Supplementary Material for ‘“Preference Completion: Large-scale
Collaborative Ranking from Pairwise Comparisons”

A. Proof of Theorem 3.1

We write L(X) for the function being optimized; i.e.,

LX)= Y LYVijk(Xij— Xin)):
(i,7,k)EQ

Note that for any fixed X, Px+ L(X) = mR(X) (where Px denotes the expectation taken with respect to future samples
from Px+, as distinct from E which denotes the expectation over the samples used to generate X). Let K be the set of
dy X dg matrices with nuclear norm at most 1. The proof of Theorem 3.1 proceeds in three main steps.

1. By some algebraic of manipulations L, we reduce the problem to showing a uniform law of large numbers for the
family of functions {L(X) : X € /Ad1d2K}.

2. Using symmetrization and duality properties of K, we reduce the problem to bounding the norm of a matrix M whose
entries are sums of random signs.

3. We bound the norm of M using various concentration inequalities and a theorem of Seginer (Seginer, 2000).
Since X , by definition, minimizes L(X ), for any X e v Adids K we can bound

Py [L(X) = L(X)] £ Px-[L(X)] - LX) = (Px-[L(X)] - L(X))

<2 sup |Px«L(X)-— L(X)|.
Xevrdidzk

In other words, it suffices to show a uniform law of large numbers for {L(X) : X € vV Ad1d2K}.

Let ¢; j 1, be i.i.d. +1-valued variables and let &; ; 5, be the indicator that (¢, j, k) € Q. By Giné-Zinn’s symmetrization (as
in (Davenport et al., 2013)),

E sup |Px-L(X)— L(X)|
XevAdidz K

<2E  sup D enl(Vijr(Xiy— Xin))|-
XevAdida K i,j,k€Q

Since L is 1-Lipschitz, we obtain

E  sup [Px:[L(X)] - L(X)[<2E  sup > enYige(Xiy — Xiog)
XevAdida K XevAdid2 K i,j,k€Q

=2E  sup E &igr€igk(Xig — Xiw)|,
XeVAidK |{ %
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where in the last line, we recognized that ¢; ; . Y; ; 1 has the same distribution as ¢; ; .. Now, let M denote the matrix where
Mij =324 (& jk€igk = ik,j€ik,j)- Then

D Gigwein(Xiy — Xig) = tr(MTX)

i,5.k
and so
sup > &igkeign(Xij— Xig) = sup  tr(MTX) = \/Adida||M]|.
Xe\/)‘dlde’i,j,k XeVAdida K

Putting everything together, we have (for any X € VAddoK)
B [Px* [L(X)] — Px- [L(X)]} < 4/ Ay doE| M.

Together with the following lemma (which we prove in Appendix B), this completes the proof of Theorem 3.1
Lemma A.1. Withp = d:"—[b

EHMH <Ck p(dl + d2) IOg(dldg).

B. Proof of Lemma A.1

We will decompose M into two parts, M = M) — M) with

1
M) = D ik
=y

2
Mi(j )= Z fi,k,jGi,k,j-
k#j

Then | M| < ||[M®]|| + |M®@)||. Since M) and M) have the same distribution,
E|M] < 2E|MY),

and so we are reduced to studying M (), which has i.i.d. entries. Now, we apply Seginer’s theorem (Seginer, 2000):
B < € (Bmax M2 + Emax |12 ). 0
i J

where Mi(*1 ) denotes the ith row of M) and M,Ejl) denotes the jth column, and || - ||2 denotes the Euclidean norm.

We will separate the task of bounding E max; ||Ml(*1 ) ||2 into two parts: if ||x||o denotes the number of non-zero coordinates
in z and ||z]|o denotes max; |z;| then ||z|2 < \/||zo]|z||s0; With the Cauchy-Schwarz inequality, this implies that

(B [max [MP1])” < B [ [ 1l B [max [ 0112 @

First, we will show that every row of MWD js sparse. Let Z;; = Zk# &.;,x and let Y;; be the indicator that Z;; > 0.
Recalling that E; ; . = ps ;.. we have (by Assumption 3.1) EZ;; < kp. Since Z;; takes non-negative integer values, we
have Pr(Y;; = 1) = Pr(Z,;; > 0) < kp. By Bernstein’s inequality, for any fixed ¢

do 2
£2/2
Pr(|MYg > kdyp +1) <P Yi; > kdop + 1) < 7)),
r([[My, |lo > kdap +t) < r(;:l j > rdap +t) < exp Y

Integrating by parts, we have

i 3
B[100lo] < ndsp+ [ P00 2 0) dt < wdap+ 2.

Krd2p
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Next, we will consider the size of the elements in M (1), First of all, Mi(jl) < Z;; (this fairly crude bound will lose us a

factor of y/log(d1d2)). Now, Bernstein’s inequality applied to Z,; gives

1 t2/2
Pr(M,) > kp+1) < Pr(Zi; > rp+1) < exp <_f€p+t/3> '

Taking a union bound over i and j, if t > Cklog(d;ds) then

Pr(max Mi(jl) > t) < didgexp (—ct) < exp(—c't).
ij

Integrating by parts,

E [max Mi(jl)] < rlog?(dyds) +/ Pr(max Mi(jl) > V1) dt < klog?(didy) + C.

i #log? (dydz) B

Going back to (2), we have shown that
Emax | M || < Crv/pda log(dids).

The same argument applies to M S) (but with y/pd; instead of v/pds), and so we conclude from (1) that
E[|MW| < Crv/p(dy + dy) log(dada).

C. Proof of Theorem 3.2
C.1. A sketch of the proof

The proof of Theorem 3.2 uses Fano’s inequality.

1. We construct matrices X', ..., X*. These matrices all have small nuclear norm, and for every pair i, j the KL-

divergence between the induced observation distributions is O (log ). We construct these matrices randomly, using
concentration inequalities and a union bound to show that we can take ¢ of the order \/Am/(d; + da).

2. We apply Fano’s inequality to show that if we generate data according to a randomly chosen X, then any algorithm
has a reasonable chance to choose a different X7 (using the fact that the KL-divergence is O(log¢)). Since the
KL-divergence is Q2(log ¢), this implies that the algorithm incurs a substantial penalty whenever it makes a wrong
choice.

In any application of Fano’s inequality, the key is to construct a large number of admissible models that are close to one
another in KL-divergence. Specifically, if we can construct distributions Py, . .. , P, with D(P;||P;)+1 < 3 log ¢ forall 4, j,
then given a single sample from some P;, no algorithm can accurately identify which P; it came from. In order to apply this
denote by Px ,,, the distribution of the data when the true parameters are X. We will construct X Lo, X e Vdido K
such that for all ¢ # j,

1
D(PXi,m||PXJ'7m) +1 < 5 IOgga (3)

log ¢
co”

R;j(X") > Rj(X7) + 4)

m
for some constant ¢ > 0, where R; denotes the expected risk when the true parameters are given by X7. Given a single
observation from some Px; ,,,, (3) will imply (by Fano’s inequality) that no algorithm can correctly identify which X J
was the true parameter. On the other hand, (4) will imply that if the algorithm makes a mistake — say it chooses X

for ¢ # j — then its risk will be clof;' ¢ larger than the best in the class. In particular, if we can prove (3) and (4) with

log ¢ ~ \/Am(d; + d2) then it will imply Theorem 3.2.

We construct a set of matrices satisfying (3) and (4) using a probabilistic method. Supposing that ds > d;, we choose a
parameter v > 0 and set B to be an integer that is approximately Ay~2. We define X! by filling its top B x ds block with
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independent, uniform =+ entries, and then copying that top block B/d; times to fill the matrix. Then let X2, ..., X be
independent copies of X !. First of all, each X* € /Ad;d2 K because || X?|. < /rank(X?)|| X ||r < v/Ad1da.

Now, let us consider D(Px1 ,,,||[Px2 ,,,). For a single ¢, j, k triple, there is probability 1/4 of having X Ll i Xi{ . different
from X f ;=X f 4> in which case they differ by 4+. If v is bounded above, each different entry contributes ©(a?>~?) to the
KL-divergence between Px1 ,, and Px= ,,. Since about m entries are observed in Px1 ,,,, we see that

D(Px1 i [Px2m) = mr?. o)

On the other hand, R;(X!) and R;(X?) differ by ©(?), because for a constant fraction of triples i, j, k, the chance that
Y ;& is 1 differs by O(7y) in X L'and X2, and on the event that Y; ;i differs in these two models the loss differs by another
O(y) factor.

Applying standard concentration inequalities, we show that one can apply the union bound to ¢ = exp(cBds) of these
matrices. In view of (3) and (5), we need to take Bdy = Vé—; = m~?2. Eliminating vy, we end up with log ¢ < \/Am/d;
(which is within a constant factor of \/A\m(d; 4+ dz) under our assumption that do > dy).

C.2. Some concentration lemmas

We begin by quoting some standard concentration results (see, e.g. (Vershynin, 2012)).

Definition C.1. A random variable X is o*-subgaussian if EefX < ef’o*/2 for all & > 0. A random variable X is
L-subexponential if Ee®X < (1 — 0%L?) for 6 < 1/L.

One can easily show that the product of two subgaussian variables is subexponential:

Lemma C.2. If X is o2-subgaussian and Y is T%-subgaussian then XY is CoT-subexponential for a universal constant

C.

Moreover, one has a Bernstein-type inequality for sums of independent subexponential variables.

Lemma C.3. If X1,..., Xy are i.i.d. L-subexponential then
Pr(d X;>t) <ex B
== T )

C.3. Construction of a packing set
Let 0 < v < 1 be some parameter to be determined such that B := \y~2 is an integer.

Proposition C.4. Suppose that L' (0) < 0. For every sufficiently small v (depending on L), there exists a set X C
VAd1d2 K of exp(cBdy) dy % dy matrices such that for any two X', X? € X,

30 Bl (X - XA) — LYV(X - X)) 2

and for any m,
1
7D(IPX1,mH]PX2,m) < 0727
m

where 0 < ¢ < C are universal constants.

Following Davenport et al., we construct this set X randomly: let X be a random B X dy matrix, where each element is
chosen independently to be either v or —+.

Lemma C.5. Let X! and X? be independent copies of X. Then with probability at least 1 — exp(—cBd>),

B dso
Z Z (lej - Xilk - Xzzj + ka)Q > 272Bd%a
i=1 j,k=1

where ¢ > 0 is a universal constant.
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Before proving Lemma C.5, let us see how it implies Proposition C.4. First of all, for X arandom B x d3 matrix as above,
let X be the d; x dy matrix obtained by stacking [d; /B copies of X, and filling out any remaining entries by zeros. Then,
for random X and Y, with high probability

d1 dz 5 _ B d2
SO (XL =Xy - X5+ X5 =1[dy/B]Y Y (X} - X - X2+ X3)°
i=1 j,k=1 i=1 j,k=1
= ydud3, (©6)

where the lower bound for the last line came from Lemma C.5, and the upper bound just came from the observation that
each term in the sum is bounded by 16+2. Let X’ be the set obtained by choosing exp(cBds /4) random copies of X in this
way. The high-probability estimate in Lemma C.5 implies that with high probability, every pair X', X2 in X satisfies (6).
Now,

DPx1 1 |Px2,m) = Eq Z D(f(X}5 — Xp)IlF (X5 — X30)

(i,5,k)EQ

2
dldQZ - X7+ X5)%,
1,5,k

where f(z) = e”/(1 + €®) is the logistic function, and the last line follows from a Taylor expansion of D(f(x)f(y))
around x = y, because all the X ilj and X 12] are bounded by v < 1. Together with (6), this proves the ﬁrst inequality in
Proposition C.4; the second inequality follows because each term of the form D(f(X;; — Xx)| f(Yi; — Yix)) is bounded
by a constant times ~2. This proves the second inequality of Proposition C.4.

By Taylor expansion again, if v is sufficiently small (depending on £) then
LY 6(X7 5= X20)) — LOYVin(XE — X10) <Y (X}, — X — X254+ X70)-

Now, if 4, j, k is a triple for which 2y = Xil’ ;=X 11 > X 22 ;=X f i (and under the event of Lemma C.5, there are at least
cBd3 such triples) then Ex1[Y; ;5] <~ and so

Exi[£(Yi g (X2, — X20)) — L(Yigu (X2, — XL = 42

The same holds when 4, j, k is a triple for which —2y = X}, — X!, < X2, — X7, Finally, if 4, j, k is a triple such that

X}, — X}, = X7, — X7, then the expectation is zero. Summing over all triples, we see that on the event that Lemma C.5
holds,

BdQZEm k(X2 = XER)) = L0Yia(XE; = X)) > e,
’ij

After summing over all [dy /B] blocks, this proves the first inequality of Proposition C.4.

Proof of Lemma C.5. We expand the square:

Z(Xij — Xip — Y +Yi)? = QZX% + Yg +2X; Y — Xy X — YV — 2X,,Y55
ijk ijk
— 4~2 Bd? Yo — X X — Yo Yo —
=49’Bd3 + 2 2X;;Yip — Xij Xir — Y5 Yir — 2X;5Y5. (7)
ijk
We may study each of the cross-terms separately: for the X;;Y;; term, note that ;Xij and >k Yir are both ~v2ds-

subgaussian (by Hoeffding’s inequality). Hence, ij X;;Yir is Cy?da-subexponential (by Lemma C.2) and so by
Lemma C.3,

1
Pr( > XY 2§72Bd§ < 2exp(—cBdy).
ijk
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The similar argument applies to the X;; X;;, term: Zj X; is v*da-subgaussian and so Zijk Xii Xk = ZI(ZJ Xi)% is
C 72 ds-subexponential; hence

1
Pr| Y XXk 2§728d§ < 2exp(—cBdy).
ijk

Of course, the Y;;Y;; term is identical. Finally, note that
i.i.d., we may apply Hoeffding’s inequality to obtain

ik XY = da Zij X;;Y;;. Since the terms in this sum are

1 1
Pr inj)fij > §723d§ =Pr ZXinij > §72Bd2 < 2exp(—cB%d3).
ijk ij
Putting everything together, we see that with high probability, the total of all the cross-terms in (7) is at most half of the
first term. O
C.4. Completing the proof

Let C denote the constant from Proposition C.4. Assume that d; < do and that m is large enough so

1/@§80\[\§,/E. (8)
m d2

Note that under the assumptions A > 1 and m > d; + ds from Theorem 3.2, the lower bound of (8) is satisfied. Moreover,
if the upper bound of (8) is not satisfied then we may decrease A until it is; the conclusion of Theorem 3.2 will not be
affected because as long as (8) fails, the minimum in Theorem 3.2 will be 1.

By the lower bound in (8), there is an integer B such that

B <2 <op,
d
Ad
v? =)\/B =/ =2
m

Now, Fano’s inequality states that if we first select arandom X € X" and then draw a sample from Px ,,,, then any algorithm
trying to identify X can succeed with probability at most

fix this B and define ~ by

By the upper bound in (8), v < 1.

min{D(Px ,,||P(Y,m)): X, Y e X} +1 < 2Cm~? -1
log | X| =~ Bdy 2

Finally, note that by the first inequality in Proposition C.4, the error incurred by choosing the wrong X € X is at least
2 _  [Ad

oyt X/ 52

Now, we have so far only discussed the case do > d;. The case d; < ds is not exactly equivalent because our model is
not symmetric in its treatment of users and items. However, the proof of Theorem 3.2 does not change very much. We
take horizontally stacked blocks of size d; x B instead of B X do. The main difference is in the calculation leading to (6):
there are extra cross-terms appearing due to the fact that items in different blocks need to be compared with one another.
However, all of these additional terms may be controlled with Lemmas C.2 and C.3 in much the same way as the existing
terms are controlled.

D. Comparison to Stochastic Gradient Descent

Another practical algorithm to optimize (3) is Stochastic Gradient Descent (SGD). We have experimented SGD on the same
datasets in Table 1. We ran the algorithm with the same regularization parameters and different step sizes. The statistical
results for SGD were observed to be no better than AItSVM, and hence we did not present them in the main paper.
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Datasets N NDCG@10
20 0.6852

MLIm 50 0.7666
100 0.7728
20 0.6977

ML10m 50 0.7452
100 0.7659

Table 1. NDCG @10 of SGD on different datasets, for different numbers of observed ratings per user.

Precision@ SGD with C' = 5000
1 0.1556
2 0.1498
5 0.1236
10 0.1031
100 0.0441

Table 2. Precision@ K for SGD of (3) on the binarized MovieLens1m dataset.

Let us first describe the SGD procedure. At each step, ones chooses a triple (¢, j, k) € € uniformly at random and run a
SGD step, which can be written as

A
uf <—ui—n-{g-(vj —vk)—l—mui}
+ ; ) A :
CHER R Al g-ul—i—mz}]
+ A
CHE Y R fg~ui+mvk
where Q1) denotes the number of comparisons in {2 which involve item j. 7 is a step size and g € L (u; (vj — vg)).

The following tables show the statistical result of SGD. The step size is chosen by 1 = %ﬁt as suggested in (Yun et al.,

2014). o and 3 were the powers of 101, and the best result is reported. The results are comparable to AltSVM, but it did
not achieve better results. We note that this is the best result from several different step sizes, while AItSVM does not have
any other parameter to choose except for the regularization parameter.
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