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Abstract
We consider the problem of transferring some
a priori knowledge in the context of supervised
metric learning approaches. While this setting
has been successfully applied in some empirical
contexts, no theoretical evidence exists to justify
this approach. In this paper, we provide a theo-
retical justification based on the notion of algo-
rithmic stability adapted to the regularized met-
ric learning setting. We propose an on-average-
replace-two-stability model allowing us to prove
fast generalization rates when an auxiliary source
metric is used to bias the regularizer. Moreover,
we prove a consistency result from which we
show the interest of considering biased weighted
regularized formulations and we provide a solu-
tion to estimate the associated weight. We also
present some experiments illustrating the interest
of the approach in standard metric learning tasks
and in a transfer learning problem where few la-
belled data are available.

1. Introduction
A lot of machine learning problems, such as clustering,
classification or ranking, require to accurately compare ex-
amples by means of distances or similarities. Designing
a good metric for a task at hand is thus of crucial impor-
tance. Manually tuning a metric is in general difficult and
tedious, a recent trend consists to learn the metrics directly
from data. This has led to the emergence of supervised
metric learning, see (Bellet et al., 2013; Kulis, 2013) for
up-to-date surveys. The underlying idea is to infer auto-
matically the parameters of a metric in order to capture the
idiosyncrasies of the data. In a supervised classification
perspective, this is generally done by trying to satisfy pair-
based constraints aiming at assigning a small (resp. large)
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score to pairs of examples of the same class (resp. dif-
ferent class). Most of the existing work has notably fo-
cused on learning Mahalanobis-like distances of the form
dM(x,x′) =

√
(x− x′)TM(x− x′) where M is a posi-

tive semi-definite (PSD) matrix1, the learned matrix being
typically plugged in a k-Nearest Neighbor classifier allow-
ing one to achieve a better accuracy than the standard Eu-
clidean distance.

Recently, there is a growing interest for methods
able to take into account some background knowledge
(Parameswaran & Weinberger, 2010; Cao et al., 2013;
Bohné et al., 2014) for learning M. This is in particular the
case for supervised regularized metric learning approaches
where the regularizer is biased with respect to an auxiliary
metric given under the form of a matrix. The main ob-
jective here is to make use of this a priori knowledge in a
setting where only few labelled data are available to help
learning. For example, in the context of learning a PSD
matrix M plugged into a Mahalanobis-like distance as dis-
cussed above, let I be the identity matrix used as an aux-
iliary knowledge, ‖M − I‖ is a biased regularizer often
considered. This regularization can be interpreted as fol-
lows: learn M while trying to stay close to the Euclidean
distance, or from another standpoint try to learn a matrix M
which performs better than I. Other standard matrices can
be used such as Σ−1 the inverse of the variance-covariance
matrix, note that if we take the 0 matrix, we retrieve the
classical unbiased regularization term.

Another useful setting comes when I is replaced by any
auxiliary matrix MS learned from another task. This cor-
responds to a transfer learning approach where the biased
regularization can be interpreted as transferring the knowl-
edge brought by MS for learning M. This setting is appro-
priate when the distributions over training and testing do-
mains are different but related. Domain adaptation strate-

1Note that this distance is a generalization of some well-
known distances: when M = I, I being the identity matrix, we
retrieve the Euclidean distance, when M = Σ−1 where Σ is the
variance-covariance matrix of the data at hand, it actually corre-
sponds to the original definition of a Mahalanobis distance.
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gies (Ben-David et al., 2010) propose to make use of the re-
lationship between the training examples, called the source
domain, and the testing instances, called the target domain
to infer a model. However, it is sometimes not possible to
have access to all the training examples, for example when
some new domains are acquired incrementally. In this con-
text, transferring the information directly from the model
learned from the source domain without any other access to
the source domain is of crucial importance. In the context
of this paper, we call this setting Metric Hypothesis Trans-
fer Learning in reference to the Hypothesis Transfer Learn-
ing model introduced in (Kuzborskij & Orabona, 2013) in
the context of classical supervised learning.

Metric learning generally suffers from a lack of theoret-
ical justifications, in particular metric hypothesis transfer
learning has never been investigated from a theoretical
standpoint. In this paper, we propose to bridge this gap
by providing a theoretical analysis showing that supervised
regularized metric learning approaches using a biased reg-
ularization are well-founded. Our theoretical analysis is
based on algorithmic stability arguments allowing one to
derive generalization guarantees when a learning algorithm
does not suffer too much from a little change in the train-
ing sample. As a first contribution, we introduce a new
notion of stability called on-average-replace-two-stability
that is well-suited to regularized metric learning formula-
tions. This notion allows us to prove a high probability
generalization bound for metric hypothesis transfer learn-
ing achieving a fast converge rate in O(1/n) in the con-
text of admissible, lipschitz and convex losses. In a second
step, we provide a consistency result from which we justify
the interest of weighted biased regularization of the form
‖M − βMS‖ where β is a parameter to set. From this
result, we derive an approach for assessing this parameter
without resorting to a costly parameter tuning procedure.
We also provide an experimental study showing the effec-
tiveness of transfer metric learning with weighted biased
regularization in the presence of few labeled data both on
standard metric learning and transfer learning tasks.

This paper is organized as follows. Section 2 introduces
some notations and definitions while Section 3 discusses
some related work. Our theoretical analysis is presented in
Section 4. We detail our experiments in Section 5 before
concluding in Section 6.

2. Notations and Definitions
We start by introducing several notations and definitions
that will be used throughout the paper. Let T be a domain
equipped with a probability distribution DT defined over
X ×Y , where X ⊆ Rd and Y is the label set. We consider
metrics corresponding to distance functions X ×X → R+

parameterized by a d× d positive semi-definite (PSD) ma-

trix M denoted M � 0. In the following, a metric will
be represented by its matrix M. We also consider that we
have access to some additional information under the form
of an auxiliary d× d matrix MS , throughout this paper we
call this additional information source metric or source hy-
pothesis. We denote the Frobenius norm by ‖ · ‖F , Mkl

represents the value of the entry at index (k, l) in matrix
M, [a]+ = max(a, 0) denotes the hinge loss and [n] the
set {1, . . . , n} for any n ∈ N.

Let T = {zi = (xi, yi)}ni=1 be a labeled training set drawn
from DT . We consider the following learning framework
for biased regularized metric learning:

M∗ = arg min
M�0

LT (M) + λ‖M−MS‖F (1)

where LT (M) = 1
n2

∑
z,z′∈T l(M, z, z′) stands for the

empirical risk of a metric hypothesis M. Similarly we de-
note the true risk by LDT (M) = Ez,z′∼DT l(M, z, z′). In
this work we only consider convex, k-lipschitz and (σ,m)-
admissible losses for which we recall the definitions below.

Definition 1 (k-lipschitz continuity). A loss function
l(M, z, z′) is k-lipschitz w.r.t. its first argument if, for any
matrices M, M′ and any pair of examples z, z′, there exists
k ≥ 0 such that:

|l(M, z, z′)− l(M′, z, z′)| ≤ k‖M−M′‖F .

This property ensures that the loss deviation does not ex-
ceed the deviation between matrices M and M′ with re-
spect to a positive constant k.

Definition 2 ((σ,m)-admissibility). A loss function
l(M, z, z′) is (σ,m)-admissible, w.r.t. M, if it is convex
w.r.t. its first argument and if for any two pairs of examples
z1, z2 and z3, z4, we have:

|l(M, z1, z2)− l(M, z3, z4)| ≤ σ |y1y2 − y3y4|+m

where yiyj = 1 if yi = yj and −1 otherwise. Thus
|y1y2 − y3y4| ∈ {0, 2}.

This property bounds the difference between the losses of
two pairs of examples by a value only related to the labels
plus a constant independent from M.

To derive our theoretical results, we make use of the notion
of algorithmic stability which allows one to provide gen-
eralization guarantees. A learning algorithm is stable if a
slight modification in its input does not change its output
much. In our analysis we use two definitions of stability.
On the one hand, we introduce in Section 4.1 the notion
of on-average-replace-two-stability which is an adaptation
to metric learning of the notion of on-average-replace-one-
stability proposed in (Shalev-Shwartz & Ben-David, 2014)
and recalled in Def. 3 below.
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Definition 3 (On-average-replace-one-stability). Let ε :
N→ R be monotonically decreasing and U(n) be the uni-
form distribution over [n]. An algorithm A is on-average-
replace-one-stable with rate ε(n) if for any distributionDT

ET∼DT
n

i∼U(n)
z′∼DT

[
l(A(T i), zi)− l(A(T ), zi)

]
≤ ε(n)

where A(T ), respectively A(T i) is the optimal solution of
algorithmAwhen learning with training set T , respectively
T i. T i is obtained by replacing the ith example of T by z′.

This property ensures that, given an example, learning with
or without it will not imply a big change in the hypothesis
prediction. Note that the property is required to be true on
average over all the possible training sets of size n.

On the other hand, we consider an adaptation of the frame-
work of uniform stability for metric learning proposed in
(Jin et al., 2009) and recalled in Def. 4.

Definition 4 (Uniform stability). A learning algorithm has
a uniform stability in Kn , with K ≥ 0 a constant, if ∀i,

sup
z,z′∼DT

∣∣∣l(M∗, z, z′)− l(Mi∗, z, z′)
∣∣∣ ≤ K

n

where M∗ is the matrix learned on the training set T , Mi∗

is the matrix learned on the training set T i obtained by
replacing the ith example of T by a new independent one.

Uniform stability requires that a small change in the train-
ing set does not imply a significant variation in the learned
models output. The constraint inO

(
1
n

)
over the supremum

makes this property rather strong since it considers a worst
case over the possible pairs of examples to compare, what-
ever the training set. It is actually one of the most general
algorithmic stability setting (Bousquet & Elisseeff, 2002).

3. Related Work
3.1. Metric Learning

Based on the pioneering approach of (Xing et al., 2002),
metric learning aims at finding the parameters of a dis-
tance function by maximizing the distance between dis-
similar examples (i.e. examples of different class) while
maintaining a small distance between similar ones (i.e. of
similar class). Following this idea, one of the most fa-
mous approach, called LMNN (Weinberger et al., 2005),
proposes to learn a PSD matrix dedicated to improve the
k-nearest neighbours algorithm. To do so, the authors force
the metric to respect triplet-based local constraints of the
form (zi, zj , zk) where zj and zk belong to the neighbour-
hood of zi, zi and zj being of the same class, and zk being
of opposite class. The constraints impose that zi should
be closer to zj than to zk with respect to a margin ε. In

ITML, (Davis et al., 2007) propose to use a LogDet diver-
gence as a regularizer allowing one to ensure an automatic
enforcement of the PSD constraint. The idea is to force the
learned matrix M to stay as close as possible to a good ma-
trix MS defined a-priori (in general MS is chosen as the
identity matrix). Indeed, if this divergence is finite, the au-
thors show that M is guaranteed to be PSD. This constraint
over M can be interpreted as a biased regularization w.r.t.
MS .

The idea behind biased regularization has been successfully
used in many metric learning approaches. For example,
(Zha et al., 2009) have proposed to replace the identity ma-
trix (MS = I) originally used in ITML by matrices previ-
ously learned on so called auxiliary data sets. Similarly, in
(Parameswaran & Weinberger, 2010) the authors are inter-
ested in Multi-Task metric learning. They propose to learn
one metric for each task and a global metric common to
all the tasks. For this global metric, they consider a biased
regularization of the form ‖M − I‖2F where I is the iden-
tity matrix but they do not study any other kind of source
information. In (Cao et al., 2013), the authors use a similar
biased regularization to learn a metric learning model for
face recognition. As a last example, (Bohné et al., 2014)
introduce a regularization of the form ‖M − βI‖F where
they learn M and β. In our work, instead of optimizing
these two parameters, we derive a theoretically founded al-
gorithm to choose beforehand the optimal value of β.

3.2. Theoretical Frameworks in Metric Learning

Theoretically speaking, there is not a lot of frameworks for
metric learning. The goal of generalization guarantees is to
show that the empirical estimation of the error of an algo-
rithm does not deviate much from the true error. One of the
main difficulty in deriving bounds for metric learning is the
fact that instead of considering examples drawn i.i.d. from
a distribution, we consider pairs of examples which might
not be independent. Building upon the framework of sta-
bility proposed in (Bousquet & Elisseeff, 2002), (Jin et al.,
2009) propose one of the first study of the generalization
ability of a metric learning algorithm. Building upon this
work, (Perrot et al., 2014) give theoretical guarantees for
a local metric learning algorithm and (Bellet et al., 2012)
derive generalization guarantees for a similarity learning
algorithm. Other ways to derive generalization guarantees
are to use the Rademacher complexity as in (Cao et al.,
2012; Guo & Ying, 2014) or to use the notion of algorith-
mic robustness (Bellet & Habrard, 2015).

3.3. Biased Regularization in Supervised Learning

Biased regularization has already been studied in non met-
ric learning settings. For example in (Kienzle & Chel-
lapilla, 2006), the authors propose to use biased regular-
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ization to learn SVM classifiers. A first theoretical study
of biased regularization in the context of regularized least
squares has been proposed in (Kuzborskij & Orabona,
2013). Their study is based on a notion of hypothesis sta-
bility less general than the uniform stability used in our ap-
proach. In (Kuzborskij & Orabona, 2014), the authors de-
rive generalization bounds based on the Rademacher com-
plexity for regularized empirical risk minimization meth-
ods in a supervised learning setting. Their results show that
if the true risk of the source hypothesis on the target do-
main is low, then the generalization rate can be improved.
However computing the true risk of the source hypothesis
is not possible in practice. In our analysis, we derive a gen-
eralization bound which depends on the empirical risk and
the complexity (w.r.t. the regularization term) of the source
metric. It allows us to derive an algorithm to minimize the
generalization bound taking into account the performance
and the complexity of the source metric.

4. Contribution
We divide our contribution consisting of a theoretical
analysis of Alg. 1 given convex, k-lipschitz and (σ,m)-
admissible losses into three parts. First, we provide an on
average analysis for ET [LDT (M∗)] where M∗ represents
the metric learned with Alg. 1 using training set T . This
analysis allows us to bound the expected loss over distri-
bution DT with respect to the loss of the auxiliary metric
MS over DT . It shows that on average the learned metric
tends to be better than the given source MS , with a fast
convergence rate in O(1/n). Second, we provide a con-
sistency analysis of our framework leading to a standard
convergence rate of O

(
1√
n

)
w.r.t the empirical loss over

T optimized in Alg. 1. In a third part, we specialize the
previous consistency result to a specific loss and show that
it is possible to refine our generalization bound in order to
depend both on the complexity of our source metric MS
and its empirical performance on the training set T . We
then deduce an approach to weight the importance of the
source hypothesis for optimizing the generalization bound.

4.1. On average analysis

Def. 3 allows one to perform an average analysis over the
expected loss, however its formulation is not tailored to
metric learning approaches that work with pair of exam-
ples. Thus we propose an adaptation of it that we call on-
average-replace-two-stability allowing one to derive sharp
bounds for metric learning.

Definition 5 (On-average-replace-two-stability). Let ε :
N → R be monotonically decreasing and let U(n) be the
uniform distribution over [n]. A metric learning algorithm
is on-average-replace-two-stable with rate ε(n) if for every

distribution DT :

E T∼DT
n

i,j∼U(n)
z1,z2∼DT

[
l(Mij

∗
, zi, zj)− l(M∗, zi, zj)

]
≤ ε(n)

where M∗, respectively Mij
∗
, is the optimal solution

when learning with the training set T , respectively T ij .
T i
j is obtained by replacing zi, the ith example of T , by

z1 to get a training set T i and then by replacing zj , the jth

example of T i, by z2.

Note that when this definition holds, it implies
ET [LDT (M∗)− LT (M∗)] ≤ ε(n). The next theorem
shows that our algorithm is on-average-replace-two-stable.

Theorem 1 (On-average-replace-two-stability). Given a
training sample T of size n drawn i.i.d. fromDT , our algo-
rithm is on-average-replace-two-stable with ε(n) = 8k2

λn .

Proof. The proof of Th. 1 can be found in the supplemen-
tary material.

We can now bound the expected true risk of our algorithm.
Theorem 2 (On average bound). For any convex, k-
lipschitz loss, we have:

ET∼DT n [LDT (M∗)] ≤ LDT (MS) +
8k2

λn

where the expected value is taken over size-n training sets.

Proof. We have:

ET [LDT (M∗)]

= ET [LDT (M∗)] + ET [LT (M∗)]− ET [LT (M∗)]

= ET [LT (M∗)] + ET [LDT (M∗)− LT (M∗)]

≤ ET [LT (MS)] +
8k2

λn
. (2)

Inequality 2 is obtained by noting that from Th. 1 we have
ET [LDT (M∗)− LT (M∗)] ≤ 8k2

λn , then the convexity of
our algorithm and the optimality of M∗ give LT (M∗) ≤
LT (M∗)+λ‖M∗−MS‖2F ≤ LT (MS)+λ‖MS−MS‖2F .
Noting that ET [LT (MS)] = LDT (MS) gives Th. 2.

This bound shows that with a sufficient number of exam-
ples w.r.t. a fast convergence rate in O(1/n), we will on
average obtain a metric which is at least as good as the
source hypothesis. Thus choosing a good source metric is
key to learn well.

4.2. Consistency analysis

We now provide a consistency analysis taking into account
the empirical risk optimized in Alg. 1. We begin by show-
ing that our algorithm is uniformly stable w.r.t. Def. 4 in
the next theorem.
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Theorem 3 (Uniform stability). Given a training sample
T of n examples drawn i.i.d. from DT , our algorithm has
a uniform stability in Kn with K = 4k2

λ .

Proof. The beginning of the proof follows closely the one
proposed in (Bousquet & Elisseeff, 2002) and is postponed
to the supplementary material for the sake of readability.
We consider the end of the proof here. We have

B ≤ 4kt

n
‖∆M‖F

whereB = λ‖M−MS‖2F−λ‖M−t∆M−MS‖2F+λ‖Mi−
MS‖2F − λ‖Mi + t∆M−MS‖2F .
Setting t = 1

2 we have:

B = λ‖M−MS‖2F − λ‖M−
1

2
∆M−MS‖2F

+ λ‖Mi −MS‖2F − λ‖Mi +
1

2
∆M−MS‖2F

=λ
∑
k

∑
l

[
(Mkl −MSkl)

2 − (Mkl−
1

2
(Mkl−Mi

kl)−MSkl)
2

+(Mi
kl −MSkl)

2 − (Mi
kl +

1

2
(Mkl −Mi

kl)−MSkl)
2

]
=λ
∑
i

∑
j

[
(Mkl−MSkl)

2−(
1

2
(Mkl−MSkl)+

1

2
(Mi

kl−MSkl))
2

+(Mi
kl −MSkl)

2 − (
1

2
(Mkl −MSkl) +

1

2
(Mi

kl −MSkl))
2

]
=λ
∑
i

∑
j

[
1

2
((Mkl −MSkl)

2

+(Mi
kl −MSkl)

2 − 2(Mkl −MSkl)(M
i
kl −MSkl))

]
=λ
∑
i

∑
j

[
1

2
(Mkl −MSkl −Mi

kl −MSkl)
2

]
=
λ

2
‖∆M‖2F .

Then we obtain
λ

2
‖∆M‖2F ≤

4k

2n
‖∆M‖F ⇔ ‖∆M‖F ≤

4k

λn
.

Using the k-lipschitz continuity of the loss, we have:

sup
z,z′
|l(M, z, z′)− l(Mi, z, z′)| ≤ k‖∆M‖F ≤

4k2

λn
.

Setting K = 4k2

λ concludes the proof.

Using the fact that our algorithm is uniformly stable, we
can derive generalization guarantees as stated in Th. 4.
Theorem 4 (Generalization bound). With probability 1−δ,
for any matrix M learned with our K uniformly stable
algorithm and for any convex, k-lipschitz and (σ,m)-
admissible loss, we have:

LDT (M) ≤ LT (M) + (4σ + 2m+ c)

√
ln 2

δ

2n
+O

(
1

n

)
where c is a constant linked to the k-lipschitz property of

the loss.

Proof. The proof is available in the supplementary.

This bound shows that with a convergence rate in O
(

1√
n

)
the true risk of our algorithm is bounded above by the em-
pirical risk justifying the consistency of the approach. In
the next section, we propose an extension of this analysis
to include the performance of the source metric. This ex-
tension allows us to introduce a natural weighting of the
source metric in order to improve the proposed bound.

4.3. Refinement with weighted source hypothesis

In this part we study a specific loss, namely l(M, z, z′) =[
yy′((x− x′)TM(x− x′)− γyy′)

]
+

where yy′ = 1 if
y = y′ and −1 otherwise. The convexity follows from the
use of the hinge loss. In the next two lemmas, we show that
this loss is k-lipschitz continuous and (σ,m)-admissible.
The (σ,m)-admissibility result is of high importance be-
cause it allows us to introduce some information coming
from the source matrix MS .

Lemma 1 (k-lipschitz continuity). Let M and M′ be two
matrices and z, z′ be two examples. Our loss l(M, z, z′) is
k-lipschitz continuous with k = maxx,x′ ‖x− x′‖2.

Proof. The proof is available in the supplementary.

Lemma 2 ((σ,m)-admissibility). Let z1, z2, z3, z4 be four
examples and M∗ be the optimal solution of Problem 1.
The convex and k-lipschitz loss function l(M, z, z′) is
(σ,m)-admissible with σ = max(γy3y4 , γy1y2) and

m = 2 maxx,x′ ‖x− x′‖2 (
√

LT (MS)
λ + ‖MS‖F ).

Proof. Let ε∗ = M∗ −MS be the difference between the
learned and the source metric. We first bound the frobenius
norm of ε∗ w.r.t. the performance of the source metric.

LT (M∗)+λ‖M∗−MS‖2F ≤ LT (MS) + λ‖MS −MS‖2F

⇒ λ‖ε∗‖2F ≤ LT (MS)⇔ ‖ε∗‖F ≤
√
LT (MS)

λ

Now we can prove the (σ,m)-admissibility of our loss.

|l(M∗, z1, z2)− l(M∗, z3, z4)|

=|
[
y1y2((x1 − x2)TM∗(x1 − x2)− γy1y2)

]
+

−
[
y3y4((x3 − x4)TM∗(x3 − x4)− γy3y4)

]
+
|

≤|y1y2((x1 − x2)TM∗(x1 − x2)− γy1y2)

− y3y4((x3 − x4)TM∗(x3 − x4)− γy3y4)| (3)

≤|y1y2(x1 − x2)TM∗(x1 − x2)

− y3y4(x3 − x4)TM∗(x3 − x4)|
+ |y3y4γy3y4 − y1y2γy1y2 |
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≤2 max
x,x′

((x− x′)TM∗(x− x′))

+ |y3y4 − y1y2|max(γy3y4 , γy1y2)

≤2 max
x,x′

((x− x′)T (ε∗ + MS)(x− x′))

+ |y3y4 − y1y2|max(γy3y4 , γy1y2)

≤2 max
x,x′
‖x− x′‖2(‖ε∗‖F + ‖MS‖F )

+ |y3y4 − y1y2|max(γy3y4 , γy1y2) (4)

≤2 max
x,x′
‖x− x′‖2(

√
LT (MS)

λ
+ ‖MS‖F )

+ |y3y4 − y1y2|max(γy3y4 , γy1y2).

Inequality 3 comes from the 1-lipschitz property of the
hinge loss. We obtain inequality 4 by applying the Cauchy-
Schwarz inequality and some classical norm properties.

Setting m = 2 maxx,x′ ‖x− x′‖2(
√

LT (MS)
λ + ‖MS‖F )

and σ = max(γy3y4 , γy1y2) gives the lemma.

Using Lemmas 1 and 2 we can now derive, in Th. 5, a gen-
eralization bound associated with our specific loss.
Theorem 5 (Generalization bound). With probability 1−δ
for any matrix M learned with Alg. 1, we have:

LDT (M) ≤LT (M) +O
(

1

n

)

+

(√
LT (MS)

λ
+ ‖MS‖F + cγ

)√
ln 2

δ

2n

where cγ is a constant linked to the k-lipschitz property of
the loss and the chosen margins.

Proof. The proof is the same as for Th. 4 replacing k, σ
and m by their values.

As for Th. 4, the convergence rate is in O
(

1√
n

)
. The term

C(MS)
def
=

(√
LT (MS)

λ + ‖MS‖F
)

mainly depends on

the quality of the source hypothesis MS . The product
C(MS)O

(
1√
n

)
means that as the number of examples

available for learning increases, the quality of the source
metric is of decreasing importance. A similar result has al-
ready been stated in domain adaptation or transfer learning
in (Ben-David et al., 2010; Kuzborskij & Orabona, 2013)
where they show that as the number of target examples in-
creases, the necessity of having source examples decreases.

Given a source hypothesis MS , it is possible to optimize it
w.r.t. the bound derived in Th. 5. Indeed, note that C(MS)
corresponds to a trade-off between the complexity of the
source metric and its performance on the training set. The
lower the value of this term, the tighter the bound. Hence,
we propose a way to minimize the generalization bound

and more specifically C(MS) by adding a weighting pa-
rameter β ≥ 0 on the source metric MS . This parameter is
a way to control the trade-off between complexity and per-
formance of the source metric. It can be assessed by means
of the following optimization problem:

β∗ = arg min
β

C(βMS) (5)

Note that the bound derived in Th. 5 holds whatever the
value of MS . Thus replacing it with β∗MS does not im-
pact the theoretical study proposed in this section.

Interpretation of the value of β∗ We can distinguish
three main cases. First if the source hypothesis performs
poorly on the training set at hand we expect β∗ to be as
small as possible to reduce the importance of MS . In
a sense, we tend to go back to the classical case were
MS = 0. Second if the source hypothesis is complex and
performs well, we expect β∗ to be rather small to reduce
the complexity of the hypothesis while keeping a good per-
formance on the training set. Third if the source hypothesis
is simple and performs well, we expect β∗ to be closer to
one since MS is already a good choice.

Learning β∗ Problem 5 is highly non differentiable2 and
non convex. However, it remains simple in the sense that
we have only one parameter to assess and we used a clas-
sical subgradient descent to solve it. Even if it is not con-
vex, our empirical study shows no need to perform many
restarts to output a good solution: we always found almost
the same solution. As a consequence, we applied only one
optimization procedure in our experiments.

In this section we presented a new framework for metric
learning where one can use a source hypothesis to add
some side information during the learning process. We
have shown that our approach is consistent with a conver-
gence rate in O

(
1√
n

)
. Furthermore, given a specific loss,

we have shown that the use of a weighting parameter to
control the importance of the source metric is theoretically
founded. In the next part we empirically demonstrate that
we can obtain competitive results both in a classical metric
learning setting and in a domain adaptation setting.

5. Experiments
We propose an empirical study according to two directions
depending on the choice of the source metric. First, using
some well-known distances as a source metric, we show
that our framework performs well on classical supervised
metric learning tasks of the UCI database and we empiri-
cally demonstrate the interest of learning the β parameter.

2To avoid this problem, we can use the classical relaxation
with slack variables.
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Baselines Our approach
Dataset 1-NN ITML LMNN IDENTITY IDENTITY-B1 MAHALANOBIS MAHALANOBIS-B1
Breast 95.31 ± 1.11 95.40 ± 1.37 95.60 ± 0.92 96.06 ± 0.77 95.75 ± 0.87 95.71 ± 0.84 94.76 ± 1.38
Pima 67.92 ± 1.95 68.13 ± 1.86 67.90 ± 2.05 67.87 ± 1.57 67.54 ± 1.99 68.37 ± 2.00 66.31 ± 2.37
Scale 78.73 ± 1.69 87.31 ± 2.35 86.20 ± 2.83 80.98 ± 1.51 80.82 ± 1.27 81.35 ± 1.17 80.88 ± 1.43
Wine 93.40 ± 2.70 93.82 ± 2.63 93.47 ± 1.80 95.42 ± 1.71 95.07 ± 1.68 94.31 ± 2.01 80.56 ± 5.75

Table 1. Results of the experiments conducted on the UCI datasets. Each value corresponds to the mean and standard deviation over 10
runs. For each dataset we highlight the best result using a bold font. Approaches with the suffix -B1 do not learn β, it is fixed to 1.

Second, we apply our framework in a semi-supervised Do-
main Adaptation task. We show that, using only source
information through a learned metric, our method is able to
compete with state of the art algorithms.

Setup In all our experiments we use limited training
dataset, making it difficult to apply any kind of cross-
validation to set the parameters. Thus we propose to fix
them as follows. First the positive and negative margin are
respectively set to the 5th and 95th percentile of the training
set possible distances computed with the source metric as
proposed in (Davis et al., 2007). Next we set λ such that the
two terms of Eq. 5 are equals, i.e. we balance the complex-
ity and performance importance with respect to the source
metric. The β parameter is then learned using Algorithm 5.
In all the experiments we plug our metric in a 1-nearest
neighbour classifier to classify the examples of the test set.
Furthermore, the significance of the results is assessed with
a paired samples t-test considering that an approach is sig-
nificantly better when the p-value is lower than 0.05.

5.1. Classical Supervised Metric Learning

First we start by conducting experiments on several UCI
datasets (Lichman, 2013), namely breast, pima, scale and
wine. We propose to consider three source metrics: (i)
Zero: No source hypothesis, (ii) Identity: Euclidean
distance, (iii) Mahalanobis: Inverse of the variance-
covariance matrix computed on the training set.

For the last two hypothesis we propose two experiments,
one where we set β = 1 and one where we learn β using
Algorithm 5. The goal of this experiment is to show the
interest of automatically setting β. We consider a 1-nearest
neighbour (1-NN) classifier using the Euclidean Distance
as the baseline and also report the results of two well known
metric learning algorithms, namely ITML, (Davis et al.,
2007) and LMNN (Weinberger et al., 2005). The results
averaged over 10 runs are reported in Table 1. For each
run we randomly draw a training set containing 20% of the
data available for each class and we test the metric on the
remaining 80% of data.

These experiments highlight the interest of learning the β
parameter. When we consider the performance of our ap-
proach with and without learning β, we mainly notice the

following facts. First, learning β always leads to an im-
provement on all the datasets and the final result is better
than the 1NN classifier. Second, learning β when consid-
ering the identity matrix as the source metric seems to be
of limited interest as the differences in accuracy are only
significant for the wine dataset. This can be justified by
the fact that, in this case, it only consists of a rescaling of
the diagonal of the matrix and it does not change much the
behaviour of the distance. Finally, learning β when consid-
ering the variance-covariance matrix as the source metric
leads to a significant improvement of the performance of
the metric except on the breast dataset. This is particularly
true for the wine dataset with a gain of nearly 14% in accu-
racy. It can be explained by the fact that, for this dataset, we
are learning with less than 40 examples. Thus the original
Mahalanobis distance does not carry as much information
as in the other datasets and is thus of a lower quality. Learn-
ing β allows us to compensate this drawback and to obtain
results which are even better than ITML or LMNN.

5.2. Metric learning for Semi-supervised Domain
Adaptation

In this section we consider a Semi-supervised Domain
Adaptation (DA) task with the Office-Caltech dataset. This
dataset consists of four domains: Amazon (A), Caltech (C),
DSLR (D) and Webcam (W) for which we consider 10
classes. This leads to consider 12 different adaptation prob-
lems when we alternatively take each domain as the source
or the target dataset. In these experiments we use the same
splits as the ones considered in (Hoffman et al., 2013) since
they are freely available from the authors website and fol-
low their experimental setup. The results averaged over 20
runs and for each run 8 labelled source examples (20 if the
source is Amazon) and 3 labelled target examples are se-
lected. The data is normalized thanks to the zscore and the
dimensionality is reduced to 20 thanks to a simple PCA.
The results are presented in Table 2 where we compare the
performance of our algorithm to 6 baselines: (i) 1-NNS : a
1-NN using the source examples, (ii) 1-NNT : a 1-NN us-
ing the target examples, (iii) LMNNT : a 1-NN on the target
examples using the metric learned by LMNN on the source
examples, (iv) ITMLT : a 1-NN on the target examples us-
ing the metric learned by ITML on the source examples, (v)
MMDT: a DA method (Hoffman et al., 2013), (vi) GFK:
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Baselines Our approach
Task 1-NNS 1-NNT LMNNT ITMLT MMDT GFK MAHALANOBIS ITML LMNN

A→ C 35.95 ± 1.30 31.92 ± 3.24 32.42 ± 3.03 32.56 ± 4.17 39.76 ± 2.25 37.81 ± 1.85 32.65 ± 3.76 32.93 ± 4.60 34.66 ± 3.66
A→ D 33.58 ± 4.37 53.31 ± 4.31 49.96 ± 3.53 44.33 ± 8.18 54.25 ± 4.32 51.54 ± 3.55 54.69 ± 3.96 51.54 ± 4.03 54.72 ± 5.00
A→W 33.68 ± 3.60 66.25 ± 3.87 62.62 ± 4.49 58.17 ± 10.63 64.91 ± 5.71 59.36 ± 4.30 67.11 ± 5.11 64.09 ± 5.20 67.62 ± 5.18
C→ A 37.37 ± 2.95 47.28 ± 4.15 42.97 ± 3.76 45.16 ± 7.60 51.05 ± 3.38 46.36 ± 2.94 50.15 ± 4.87 49.89 ± 5.25 50.36 ± 4.67
C→ D 31.89 ± 5.77 54.17 ± 4.76 46.02 ± 6.54 48.07 ± 8.98 52.80 ± 4.84 58.07 ± 3.90 56.77 ± 4.63 53.78 ± 7.23 57.44 ± 4.48
C→W 28.60 ± 6.13 65.06 ± 6.27 55.79 ± 5.09 59.21 ± 9.71 62.75 ± 5.19 63.26 ± 5.89 64.64 ± 6.44 64.00 ± 6.08 65.11 ± 5.25
D→ A 33.59 ± 1.77 47.81 ± 3.56 40.57 ± 3.79 45.06 ± 6.78 50.39 ± 3.40 40.77 ± 2.55 49.48 ± 4.41 49.11 ± 4.09 49.67 ± 4.00
D→ C 31.16 ± 1.19 32.22 ± 2.98 27.96 ± 3.03 29.93 ± 4.84 35.70 ± 3.25 30.64 ± 1.98 32.90 ± 3.14 32.99 ± 3.58 33.84 ± 2.99
D→W 76.92 ± 2.18 66.19 ± 4.60 65.36 ± 3.82 66.74 ± 7.16 74.43 ± 3.10 74.98 ± 2.89 65.57 ± 4.52 66.38 ± 6.04 69.72 ± 3.78
W→ A 32.19 ± 3.04 48.25 ± 3.52 41.69 ± 3.71 45.11 ± 5.72 50.56 ± 3.66 43.26 ± 2.34 50.80 ± 3.63 50.16 ± 4.32 50.92 ± 4.00
W→ C 27.67 ± 2.58 30.74 ± 3.92 28.60 ± 3.41 28.99 ± 4.31 34.86 ± 3.62 29.95 ± 3.05 31.54 ± 3.60 31.40 ± 4.29 32.64 ± 3.52
W→ D 64.61 ± 4.30 54.84 ± 5.17 56.89 ± 5.06 57.76 ± 7.03 62.52 ± 4.40 71.93 ± 4.07 57.17 ± 6.50 56.85 ± 5.51 61.14 ± 5.78
Mean 38.93 ± 3.26 49.84 ± 4.20 45.90 ± 4.11 46.76 ± 7.09 52.83 ± 3.93 50.66 ± 3.28 51.12 ± 4.55 50.26 ± 5.02 52.32 ± 4.36

Table 2. Metric Learning for Semi-Supervised Domain Adaptation. For the sake of readability we design the considered domains by
their initials. S → T stands for adaptation from the source domain to the target domain. Each time we consider the mean and standard
deviation over 20 runs. For each task, the best result is highlighted with a bold font.

another DA approach (Gong et al., 2012).

The last two methods need the source sample while in our
case we only use a source metric learned from the source
instances. For our biased regularization framework we con-
sider 3 possible metrics learned on the sources examples,
namely (i) Mahalanobis, (ii) ITML and (iii) LMNN.

These results show that metric hypothesis transfer learning
can perform well in a Semi-supervised Domain Adaptation
setting. Indeed, we perform better than directly plugging
the metrics learned by LMNN and ITML in a 1-nearest
neighbour classifier. Moreover, we obtain accuracies which
are competitive with state of the art approaches like MMDT
or GFK while using less information. If we compare our
approach using LMNN as the source metric with MMDT,
we note that MMDT is significantly better than our ap-
proach on 4 out of 12 tasks while we are significantly bet-
ter on 3 and 5 ends as a draw. Hence we can conclude
that our method presents a similar level of performance
than MMDT. Similarly, if we compare our approach using
LMNN as the source metric with GFK, we obtain that GFK
is significantly better than our approach on 3 tasks, we are
significantly better on 7 and 2 lead to a draw. Hence, we
can conclude that our approach performs better than GFK.

If we compare the performances of both ITML and LMNN
as metrics used directly in a nearest neighbour classifier
one can intuitively expect ITML to be a better source hy-
pothesis than LMNN. However, in practice using the metric
learned by LMNN as the source hypothesis yields better re-
sults. This suggests that using a learned source model that
tends to overfit reasonably the learning source sample can
be of potential interest in a transfer learning context. In-
deed LMNN does not use a regularization term in its for-
mulation and it is well know that LMNN is prone to over-
fitting. Since, the parameter β penalizes the source metric
w.r.t. its complexity it may limit the impact of the source
metric to what is needed for the transfer. Nevertheless, this

point deserves further investigation.

6. Conclusion
In this paper we presented a new theoretical analysis for
metric hypothesis transfer learning. This framework takes
into account a source hypothesis information to help learn-
ing by means of a biased regularization. This biased reg-
ularization can be interpreted into two ways: (i) when the
source metric is an a priori known metric such as the iden-
tity matrix, the objective is to infer a new metric that per-
forms better than the source metric, (ii) when the source
metric has been learned from another domain, the formula-
tion allows one to transfer the knowledge from the source
metric to the new domain. This last interpretation refers to
a transfer learning setting where the learner does not have
access to source examples and can only make use of the
source model in the presence of few labelled data.

Our analysis has shown that this framework is theoretically
well founded and that a good source hypothesis can facil-
itate fast generalization in O(1/n). Moreover, we have
provided a consistency analysis from which we have de-
veloped a generalization bound able to consider both the
performance and the complexity of the source hypothesis.
This has led to the use of weighted source hypothesis to
optimize the bound in a theoretically sound way.

As stated in (Kuzborskij & Orabona, 2014) in another con-
text, our results stress the importance of choosing good
source hypothesis. However, choosing the best source met-
ric from few labelled data is a difficult problem of cru-
cial importance. One perspective could be to consider
notions of reverse validations as used in some transfer
learning/domain adaptation tasks (Bruzzone & Marconcini,
2010; Zhong et al., 2010). Another perspective would be to
extend our framework to other settings and other kind of
regularizers.
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