# Multi-instance multi-label learning in the presence of novel class instances: Supplementary Material 

## 1. Surrogate function calculation

In this section, we show the steps to compute the surrogate function. In our setting, the observed data is $\left\{\mathbf{Y}_{D}, \mathbf{X}_{D}\right\}$, the parameter is $\mathbf{w}$, and the hidden data $\mathbf{y}=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{B}\right\}$. To compute the surrogate $g\left(\mathbf{w}, \mathbf{w}^{\prime}\right)$, we begin with the derivation of the complete log-likelihood. We apply the conditional rule as follows

$$
\begin{array}{r}
p\left(\mathbf{Y}_{D}, \mathbf{X}_{D}, \mathbf{y} \mid \mathbf{w}\right)=p\left(\mathbf{Y}_{D} \mid \mathbf{y}, \mathbf{X}_{D}, \mathbf{w}\right) p\left(\mathbf{y} \mid \mathbf{X}_{D}, \mathbf{w}\right) p\left(\mathbf{X}_{D} \mid \mathbf{w}\right) \\
=p\left(\mathbf{Y}_{D} \mid \mathbf{y}\right)\left[\prod_{b=1}^{B} \prod_{i=1}^{n_{b}} p\left(y_{b i} \mid \mathbf{x}_{b i}, \mathbf{w}\right)\right] p\left(\mathbf{X}_{D}\right) \tag{1}
\end{array}
$$

We recall the relation between the instance label and feature vector, including novel class, as follows

$$
\begin{equation*}
p\left(y_{b i} \mid \mathbf{x}_{b i}, \mathbf{w}\right)=\frac{\prod_{c=0}^{C} e^{I\left(y_{b i}=c\right) \mathbf{w}_{c}^{T} \mathbf{x}_{b i}}}{\sum_{c=0}^{C} e^{\mathbf{w}_{c}^{T} \mathbf{x}_{b i}}} \tag{2}
\end{equation*}
$$

Then, the complete log-likelihood can be computed by taking the logarithm of (1), replacing $p\left(y_{b i} \mid \mathbf{x}_{b i}, \mathbf{w}\right)$ from (2) into (1), and reorganizing as follows

$$
\begin{aligned}
& \log p\left(\mathbf{Y}_{D}, \mathbf{X}_{D}, \mathbf{y} \mid \mathbf{w}\right)=\sum_{b=1}^{B} \sum_{i=1}^{n_{b}} \sum_{c=0}^{C} I\left(y_{b i}=c\right) \mathbf{w}_{c}^{T} \mathbf{x}_{b i} \\
& -\sum_{b=1}^{B} \sum_{i=1}^{n_{b}} \log \left(\sum_{c=0}^{C} e^{\mathbf{w}_{c}^{T} \mathbf{x}_{b i}}\right)+\log p\left(\mathbf{Y}_{D} \mid \mathbf{y}\right)+\log p\left(\mathbf{X}_{D}\right) .
\end{aligned}
$$

Finally, taking the expectation of (3) w.r.t. $\mathbf{y}$ given $\mathbf{Y}_{D}, \mathbf{X}_{D}$, and $\mathbf{w}^{\prime}$, we obtain the surrogate function $g(\cdot, \cdot)$ as follows

$$
\begin{align*}
& g\left(\mathbf{w}, \mathbf{w}^{\prime}\right)=E_{\mathbf{y}}\left[\log p\left(\mathbf{Y}_{D}, \mathbf{X}_{D}, \mathbf{y} \mid \mathbf{w}\right) \mid \mathbf{Y}_{D}, \mathbf{X}_{D}, \mathbf{w}^{\prime}\right]  \tag{4}\\
& =\sum_{b=1}^{B} \sum_{i=1}^{n_{b}}\left[\sum_{c=0}^{C} p\left(y_{b i}=c \mid \mathbf{Y}_{b}, \mathbf{X}_{b}, \mathbf{w}^{\prime}\right) \mathbf{w}_{c}^{T} \mathbf{x}_{b i}\right. \\
& \left.\quad-\log \left(\sum_{c=0}^{C} e^{\mathbf{w}_{c}^{T} \mathbf{x}_{b i}}\right)\right]+\zeta
\end{align*}
$$

where $\zeta=E_{\mathbf{y}}\left[\log p\left(\mathbf{Y}_{D} \mid \mathbf{y}\right) \mid \mathbf{Y}_{D}, \mathbf{X}_{D}, \mathbf{w}^{\prime}\right]+\log p\left(\mathbf{X}_{D}\right)$ is a constant w.r.t. $\mathbf{w}$.

## 2. Proof for the dynamic programming equation of Step 1 in the E-step

The probability of the bag label for the first $j+1$ instances of the $b$ th bag can be computed recursively using

$$
\begin{aligned}
& p\left(\mathbf{Y}_{b}^{j+1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right)=\sum_{l \in \mathbf{L}^{\prime}} p\left(y_{b j+1}=l \mid \mathbf{x}_{b j+1}, \mathbf{w}\right) \\
& \times\left[p\left(\mathbf{Y}_{b}^{j}=\mathbf{L}_{\backslash l}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right)+p\left(\mathbf{Y}_{b}^{j}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right)\right] .
\end{aligned}
$$

Proof. Assume $\mathbf{L}^{\prime}$ is the label set of the first $j+1$ instances. If the $(j+1)$ th instance has label $l$, then the label set of the first $j$ instances would be either $\mathbf{L}_{\backslash l}^{\prime}$, or $\mathbf{L}^{\prime}$. In the former case, the $(j+1)$ th instance is the only class $l$ instance in the first $j+1$ instances. In the second case, some instance before $j+1$ also belongs to class $l$. These two cases are mutually exclusive. Following the total probability formula, we sum over all mutually exclusive events.

## 3. Proof for Proposition 1

In this section, we show the detailed proof for Proposition 1 of computing $p\left(y_{b n_{b}}, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)$ from $p\left(\mathbf{Y}_{b}^{n_{b}-1} \mid \mathbf{X}_{b}, \mathbf{w}\right)$ and $p\left(y_{b n_{b}}=c \mid \mathbf{x}_{b n_{b}}, \mathbf{w}\right)$.

Proposition 1 The probability $p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)$ for all $c \in \mathbf{L} \bigcup\{0\}$ can be computed using

- If $c=0$,

$$
\begin{aligned}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)=p\left(y_{b n_{b}}=c \mid \mathbf{x}_{b n_{b}}, \mathbf{w}\right) \times \\
& {\left[p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)+p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)\right]}
\end{aligned}
$$

- Else if $c \neq 0$,

$$
\begin{aligned}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)=p\left(y_{b n_{b}}=c \mid \mathbf{x}_{b n_{b}}, \mathbf{w}\right) \times \\
& {\left[p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)+p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}_{\backslash c} \mid \mathbf{X}_{b}, \mathbf{w}\right)+\right.} \\
& p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)+ \\
& \left.p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}_{\backslash c} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)\right]
\end{aligned}
$$

Proof. Denote the power set of $\mathbf{L} \bigcup\{0\}$ excluding the empty set as $\mathbf{P}$. We compute $p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)$
by marginalizing $p\left(y_{b n_{b}}, \mathbf{Y}_{b}=\mathbf{L}, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right)$ over $\mathbf{Y}_{b}^{n_{b}}$ as follows

$$
\begin{align*}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}\right.\left.=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right) \\
&=\sum_{\mathbf{L}^{\prime} \subseteq \mathbf{P}} p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}=\mathbf{L}, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) \tag{5}
\end{align*}
$$

Using conditional probability rule for the right hand side of (5) we obtain

$$
\begin{align*}
p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}\right. & \left.=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)  \tag{6}\\
=\sum_{\mathbf{L}^{\prime} \subseteq \mathbf{P}} p\left(y_{b n_{b}}\right. & \left.=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) p\left(\mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}^{\prime}\right)
\end{align*}
$$

From the proposed model, $p\left(\mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}^{\prime}\right)=I(\mathbf{L}=$ $\left.\mathbf{L}^{\prime}\right)+I\left(\mathbf{L} \bigcup\{0\}=\mathbf{L}^{\prime}\right)$. Replacing $p\left(\mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}^{\prime}\right)$ into (6) we obtain

$$
\begin{array}{r}
p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)=p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right) \\
+p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right) \tag{7}
\end{array}
$$

- For $c \neq 0$ : The first term in the right hand side of (7), $p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)$, is computed by marginaliz$\operatorname{ing} p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right)$ over $\mathbf{Y}_{b}^{n_{b}-1}$ as follows

$$
\begin{align*}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right) \\
& =\sum_{\mathbf{L}^{\prime} \subseteq \mathbf{P}} p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) \tag{8}
\end{align*}
$$

Using the conditional probability rule we have

$$
\begin{align*}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) \\
& =p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) \times \\
& p\left(\mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime}\right) . \tag{9}
\end{align*}
$$

Replacing $p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L}, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right)$ into (8) we obtain

$$
\begin{align*}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right) \\
& =\sum_{\mathbf{L}^{\prime} \subseteq \mathbf{P}}\left[p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) \times\right. \\
& \left.\quad p\left(\mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime}\right)\right] \tag{10}
\end{align*}
$$

From the proposed model we have $p\left(\mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid y_{b n_{b}}=\right.$ $\left.c, \mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime}\right)=I\left(\mathbf{L}=\mathbf{L}^{\prime} \bigcup\{c\}\right)$. Moreover, given instance features, instance labels are independent. Consequently, from (10), we obtain

$$
\begin{aligned}
& p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right) \\
& =\sum_{\mathbf{L}^{\prime} \subseteq \mathbf{P}}\left[p\left(y_{b n_{b}}=c \mid \mathbf{x}_{b n_{b}}, \mathbf{w}\right) \times\right. \\
& \left.\quad p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}^{\prime} \mid \mathbf{X}_{b}, \mathbf{w}\right) I\left(\mathbf{L}=\mathbf{L}^{\prime} \bigcup\{c\}\right)\right] \\
& =p\left(y_{b n_{b}}=c \mid \mathbf{x}_{b n_{b}}, \mathbf{w}\right) \times \\
& \quad\left[p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)+p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}_{\backslash c} \mid \mathbf{X}_{b}, \mathbf{w}\right)\right]
\end{aligned}
$$

Deriving similar steps from (8) to (11) for the second term of (7), $p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)$, we obtain
$p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)$
$=p\left(y_{b n_{b}}=c \mid \mathbf{x}_{b n_{b}}, \mathbf{w}\right) \times$
$\left[p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)+p\left(\mathbf{Y}_{b}^{n_{b}-1}=\mathbf{L}_{\backslash c} \bigcup\{0\} \mid \mathbf{X}_{b}, \mathbf{w}\right)\right]$.
Replacing probabilities obtained in (11) and (12) into (7), we obtain the proof for the case $c \neq 0$.

- For $c=0$ : Since the bag label $\mathbf{L}$ does not contain novel label 0 and $y_{b n_{b}} \in \mathbf{Y}_{b}^{n_{b}}$, the first term in the right hand side of (7), $p\left(y_{b n_{b}}=c, \mathbf{Y}_{b}^{n_{b}}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)=0$. Replacing probabilities obtained in (12) into (7), we obtain the proof for the case $c=0$.


## 4. Instance membership probability calculation algorithm

In this section, we show the pseudo code for computing $p\left(y_{b i}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)$.

```
\(\overline{\text { Algorithm } 1 \text { Instance membership probability calculation }}\)
algorithm
Input: \(\mathbf{L}, \mathbf{X}_{b}, \mathbf{Y}_{b}, \mathbf{w}, c\)
Output: \(p\left(y_{b i}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right), \forall 1 \leq i \leq n_{b}\)
    for \(i=1\) to \(n_{b}\) do
        Swap \(y_{b i}\) and \(y_{b n_{b}}\).
        Initialize \(p\left(\mathbf{Y}_{b}^{1}=\mathbf{l} \mid \mathbf{X}_{b}, \mathbf{w}\right)=0, \forall \mathbf{l} \subseteq \mathbf{P}\).
        Set \(p\left(\mathbf{Y}_{b}^{1}=\{l\} \mid \mathbf{X}_{b}, \mathbf{w}\right)=p\left(y_{b 1}=l \mid \mathbf{x}_{b 1}, \mathbf{w}\right), \forall l \in\)
        \(\mathbf{L} \bigcup\{0\}\).
        for \(j=1\) to \(n_{b}-1\) do
            Dynamically compute \(p\left(\mathbf{Y}_{b}^{j+1} \mid \mathbf{X}_{b}, \mathbf{w}\right), \quad\) from
            \(p\left(\mathbf{Y}_{b}^{j} \mid \mathbf{X}_{b}, \mathbf{w}\right)\) using (8).
    end for
    Compute \(p\left(y_{b i}=c, \mathbf{Y}_{b}=\mathbf{L} \mid \mathbf{X}_{b}, \mathbf{w}\right)\) from
    \(p\left(\mathbf{Y}_{b}^{\backslash i} \mid \mathbf{X}_{b}, \mathbf{w}\right)\) using Proposition 1.
    Swap back \(y_{b i}\) and \(y_{b n_{b}}\).
    end for
```

