1 + d2) under our assumption that d2 ≥ d1).

C.2. Some concentration lemmas

We begin by quoting some standard concentration results (see, e.g. (Vershynin, 2012)).

Definition C.1. A random variable X is σ2-subgaussian if EeθX ≤ eθ
2σ2/2 for all θ > 0. A random variable X is

L-subexponential if EeθX ≤ (1− θ2L2) for θ < 1/L.

One can easily show that the product of two subgaussian variables is subexponential:

Lemma C.2. If X is σ2-subgaussian and Y is τ2-subgaussian then XY is Cστ -subexponential for a universal constant
C.

Moreover, one has a Bernstein-type inequality for sums of independent subexponential variables.

Lemma C.3. If X1, . . . , Xk are i.i.d. L-subexponential then

Pr(
∑
i

Xi ≥ t) ≤ exp

(
− ct2

L2k + Lt

)
.

C.3. Construction of a packing set

Let 0 < γ < 1 be some parameter to be determined such that B := λγ−2 is an integer.

Proposition C.4. Suppose that L′(0) < 0. For every sufficiently small γ (depending on L), there exists a set X ⊂√
λd1d2K of exp(cBd2) d1 × d2 matrices such that for any two X1, X2 ∈ X ,

1

d1d2
2

d1∑
i=1

d2∑
j,k=1

EX1 [L(Y (X2
ij −X2

ik))− L(Y (X1
ij −X1

ik))] ≥ cγ2

and for any m,
1

m
D(PX1,m‖PX2,m) ≤ Cγ2,

where 0 < c < C are universal constants.

Following Davenport et al., we construct this set X randomly: let X be a random B × d2 matrix, where each element is
chosen independently to be either γ or −γ.

Lemma C.5. Let X1 and X2 be independent copies of X . Then with probability at least 1− exp(−cBd2),

B∑
i=1

d2∑
j,k=1

(X1
ij −X1

ik −X2
ij +X2

ik)2 ≥ 2γ2Bd2
2,

where c > 0 is a universal constant.
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Before proving Lemma C.5, let us see how it implies Proposition C.4. First of all, for X a random B× d2 matrix as above,
let X̃ be the d1×d2 matrix obtained by stacking dd1/Be copies ofX , and filling out any remaining entries by zeros. Then,
for random X and Y , with high probability

d1∑
i=1

d2∑
j,k=1

(X̃1
ij − X̃1

ik − X̃2
ij + X̃2

ik)2 = dd1/Be
B∑
i=1

d2∑
j,k=1

(X1
ij −X1

ik −X2
ij +X2

ik)2

� γ2d1d
2
2, (6)

where the lower bound for the last line came from Lemma C.5, and the upper bound just came from the observation that
each term in the sum is bounded by 16γ2. Let X be the set obtained by choosing exp(cBd2/4) random copies of X̃ in this
way. The high-probability estimate in Lemma C.5 implies that with high probability, every pair X̃1, X̃2 in X satisfies (6).
Now,

D(PX1,m‖PX2,m) = EΩ

 ∑
(i,j,k)∈Ω

D(f(X1
ij −X1

ik)‖f(X2
ij −X2

ik))


� m

d1d2
2

∑
i,j,k

(X1
ij −X1

ik −X2
ij +X2

ik)2,

where f(x) = ex/(1 + ex) is the logistic function, and the last line follows from a Taylor expansion of D(f(x)‖f(y))
around x = y, because all the X1

ij and X2
ij are bounded by γ < 1. Together with (6), this proves the first inequality in

Proposition C.4; the second inequality follows because each term of the form D(f(Xij −Xik)‖f(Yij − Yik)) is bounded
by a constant times γ2. This proves the second inequality of Proposition C.4.

By Taylor expansion again, if γ is sufficiently small (depending on L) then

L(Yi,j,k(X2
i,j −X2

i,k))− L(Yi,j,k(X1
i,j −X1

i,k)) � Yi,j,k(X1
i,j −X1

i,k −X2
i,j +X2

i,k).

Now, if i, j, k is a triple for which 2γ = X1
i,j −X1

i,k > X2
i,j −X2

i,k (and under the event of Lemma C.5, there are at least
cBd2

2 such triples) then EX1 [Yi,j,k] � γ and so

EX1 [L(Yi,j,k(X2
i,j −X2

i,k))− L(Yi,j,k(X1
i,j −X1

i,k))] � γ2.

The same holds when i, j, k is a triple for which −2γ = X1
i,j −X1

i,k < X2
i,j −X2

i,k. Finally, if i, j, k is a triple such that
X1
i,j −X1

i,k = X2
i,j −X2

i,k then the expectation is zero. Summing over all triples, we see that on the event that Lemma C.5
holds,

1

Bd2
2

∑
i,j,k

EX1 [L(Yi,j,k(X2
i,j −X2

i,k))− L(Yi,j,k(X1
i,j −X1

i,k))] ≥ cγ2.

After summing over all dd1/Be blocks, this proves the first inequality of Proposition C.4.

Proof of Lemma C.5. We expand the square:∑
ijk

(Xij −Xik − Yij + Yik)2 = 2
∑
ijk

X2
ij + Y 2

ij + 2XijYik −XijXik − YijYik − 2XijYij

= 4γ2Bd2
2 + 2

∑
ijk

2XijYik −XijXik − YijYik − 2XijYij . (7)

We may study each of the cross-terms separately: for the XijYik term, note that
∑
j Xij and

∑
k Yik are both γ2d2-

subgaussian (by Hoeffding’s inequality). Hence,
∑
jkXijYik is Cγ2d2-subexponential (by Lemma C.2) and so by

Lemma C.3,

Pr

∣∣∣∣∣∣
∑
ijk

XijYik

∣∣∣∣∣∣ ≥ 1

8
γ2Bd2

2

 ≤ 2 exp(−cBd2).
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The similar argument applies to the XijXik term:
∑
j Xij is γ2d2-subgaussian and so

∑
ijkXijXik =

∑
i(
∑
j Xij)

2 is
Cγ2d2-subexponential; hence

Pr

∣∣∣∣∣∣
∑
ijk

XijXik

∣∣∣∣∣∣ ≥ 1

8
γ2Bd2

2

 ≤ 2 exp(−cBd2).

Of course, the YijYik term is identical. Finally, note that
∑
ijkXijYij = d2

∑
ij XijYij . Since the terms in this sum are

i.i.d., we may apply Hoeffding’s inequality to obtain

Pr

∣∣∣∣∣∣
∑
ijk

XijYij

∣∣∣∣∣∣ ≥ 1

8
γ2Bd2

2

 = Pr

∣∣∣∣∣∣
∑
ij

XijYij

∣∣∣∣∣∣ ≥ 1

8
γ2Bd2

 ≤ 2 exp(−cB2d2
2).

Putting everything together, we see that with high probability, the total of all the cross-terms in (7) is at most half of the
first term.

C.4. Completing the proof

Let C denote the constant from Proposition C.4. Assume that d1 ≤ d2 and that m is large enough so√
d2

m
≤ 8C

√
λ ≤

√
m

d2
. (8)

Note that under the assumptions λ ≥ 1 and m ≥ d1 + d2 from Theorem 3.2, the lower bound of (8) is satisfied. Moreover,
if the upper bound of (8) is not satisfied then we may decrease λ until it is; the conclusion of Theorem 3.2 will not be
affected because as long as (8) fails, the minimum in Theorem 3.2 will be 1.

By the lower bound in (8), there is an integer B such that

B ≤
√
λm

d2
≤ 2B;

fix this B and define γ by

γ2 = λ/B �
√
λd2

m
.

By the upper bound in (8), γ ≤ 1.

Now, Fano’s inequality states that if we first select a randomX ∈ X and then draw a sample from PX,m, then any algorithm
trying to identify X can succeed with probability at most

min{D(PX,m‖P(Y,m)) : X,Y ∈ X}+ 1

log |X |
≤ 2Cmγ2

Bd2
≤ 1

2
.

Finally, note that by the first inequality in Proposition C.4, the error incurred by choosing the wrong X ∈ X is at least

cγ2 �
√

λd2
m .

Now, we have so far only discussed the case d2 ≥ d1. The case d1 ≤ d2 is not exactly equivalent because our model is
not symmetric in its treatment of users and items. However, the proof of Theorem 3.2 does not change very much. We
take horizontally stacked blocks of size d1 ×B instead of B × d2. The main difference is in the calculation leading to (6):
there are extra cross-terms appearing due to the fact that items in different blocks need to be compared with one another.
However, all of these additional terms may be controlled with Lemmas C.2 and C.3 in much the same way as the existing
terms are controlled.

D. Comparison to Stochastic Gradient Descent
Another practical algorithm to optimize (3) is Stochastic Gradient Descent (SGD). We have experimented SGD on the same
datasets in Table 1. We ran the algorithm with the same regularization parameters and different step sizes. The statistical
results for SGD were observed to be no better than AltSVM, and hence we did not present them in the main paper.



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

Datasets N NDCG@10
20 0.6852

ML1m 50 0.7666
100 0.7728
20 0.6977

ML10m 50 0.7452
100 0.7659

Table 1. NDCG@10 of SGD on different datasets, for different numbers of observed ratings per user.

Precision@ SGD with C = 5000
1 0.1556
2 0.1498
5 0.1236

10 0.1031
100 0.0441

Table 2. Precision@K for SGD of (3) on the binarized MovieLens1m dataset.

Let us first describe the SGD procedure. At each step, ones chooses a triple (i, j, k) ∈ Ω uniformly at random and run a
SGD step, which can be written as

u+
i ← ui − η ·

{
g · (vj − vk) +

λ

|Ωi|
ui

}
v+
j ← vj − η ·

{
g · ui +

λ

|Ωj |
vj

}
v+
j ← vj − η ·

{
−g · ui +

λ

|Ωk|
vk

}
where Ω(j) denotes the number of comparisons in Ω which involve item j. η is a step size and g ∈ ∂L(u>i (vj − vk)).

The following tables show the statistical result of SGD. The step size is chosen by η = α
1+βt as suggested in (Yun et al.,

2014). α and β were the powers of 10−1, and the best result is reported. The results are comparable to AltSVM, but it did
not achieve better results. We note that this is the best result from several different step sizes, while AltSVM does not have
any other parameter to choose except for the regularization parameter.
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