
Preference Completion: Large-scale Collaborative Ranking
from Pairwise Comparisons

Dohyung Park DHPARK@UTEXAS.EDU
Joe Neeman JOENEEMAN@GMAIL.COM
Jin Zhang ZJ@UTEXAS.EDU
Sujay Sanghavi SANGHAVI@MAIL.UTEXAS.EDU
Inderjit S. Dhillon INDERJIT@CS.UTEXAS.EDU

The University of Texas at Austin

Abstract
In this paper we consider the collaborative rank-
ing setting: a pool of users each provides a small
number of pairwise preferences between d pos-
sible items; from these we need to predict each
users preferences for items they have not yet
seen. We do so by fitting a rank r score matrix
to the pairwise data, and provide two main con-
tributions:
(a) we show that an algorithm based on con-
vex optimization provides good generalization
guarantees once each user provides as few as
O(r log2 d) pairwise comparisons – essentially
matching the sample complexity required in the
related matrix completion setting (which uses ac-
tual numerical as opposed to pairwise informa-
tion), and
(b) we develop a large-scale non-convex imple-
mentation, which we call AltSVM, that trains a
factored form of the matrix via alternating min-
imization (which we show reduces to alternat-
ing SVM problems), and scales and parallelizes
very well to large problem settings. It also out-
performs common baselines on many moderately
large popular collaborative filtering datasets in
both NDCG and in other measures of ranking
performance.

1. Introduction
This paper considers the following recommendation sys-
tem problem: given a set of items, a set of users, and non-
numerical pairwise comparison data, find the underlying

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

preference ordering of the users. In particular, we are inter-
ested in the setting where data is of the form “user i preferes
item j over item k”, for different ordered user-item-item
triples i, j, k. Pairwise preference data is wide-spread; in-
deed, almost any setting where a user is presented with a
menu of options – and chooses one of them – can be con-
sidered to be providing a pairwise preference between the
chosen item and every other item that is presented.

Crucially, we are interested in the collaborative filtering
setting, where (a) on the one hand the number of such pair-
wise preferences we have for any one user is woefully in-
sufficient to infer anything for that user in isolation; and
(b) on the other hand, we aim for personalization, i.e. for
every user to possibly have different inferred preferences
from every other. To reconcile these two requirements, our
method relates the preferences of users to each other via a
low-rank matrix, which we (implicitly) assume governs the
observed preferences. Essentially, we fit a low-rank users
× items score matrixX to pairwise comparison data by try-
ing to ensure that Xij −Xik is positive when user i prefers
item j to item k.

Our contributions: We present two algorithms to infer
the score matrix X from training data; once inferred, this
can be used for predicting future preferences. While there
has been some recent work on fitting low-rank score matri-
ces to pairwise preference data (which we review and com-
pare to below), in this paper we present the following two
contributions:
(a) A statistical analysis for the convex relaxation: we
bound the generalization error of the solution to our con-
vex program. Essentially, we show that the minimizer of
the empirical loss also almost minimizes the true expected
loss. We also give a lower bound showing that our error
rate is sharp up to logarithmic factors.
(b) A large-scale non-convex implementation: We provide
a non-convex algorithm that we call Alternating Support

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

Vector Machine (AltSVM). This non-convex algorithm is
more practical than the convex program in a large-scale set-
ting; it explicitly parameterizes the low-rank matrix in fac-
tored form and minimizes the hinge loss. Crucially, each
step in this algorithm can be formulated as a standard SVM
that updates one of the two factors; the algorithm proceeds
by alternating updates to both factors. We apply a stochas-
tic version of dual coordinate descent (Hsieh et al., 2008;
Shalev-Shwartz & Zhang, 2013) with lock-free paralleliza-
tion. This exploits the problem structure and ensures it par-
allelizes well. We show that our algorithm outperforms
several existing collaborative ranking algorithms in both
speed and prediction accuracy, and it achieves significant
speedups as the number of cores increases.

1.1. Related Work

Ranking/learning preferences is a classical problem that
has been considered in a large amount of work. There are
many different settings for this problem, which we discuss
below.

Learning to Rank The main problem in this community
has been to estimate a ranking function from given feature
vectors and relevance scores. Depending on its application,
a feature vector may correpond to a user-item pair or a sin-
gle item. While there have been algorithms that use pair-
wise comparisons (Herbrich et al., 2000; Joachims, 2002)
of the training samples, our setting is different in that our
data consists only of pairwise comparisons. We refer the
reader to the survey (Liu, 2009).

One ranking with pairwise comparisions In a single-
user model, we are asked to learn a single ranking given
pairwise comparisons. Jamieson & Nowak (2011a) and
Ailon (2011) consider an active query model with noiseless
responses; Jamieson & Nowak (2011b) give an algorithm
for exactly recovering the true ranking under a low-rank
assumption similar to ours, while Ailon (2011) approxi-
mately recovers the true ranking without such an assump-
tion. Wauthier et al. (2013) and Negahban et al. (2012)
learn a ranking from noisy pairwise comparisions; Negah-
ban et al. (2012) consider a Bradley-Terry-Luce model sim-
ilar to ours and attempt to learn an underlying score vec-
tor, while Wauthier et al. (2013) get by without structure
assumptions, but only attempt to learn the ranking itself.
Hajek et al. (2014) considered a problem to learn a single
ranking given a more generalized partial rankings from the
Plackett-Luce model and provided a minimax-optimal al-
gorithm.

Many rankings with pairwise comparisions Given
multiple users with different rankings, one could of course
attempt to learn their rankings by simply applying an al-

gorithm from the previous section to each user individu-
ally. However, it is more efficient – both statistically and
computationally – to postulate some global structure and
use it to relate the many users’ rankings. This is the same
idea that has been applied so successfully in collaborative
filtering. Rendle et al. (2009) and Liu et al. (2009) were
the first to take this approach. They modeled the observa-
tions as coming from a BTL model with low-rank struc-
ture (i.e., very similar to our model) and gave algorithms
for learning the model parameters. Yi et al. (2013) took a
purely optimization-based approach. Rather than assuming
a probabilistic model, they minimized a convex objective
using the hinge loss on a low-rank matrix. In a slightly dif-
ferent model, Hu et al. (2008) and Shi et al. (2013) consider
the problem of learning from latent feedback. Recently, Lu
& Negahban (2014) analyzed an algorithm which is very
similar to ours for the Bradley-Terry-Luce model indepen-
dently from our work.

Many rankings with 1-bit ratings Instead of moving to
pairwise comparisons, some work has suggested avoiding
the difficulties of numerical ratings by instead asking users
to give 1-bit ratings to items; that is, each user only indi-
cates whether they like or dislike an item. In this setting,
the work of Davenport et al. (2014) is most closely related
to ours, in that they assume an underlying low-rank struc-
ture and give an algorithm based on convex optimization.
Also, our theoretical analysis owes a lot to their work. Xu
et al. (2013) consider a slightly different goal: rather than
attempting to recover the preferences of each user, they try
to cluster similar users and similar items together. Yun et al.
(2014) proposed an optimization problem motivated from
robust binary classification and used stochastic gradient de-
scent to solve the problem in a large-scale setting.

Many rankings with numerical ratings The goal in this
setting is the same as ours, except that the data is in the
form of numerical ratings instead of pairwise comparisons.
Weimer et al. (2007) attempted to directly optimize Nor-
malized Discounted Cumulative Gain (NDCG), a widely
used performance measure for ranking problems. Balakr-
ishnan & Chopra (2012), and Volkovs & Zemel (2012) con-
verted this problem into a learning-to-rank problem and
solved it using the existing algorithms. While these works
considered the low-rank matrix model, different models are
proposed by Weston et al. (2012) and Lee et al. (2014). We-
ston et al. (2012) proposed a tensor model to rank items for
different queries and users, and (Lee et al., 2014) proposed
a weighted sum of low-rank matrix models.

2. Empirical Risk Minimization (ERM)
Let us first formulate the problem mathematically. The task
is to estimate rankings of multiple users on multiple items.

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

We denote the numbers of users by d1, and the number of
items by d2. We are given a set of triples Ω ⊂ [d1]× [d2]×
[d2], where the preference of user i between items j and
k is observed if (i, j, k) ∈ Ω. The observed comparison
is then given by {Yijk ∈ {1,−1} : (i, j, k) ∈ Ω} where
Yijk = 1 if user i prefers item j over item k, and Yijk = −1
otherwise. Let Ωi = {(j, k) : (i, j, k) ∈ Ω} denote the set
of item pairs that user i has compared.

We predict rankings for multiple users by estimating a
score matrix X ∈ Rd1×d2 such that Xij > Xik means
that user i prefers item j over item k. Then the sorting
order for each row provides the predicted ranking for the
corresponding user.

We propose (as have others) that X is low-rank or close to
low-rank, the intuition being that each user bases their pref-
erences on a small set of features that are common among
all the items. Then the empirical risk minimization (ERM)
framework can naturally be formulated as

minimize
X

∑
(i,j,k)∈Ω

L(Yijk(Xij −Xik)) (1)

subject to rank(X) ≤ r

where L(·) is a monotonically non-increasing loss function
which induces Xij > Xik if Yijk = 1, and Xij < Xik

otherwise. (e.g., hinge loss, logistic regression loss, etc.)

Solving (1) is NP-hard because of the rank constraint. As
a first alternative, we propose a straightforward convex re-
laxation.

3. Convex Relaxation
Our first method is the convex relaxation of (1), which in-
volves a nuclear norm constraint.

minimize
X

∑
(i,j,k)∈Ω

L(Yijk(Xij −Xik)) (2)

subject to ‖X‖∗ ≤
√
λd1d2

Here, for any matrix X , the nuclear/trace norm ‖X‖∗ de-
notes the sum of its singular values; it is a well-recognized
convex surrogate for low-rank structure (most famously in
matrix completion).

The only parameter of this algorithm is λ, which governs
the trade-off between better optimizing the likelihood of
the observed data, and the strictness in imposing approxi-
mate low-rank structure. Since we motivated our algorithm
with the assumption that X has low rank, we should point
out how our algorithm’s parameter λ compares to the rank:
note that if X is a d1 × d2 rank-r matrix whose largest ab-
solute entry is bounded by C then ‖X‖∗ ≤

√
r‖X‖F ≤

C
√
rd1d2. In other words, λ is a parameter that takes into

account both the rank ofX and the size of its elements, and
it is roughly proportional to the rank.

3.1. Analytic results

We analyze (2) by assuming a standard model for pairwise
comparisons. Then we provide a statistical guarantee of the
method under the model.

Recall the classical Bradley-Terry-Luce model (Bradley &
Terry, 1952; Luce, 1959) for pairwise preferences of a sin-
gle user, which assumes that the probability of item j being
preferred over k is given by a logistic of the difference of
the underlying preference scores of the two items. For mul-
tiple users, we assume that there is some true score matrix
X∗ ∈ Rd1×d2 and

Pr(Yijk = 1) =
exp(X∗ij −X∗ik)

1 + exp(X∗ij −X∗ik)
.

Assume that each user-item-item triple (i, j, k) indepen-
dently belongs to Ω with probability pi,j,k, and let m =∑
i,j,k pi,j,k be the expected size of Ω. We will assume

that the pi,j,k are approximately balanced in the sense that
no user-item pair is observed too frequently:
Assumption 3.1. There is a constant κ > 0 such that for
every i, j, ∑

k

pi,j,k ≤ κ
m

d1d2
.

Note that if κ = 1 in Assumption 3.1 then the pi,j,k are all
equal, meaning that each user-item-item triple has an equal
chance to be observed.

In order to state our error bounds, we first introduce some
notation: let PX be the distribution of {Yi,j,k : 1 ≤ i ≤
d1, 1 ≤ j < k ≤ d2} (i.e. the complete distribution of all
pairwise preferences, even those that are not observed).

Our main upper bound shows that if m is sufficiently large
then our algorithm finds a solution with almost minimal
risk. Given a loss function L, define the expected risk of X
by

R(X) =
1

d1d2
2

d1∑
i=1

d2∑
j,k=1

EX∗L(Yijk(Xij −Xik)),

where the expectation is with respect to the distribution
parametrized by the true parameters X∗.
Theorem 3.1. Suppose that L is 1-Lipschitz, and let Y and
Ω be distributed as PX∗ for some d1×d2 matrixX∗. Under
Assumption 3.1,

ER(X̂) ≤ inf
{X:‖X‖∗≤

√
λd1d2}

ER(X)

+ Cκ

√
λ(d1 + d2)

m
log(d1 + d2),

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

where C is a universal constant.

We recall that the parameter λ is related to rank in that if
X is a d1 × d2 rank-r matrix whose largest absolute entry
is bounded by C then ‖X‖∗ ≤

√
r‖X‖F ≤ C

√
rd1d2.

In other words, λ is a parameter that takes into account
both the rank of X∗ and the size of its elements, and it is
roughly proportional to the rank. In particular, Theorem 3.1
shows that once we observe m ∼ r(d1 + d2) log2(d1 +
d2) pairwise comparisons, then we can accurately esti-
mate the probability of any user preferring any item over
any other. In other words, we need to observe about
r(1 + d2/d1) log2(d1 + d2) comparisons per user, which
is substantially less than the rd2 log(d2) comparisons that
we would have required if each user were modelled in iso-
lation. Moreover, our lower bound (below) shows that at
least r(1+d2/d1) comparisons per user are required, which
is only a logarithmic factor from the upper bound.

Theorem 3.2. Suppose that L′(0) < 0. Let A be any al-
gorithm that receives {Yi,j,k : (i, j, k) ∈ Ω} as input and
produces X̂ as output. For any λ ≥ 1 and m ≥ d1 + d2,
there exists X∗ with ‖X∗‖∗ ≤

√
λd1d2 such that when Y

and Ω are distributed according to PX∗ then with proba-
bility at least 1

2 ,

ER(X̂) ≥ R(X∗) + cmin

{
1,

√
λ(d1 + d2)

m

}
,

where c > 0 is a constant depending only on L.

Together, Theorems 3.1 and 3.2 show that (up to logarith-
mic factors) ifX∗ has rank r then about r(1+d2/d1) com-
parisons per user are necessary and sufficient for learning
the users’ preferences.

3.1.1. MAXIMUM LIKELIHOOD ESTIMATION OF X∗

By specializing the loss functionL, Theorem 3.1 has a sim-
ple corollary for maximum-likelihood estimation of X∗.
Recall that if µ and ν are two probability distributions on
a finite set S the the Kullback-Leibler divergence between
them is

D(µ‖ν) =
∑
s∈S

µ(s) log
µ(s)

ν(s)
,

under the convention that 0 log 0 = 0. We recall that al-
thoughD(·‖·) is not a metric it is always non-negative, and
that D(µ‖ν) = 0 implies µ = ν.

Corollary 3.3. Let Y and Ω be distributed as PX∗ for some
d1 × d2 matrix X∗. Define the loss function L by L(z) =

log(1 + exp(z))− z. Under Assumption 3.1,

1

d1d2
2

sup
{X:‖X‖∗≤

√
λd1d2}

D(PX∗‖PX̂)−D(PX∗‖PX)

≤ Cκ
√
λ(d1 + d2)

m
log(d1 + d2),

where C is a universal constant.

Note that the loss function in Corollary 3.3 is exactly the
negative logarithm of the logistic function, and so X̂ in
Corollary 3.3 is the maximum-likelihood estimate for X∗.
Thus, Corollary 3.3 shows that the distribution induced by
the maximum-likelihood estimator is close to the true dis-
tribution in Kullback-Leibler divergence.

4. Large-scale Non-convex Implementation
While the convex relaxation is statistically near optimal, it
is not ideal for large-scale datasets because it requires the
solution of a convex program with d1×d2 variables. In this
section we develop a non-convex variant which both scales
and parallelizes very well, and has better empirical perfor-
mance as compared to several existing empirical baseline
methods.

Our approach is based on the following steps:

1. We represent the low-rank matrix in explicit factored
form X = UV > and replace the regularizer appropri-
ately. This results in a non-convex optimization prob-
lem in U ∈ Rd1×r and V ∈ Rd2×r, where r is the
rank parameter.

2. We solve the non-convex problem by alternating be-
tween updating U while keeping V fixed, and vice
versa. With the hinge loss (which we found works
best in experiments), each of these becomes an SVM
problem - hence we call our algorithm AltSVM.

3. The problem is of course not symmetric in U and V
because users rank items but not vice versa. For the U
update, each user vector naturally decouples and can
be done in parallel (and in fact just reduces to the case
of rankSVM (Joachims, 2002)).

4. For the V update, we show that this can also be made
into an SVM problem; however it involves coupling of
all item vectors, and all user ratings. We employ sev-
eral tricks (detailed below) to speed up and effectively
parallelize this step.

The non-convex problem can be written as

min
U,V

∑
(i,j,k)∈Ω

L(Yijk · u>i (vj − vk)) +
λ

2
(‖U‖2F + ‖V ‖2F)

(3)

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

where we replace the nuclear norm regularizer using the
property ‖X‖∗ = minX=UV >

1
2 (‖U‖2F + ‖V ‖2F) (Sre-

bro et al., 2004). u>i and v>i denote the ith rows of U
and V , respectively. While this is a non-convex algo-
rithm for which it is hard to find the global optimum, it is
computationally more efficient since only (d1 + d2)r vari-
ables are involved. We propose to use L2 hinge loss, i.e.,
L(x) = max(0, 1− x)2.

In the alternating minimization of (3), the subproblem for
U is to solve

U ← arg min
U∈Rd1×r

∑
(i,j,k)∈Ω

L(Yijk · u>i (vj − vj)) +
λ

2
‖U‖2F ,

(4)

while V is fixed. This can be decomposed into n indepen-
dent problems for ui’s where each solves for

ui ← arg min
u∈Rr

λ

2
‖u‖22 +

∑
(j,k)∈Ωi

L(Yijk · u>(vj − vk).

(5)

This part is in general a small-scale problem as the dimen-
sion is r, and the sample size is |Ωi| for each user i.

On the other hand, solving for V with fixed U can be writ-
ten as

V ← arg min
V ∈Rd2×r

λ2 ‖V ‖2F +
∑

(i,j,k)∈Ω

L(〈V,A(u,i,j)〉)

(6)

where A(i,j,k) ∈ Rd2×r is such that the lth row of A(i,j,k)

is Yijk · u>i if l = j, −Yijk · u>i if l = k, and 0 otherwise.
It is a much larger SVM problem than (5) as the dimension
is d2r and the sample size is |Ω|.

We note that the feature matrices {A(i,j,k) : (i, j, k) ∈ Ω}
are highly sparse since in each feature matrix only 2r out
of the d2r elements are nonzero. This motivates us to ap-
ply the stochastic dual coordinate descent algorithm (Hsieh
et al., 2008; Shalev-Shwartz & Zhang, 2013), which not
only converges fast but also takes advantages of feature
sparsity in linear SVMs. Each coordinate descent step takes
O(r) computation, and iterations over |Ω| coordinates pro-
vide linear convergence (Shalev-Shwartz & Zhang, 2013).

Now we describe the dual problems of our two subprob-
lems explicitly. Let α ∈ R|Ωi| denote the dual vector for
(5), in which each coordinate is denoted by αijk where

(j, k) ∈ Ωi. Then the dual problem of (5) is to solve

min
α∈R|Ωi|,α≥0

1

2

∥∥∥∥∥∥
∑

(j,k)∈Ωi

αijkYijk(vj − vk)

∥∥∥∥∥∥
2

2

+
1

λ

∑
(j,k)∈Ωi

L∗(−λαijk) (7)

where L∗(z) is the convex conjugate of L. At each co-
ordinate descent step for αijk, we find the value of αijk
minimizing (7) while all the other variables are fixed. If
we maintain ui =

∑
(j,k)∈Ωi

αijkYijk(vj − vk), then the
coordinate descent step is simply to find δ∗ minimizing

1

2
‖ui + δ∗Yijk(vj − vk)‖22 +

1

λ
L∗(−λ(αijk + δ∗)) (8)

and update αijk ← αijk + δ∗.

The dual problem of (6) is to solve

min
β∈R|Ω|,β≥0

1

2

∥∥∥∥∥∥
∑

(i,j,k)∈Ω

βijkA
(i,j,k)

∥∥∥∥∥∥
2

F

+
1

λ

∑
(i,j,k)∈Ω

L∗(−λβijk) (9)

where β is the dual vector for the subproblem (6). Similarly
to αijk, the coordinate descent step for βijk is to replace
βijk by βijk + δ∗ where δ∗ minimizes

1

2

(
‖vj + δ∗Yijkui‖22 + ‖vk − δ∗Yijkui‖22

)
+L∗(−λ(βijk + δ∗)), (10)

and maintain V =
∑

(i,j,k)∈Ω βijkYijkA
(i,j,k).

The detailed description of AltSVM is presented in Al-
gorithm 1. In each subproblem, we run the stochastic
dual coordinate descent, in which a pairwise comparison
(i, j, k) ∈ Ω is chosen uniformly at random, and the dual
coordinate descent for αijk or βijk is computed. We note
that each coordinate descent step takes the sameO(r) com-
putational cost in both subproblems, while the subproblem
sizes are much different.

4.1. Parallelization

For each subproblem, we parallelize the stochastic dual co-
ordinate descent algorithm asynchronously without lock-
ing. Given T processors, each processor randomly sam-
ple a triple (i, j, k) ∈ Ω and update the corresponding
dual variable and the user or item vectors. We note that
this update is for a sparse subset of the parameters. In the
user part, a coordinate descent step for one sample updates

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

Algorithm 1 Alternating Support Vector Machine
(AltSVM)
Require: Ω, {Yijk : (i, j, k) ∈ Ω}, and λ ∈ R+

Ensure: U ∈ Rd1×r, V ∈ Rd2×r

1: Initialize U , and set α, β ← 0 ∈ R|Ω|
2: while not converged do
3: vj ←

∑
(i,j,k)∈Ω βijkYijkui
−
∑

(i,k,j)∈Ω βikjYikjui, ∀j ∈ [d2]
4: for all threads t = 1, . . . , T in parallel do
5: for s = 1, . . . , S do
6: Choose (i, j, k) ∈ Ω uniformly at random
7: Find δ∗ minimizing (10).
8: βijk ← βijk + δ∗

9: vj ← vj + δ∗Yijkui
10: vk ← vk − δ∗Yijkui
11: end for
12: end for
13: ui ←

∑
(i,j,k)∈Ω αijkYijk(vj − vk), ∀i ∈ [d1]

14: for all threads t = 1, . . . , T in parallel do
15: for s = 1, . . . , S do
16: Choose (i, j, k) ∈ Ω uniformly at random.
17: Find δ∗ minimizing (8).
18: αijk ← αijk + δ∗

19: ui ← ui + δ∗Yijk(vj − vk)
20: end for
21: end for
22: end while

only r out of the rd1 variables. In the item part, one co-
ordinate descent step for a sample update only 2r out of
the rd2 variables. This motivates us not to lock the vari-
ables when updated, so that we ignore the conflicts. This
lock-free parallelism is shown to be effective in (Niu et al.,
2011) for stochastic gradient descent (SGD) on the sum of
sparse functions. Moreover, in (Hsieh et al., 2015), it is also
shown that the stochastic dual coordinate descent scales
well without locking. We implemented the algorithm us-
ing the OpenMP framework. In our implementations, we
also parallelized steps 3 and 13 of Algorithm 1. We show
in the next section that our proposed algorithm scales up
favorably.

4.2. Remark on the implementation

In Algorithm 1, the subproblem for V comes first, and
then it solves for the user vectors U . We empirically ob-
served that this order gives better convergence on practical
datasets. We also note that each subproblem reuses the dual
variables in the previous outer iteration. When almost con-
verged, the features (V for solving U , and U for solving V)
do not change too much. By reusing the dual variables in
the previous iteration we can start with a feasible solution
close to the optimum.

5. Experimental results
5.1. Pairwise data

We used the MovieLens 100k dataset, which contains
100,000 ratings given by 943 users on 1682 movies. The
ratings are given as integers from one to five, but we con-
verted them into preference data by declaring that a user
preferred one movie to another if they gave it a higher rat-
ing (if two movies received the same rating, we treated it
as though the user did not provide a preference). Then we
held out 20% of the data as a test set.

We compared our algorithm to the following two:

• Bayesian Personalized Ranking (BPR) (Rendle et al.,
2009): This algorithm is based on a similar model to
ours, but a different optimization procedure (essen-
tially, a variant of stochastic gradient descent).

• Matrix completion from pairwise differences : A stan-
dard matrix completion algorithm that observes – for
various triples (i, j, k) ∈ Ω – the difference between
user i’s ratings for item j and item k. Note that
this algorithm has an advantage over (2) because it
sees the magnitude of this difference instead of only
its sign. Nevertheless, the matrix completion algo-
rithm does not perform any better than (2). A similar
phenomenon was also observed in (Davenport et al.,
2014).

We evaluate our performance by computing the proportion
of pairwise comparisons in the test set T for which we cor-
rectly infer the user’s preference.

(Prediction error) =
1

|T |
∑

(i,j,k)∈T ,Yijk=1

I(Xij > Xik)

This is similar to the AUC statistic measured by Rendle
et al. (Rendle et al., 2009), and if the data were fully ob-
served then it would measure Kendall’s distance between
each user’s true preferences and the learned ones. However,
our main reason for choosing this measure of performance
is that, as an average accuracy over all pairwise compari-
sions, it resembles the quantity that we study in our theo-
retical bounds.

Unsurprisingly, we were more accurate at correctly infer-
ring strong preferences; therefore, we have also shown the
accuracy obtained by only measuring performance on pairs
whose rankings differ by two or more. Both the methods
we considered do measurably better at predicting these or-
derings.

5.2. Large-scale experiments on rating data

Now we demonstrate that our algorithm performs well as
a collaborative ranking method on rating data. We used

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

10 20 30 40 50 60 70 80 90 100
Number of comparisons per user

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68

P
re

d
ic

ti
o
n
 e

rr
o
r

Convex
BPR
Matrix completion

10 20 30 40 50 60 70 80 90 100
Number of comparisons per user

0.50

0.55

0.60

0.65

0.70

0.75

P
re

d
ic

ti
o
n
 e

rr
o
r

Convex (restricted)
BPR (restricted)
Matrix completion (restricted)

Figure 1. Prediction accuracy on the MovieLens 100k dataset, for
different numbers of observed comparisions per user. For the “re-
stricted” plots, only the pairs with a rating difference of two or
more were used for evaluation.

the datasets specified in Table 1. Given a training set of
ratings for each user, our algorithm will only use non-tying
pairwise comparisons from the set, while other competing
algorithms use the ratings themselves. Hence, they have
more information than ours. The competing algorithms are
those with publicly available codes provided by the authors.

• CofiRank (Weimer et al., 2007)1 This algorithm uses
alternating minimization to directly optimize NDCG.

• Local Collaborative Ranking (LCR) (Lee et al.,
2014)2 : The main idea is to predict preferences
from the weighted sum of multiple low-rank matrices
model.

• RobiRank (Yun et al., 2014)3 : This algorithm uses
stochastic gradient descent to optimize the loss func-
tion motivated from robust binary classification.

• Global Ranking : To see the effect of personalized
ranking, we compare the results with a global rank-
ing of the items. We fixed U to all ones and solved for
V .

1http://www.cofirank.org, The dimension and the
regularization parameter are set as suggested in the paper. For
the rest of the parameters, we left them as provided.

2http://prea.gatech.edu, We run the code with each
of the 48 sets of loss function and parameters given in the main
code, and the best result is reported. We could not run this algo-
rithm on the Netflix dataset due to time constraint.

3https://bitbucket.org/d_ijk_stra/
robirank, We used the part for collaborative ranking from
binary relevence score. We left the parameter settings as provide
with the implementation.

MovieLens1m MovieLens10m Netflix
Users 6,040 71,567 480,000
Items 3,900 10,681 17,000

Ratings 1,000,209 10,000,054 100,000,000

Table 1. Datasets to be used for simulation

The algorithms are compared in terms of two standard
performance measures of ranking, which are NDCG and
Precision@K. NDCG@K is the ranking measure for nu-
merical ratings. NDCG@K for user i is defined as

NDCG@K(i) =
DCG@K(i, πi)

DCG@K(i, π∗i)

where

DCG@K(i, πi) =

K∑
k=1

2Miπi(k) − 1

log2(k + 1)
,

and πu(k) is the index of the kth ranked item of Ti in our
prediction. Mij is the true rating of item j by user i in the
given dataset, and π∗u is the permutation that maximizes
DCG@K. This measure counts only the top K items in
our predicted ranking and put more weights on the predic-
tion of highly ranked items. We measured NDCG@10 in
our experiments. Precision@K is the ranking measure for
binary ratings. Precision@K for user i is defined as

Precision@K(i) =
1

K

∑
j∈PK(i)

Mij

where Mij is the binary rating on item j by user i given in
the dataset. This counts the number of relevant items in the
predicted top K recommendation. These two measures are
averaged over all of the users.

We first compare our algorithm with numerical rating based
algorithms, CofiRank and LCR. We follow the standard
setting that are used in the collaborative ranking litera-
ture (Weimer et al., 2007; Balakrishnan & Chopra, 2012;
Volkovs & Zemel, 2012; Lee et al., 2014). For each user,
we subsampled N ratings, used them for training, and
took the rest of the ratings for test. The users with less
than N + 10 ratings were dropped out. Table 2 compares
AltSVM with numerical rating based algorithms. While
N = 20 is too small so that a global ranking provides the
best NDCG, our algorithm performs the best with larger
N . We also ran our algorithm with subsampled pairwise
comparions with the largest numerical gap (AltSVM-sub),
which are as many as N for each user (the number of nu-
merical ratings used in the other algorithms). Even with
this, we could achieve better NDCG. We can also observe
that the statistical performance is better with the hinge loss
than with the logistic loss.

http://www.cofirank.org
http://prea.gatech.edu
https://bitbucket.org/d_ijk_stra/robirank
https://bitbucket.org/d_ijk_stra/robirank

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

0 10 20 30 40 50
Time (seconds)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
D

C
G

@
10

MovieLens1m, 50 ratings/user, rank 10

AltSVM, 1 thread
AltSVM, 4 threads
AltSVM, 16 threads
CofiRank

0 50 100 150 200 250 300
Time (seconds)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

N
D

C
G

@
10

MovieLens10m, 50 ratings/user, rank 10

AltSVM, 1 thread
AltSVM, 4 threads
AltSVM, 16 threads
CofiRank

0 200 400 600 800 1000
Time (seconds)

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ec

is
io

n@
10

Binarized MovieLens1m, rank 100

AltSVM, 1 thread
AltSVM, 4 threads
AltSVM, 16 threads
RobiRank, 1 thread
RobiRank, 4 threads
RobiRank, 16 threads

(a) (b) (c)

Figure 2. NDCG@10 and Precision@10 over time for different algorithms.

Datasets N AltSVM AltSVM-sub AltSVM-logistic Global CofiRank LCR
20 0.7308 0.6998 0.7125 0.7500 0.7333 0.7007

MovieLens1m 50 0.7712 0.7392 0.7141 0.7501 0.7441 0.7081
100 0.7902 0.7508 0.7446 0.7482 0.7332 0.7151
20 0.7059 0.7053 0.7031 0.7264 0.7076 0.6977

MovieLens10m 50 0.7508 0.7212 0.7115 0.7176 0.6977 0.6940
100 0.7692 0.7248 0.7292 0.7101 0.6754 0.6899
20 0.7132 0.6822 - 0.7605 0.6615 -

Netflix 50 0.7642 0.7111 - 0.7640 0.6527 -
100 0.8007 0.7393 - 0.7656 0.6385 -

Table 2. NDCG@10 on different datasets, for different numbers of observed ratings per user.

AltSVM RobiRank
Precision@ C = 1000 C = 2000 C = 5000

1 0.2165 0.2973 0.3635 0.3009
2 0.1965 0.2657 0.3297 0.2695
5 0.1572 0.2097 0.2697 0.2300
10 0.1265 0.1709 0.2223 0.1922

100 0.0526 0.0678 0.0819 0.0781

Table 3. Precision@K on the binarized MovieLens1m dataset.

cores 1 2 4 8 16
Time(seconds) 963.1 691.8 365.1 188.3 111.0

Speedup 1x 1.4x 2.6x 5.1x 8.7x

Table 4. Scalability of AltSVM on the binarized MovieLens1m
dataset.

We have also experimented with collaborative ranking on
binary ratings. We compare our algorithm against Robi-
Rank (Yun et al., 2014), which is a recently proposed algo-
rithm for collaborative ranking with binary ratings. We ran
an experiment on a binarized version of the Movielens1m
dataset. In this case, the movies rated by a user is assumed
to be relevant to the user, and the other items are not. Since
it is inefficient to take all possible comparisons which are
in average a half million per user, we subsampled C com-
parisons for each user. Both algorithms are set to estimate
rank-100 matrices. Table 3 shows that our algorithm pro-
vides better performance than RobiRank.

5.3. Computational speed and Scalability

We now show the computational speed and scalability of
our practical algorithm, AltSVM. The experiments were
run on a single 16-core machine in the Stampede Cluster
at University of Texas.

Figures 2a and 2b show NDCG@10 over time of our al-
gorithms with 1, 4, and 16 threads, compared to CofiRank.
Figure 2c shows Precision@10 over time of our algorithm
with C = 5000. We note that our algorithm converges
faster, while the sample size |Ω| for our algorithm is larger
than the number of training ratings that are used in the
competing algorithms. Table 4 shows the scalability of
AltSVM. We measured the time to achieve 10−5 tolerance
on the binarized MovieLens1m dataset. As can be seen in
the table, we could achieve significant speedup.

6. Conclusion
We considered the collaborative ranking problem where
one fits a low-rank matrix to the pairwise comparisons by
multiple users. We showed that the convex relaxation of
the empirical risk minimization provides good generaliza-
tion guarantees. For the large-scale practical settings, we
also proposed a non-convex algorithm, which alternately
solves two SVM problems. Our algorithm was shown to
outperform the existing ones and parallelizes well.

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

References
Ailon, Nir. Active learning ranking from pairwise pref-

erences with almost optimal query complexity. In
Advances in Neural Information Processing Systems
(NIPS), pp. 810–818, 2011.

Balakrishnan, Suhrid and Chopra, Sumit. Collaborative
ranking. In ACM International Conference on Web
Search and Data Mining (WSDM), 2012.

Bradley, Ralph Allan and Terry, Milton E. Rank analysis of
incomplete block designs: I. the method of paired com-
parisons. Biometrika, pp. 324–345, 1952.

Davenport, Mark A, Plan, Yaniv, Berg, Ewout van den, and
Wootters, Mary. 1-bit matrix completion. Information
and Inference, 3(3):189–223, 2014.

Hajek, Bruce, Oh, Sewoong, and Xu, Jiaming. Minimax-
optimal inference from partial rankings. In Advances in
Neural Information Processing Systems (NIPS), 2014.

Herbrich, Ralf, Graepel, Thore, and Obermayer, Klaus.
Large Margin Rank Boundaries for Ordinal Regression,
chapter 7, pp. 115–132. MIT Press, January 2000.

Hsieh, Cho-Jui, Chang, Kai-Wei, Lin, Chih-Jen, Keerthi,
S. Sathiya, and Sundararajan, S. A dual coordinate de-
scent method for large-scale linear SVM. In Interna-
tional Conference on Machine Learning (ICML), 2008.

Hsieh, Cho-Jui, Yu, Hsiang-Fu, and Dhillon, Inderjit S.
PASSCoDe: Parallel asynchronous stochastic dual co-
ordinate descent. In International Conference on Ma-
chine Learning (ICML), 2015.

Hu, Yifan, Koren, Yehuda, and Volinsky, Chris. Collabo-
rative filtering for implicit feedback datasets. In IEEE
International Conference on Data Mining (ICDM), pp.
263–272. IEEE, 2008.

Jamieson, K. G. and Nowak, R. Active ranking using pair-
wise comparisons. In Advances in Neural Information
Processing Systems (NIPS), 2011a.

Jamieson, Kevin G. and Nowak, Robert D. Active rank-
ing using pairwise comparisons. In Advances in Neural
Information Processing Systems (NIPS), 2011b.

Joachims, Thorsten. Optimizing search engines using
clickthrough data. In SIGKDD, 2002.

Lee, Joonseok, Bengio, Samy, Kim, Seungyeon, Lebanon,
Guy, and Singer, Yoram. Local collaborative ranking.
In International World Wide Web Conference (WWW),
2014.

Liu, Nathan N, Zhao, Min, and Yang, Qiang. Probabilistic
latent preference analysis for collaborative filtering. In
Proceedings of the 18th ACM conference on Information
and knowledge management, pp. 759–766. ACM, 2009.

Liu, Tie-Yan. Learning to Rank for Information Retrieval.
Now Publishers Inc., 2009.

Lu, Yu and Negahban, Sahand. Individualized rank aggre-
gation using nuclear norm regularization. ArXiv e-prints:
1410.0860, Oct 2014.

Luce, Duncan R. Individual Choice Behavior. Wiley, 1959.

Negahban, Sahand, Oh, Sewoong, and Shah, Devavrat.
Iterative ranking from pair-wise comparisons. In
Advances in Neural Information Processing Systems
(NIPS), 2012.

Niu, Feng, Recht, Benjamin, Ré, Christopher, and Wright,
Stephen. Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In Advances in Neural
Information Processing Systems (NIPS), 2011.

Rendle, Steffen, Freudenthaler, Christoph, Gantner, Zeno,
and Schmidt-Thieme, Lars. Bpr: Bayesian personalized
ranking from implicit feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence, pp. 452–461. AUAI Press, 2009.

Shalev-Shwartz, Shai and Zhang, Tong. Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion. Journal of Machine Learning Research (JMLR),
pp. 567–599, 2013.

Shi, Yue, Karatzoglou, Alexandros, Baltrunas, Linas, Lar-
son, Martha, Oliver, Nuria, and Hanjalic, Alan. Climf:
collaborative less-is-more filtering. In Proceedings of the
Twenty-Third international joint conference on Artificial
Intelligence, pp. 3077–3081. AAAI Press, 2013.

Srebro, Nathan, Rennie, Jason, and Jaakkola, Tommi.
Maximum margin matrix factorization. In Advances in
Neural Information Processing Systems (NIPS), 2004.

Volkovs, Maksims N. and Zemel, Richard S. Collabora-
tive ranking with 17 parameters. In Advances in Neural
Information Processing Systems (NIPS), 2012.

Wauthier, Fabian L., Jordan, Michael I., and Jojic, Nebo-
jsa. Efficient ranking from pairwise comparisons. In
International Conference on Machine Learning (ICML),
2013.

Weimer, Markus, Karatzoglou, Alexandros, Le, Quoc V.,
and Smola, Alex. Cofirank: maximum margin matrix
factorization for collaborative ranking. In Advances in
Neural Information Processing Systems (NIPS), 2007.

Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons

Weston, Jason, Want, Chong, Weiss, Ron, and Berenzeig,
Adam. Latent collaborative retrieval. In International
Conference on Machine Learning (ICML), 2012.

Xu, Jiaming, Wu, Rui, Zhu, Kai, Hajek, Bruce, Srikant,
R, and Ying, Lei. Jointly clustering rows and columns
of binary matrices: Algorithms and trade-offs. In ACM
Sigmetrics, 2013.

Yi, Jinfeng, Jin, Rong, Jain, Shaili, and Jain, Anil. Infer-
ring users preferences from crowdsourced pairwise com-
parisons: A matrix completion approach. In First AAAI
Conference on Human Computation and Crowdsourc-
ing, 2013.

Yun, Hyokun, Raman, Parameswaran, and Vishwanathan,
S. V. N. Ranking via robust binary classification and
parallel parameter estimation in large-scale data. In
Advances in Neural Information Processing Systems
(NIPS), 2014.

