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A. Proofs

A.1. Proof of Theorem 1

If the composite loss̃ℓ(z) is convex, it is linear.

Proof: The composite loss is an odd function:

ℓ̃(−z) = ℓ(−z)− ℓ(z) = −ℓ̃(z),

Therefore,d
2

dz2 ℓ̃(z) = − d2

dz2 ℓ̃(−z). If the composite loss̃ℓ(z) is convex, d
2

dz2 ℓ̃(z) ≥ 0 holds for allz. Since the convexity of

ℓ̃(z) implies the convexity of̃ℓ(−z), d2

dz2 ℓ̃(−z) ≥ 0 should also hold for allz. However, if d2

dz2 ℓ̃(z) > 0, then d2

dz2 ℓ̃(−z) < 0

holds, which is contradictory to the convexity ofℓ̃(−z). Therefore,d
2

dz2 ℓ̃(z) = 0 should hold, which is satisfied only when

ℓ̃(z) is linear.

A.2. Proof of Lemma 2

JS(α) is strongly convex inα with parameter at leastλ, and thus

JS(α) ≥ JS(α
∗
S) +∇JS(α

∗
S)

⊤(α−α∗
S) + λ‖α−α∗

S‖
2
2

≥ JS(α
∗
S) + λ‖α−α∗

S‖
2
2,

where we use the optimality condition∇JS(α
∗
S) = 0. Similarly, we can prove the other two inequalities.

A.3. Proof of Lemma 3

The difference function can be written as

JS(α,u)− JS(α) =
1

4
α⊤u1α+

1

2
u⊤
2 α− πu⊤

3 α,

with a partial gradient
∂

∂α
(JS(α,u)− JS(α)) =

1

2
u1α+

1

2
u2 − πu3.

Given theδ-ball ofα∗
S, i.e.,Bδ(α

∗
S) = {α | ‖α−α∗

S‖2 ≤ δ}, it is easy to see that for anyα ∈ Bδ(α
∗
S),

‖α‖2 ≤ ‖α−α∗
S‖2 + ‖α∗

S‖2 ≤ 1 +Mα,

and then ∥∥∥∥
∂

∂α
(JS(α,u)− JS(α))

∥∥∥∥
2

≤
1

2
(1 +Mα)‖u1‖Fro +

1

2
‖u2‖2 + π‖u3‖2.

This means thatJS(·,u) − JS(·) is Lipschitz continuous onBδ(α
∗
S) with a Lipschitz constant of orderO(‖u1‖Fro +

‖u2‖2 + ‖u3‖2).

A.4. Proof of Lemma 5

The difference function can be written as

JLL (α,u)− JLL (α) = −πu⊤
3 α+ u4(α).

Givenα ∈ Bδ(α
∗
LL ), we have known that−πu⊤

3 α is Lipschitz continuous with a Lipschitz constant of orderO(‖u3‖2)
in the proof of Lemma 3. Consequently,JLL (·,u)− JLL (·) is Lipschitz continuous onBδ(α

∗
LL ) with a Lipschitz constant

of orderO(‖u3‖2 + Lip(u4)).

A.5. Proof of Lemma 7

Same as the proof of Lemma 5.
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A.6. Proof of Theorem 4

Letu1, u2 andu3 be defined as in Eq. (13). According to thecentral limit theorem,

‖u1‖Fro = Op(n
′−1/2), ‖u2‖2 = Op(n

′−1/2), ‖u3‖2 = Op(n
−1/2),

asn, n′ → ∞. Thus, we have

‖α̂S −α∗
S‖2 ≤ λ−1ω(u)

= O(‖u1‖Fro + ‖u2‖2 + ‖u3‖2)

= Op(n
−1/2 + n′−1/2)

by Lemma 2, Lemma 3, and Proposition 6.1 in Bonnans & Shapiro (1998, p. 19).

On the other hand,
|ĴS(α̂S)− JS(α

∗
S)| ≤ |ĴS(α̂S)− ĴS(α

∗
S)|+ |ĴS(α

∗
S)− JS(α

∗
S)|,

in which

ĴS(α̂S)− ĴS(α
∗
S) = (α̂S +α∗

S)
⊤


 1

4n′

n′∑

i=1

ϕ(x′
i)ϕ(x

′
i)

⊤ +
λ

2
Im


 (α̂S −α∗

S)

+


 1

2n′

n′∑

i=1

ϕ(x′
i)




⊤

(α̂S −α∗
S)− π

(
1

n

n∑

i=1

ϕ(xi)

)⊤

(α̂S −α∗
S),

ĴS(α
∗
S)− JS(α

∗
S) =

1

4
α∗

S
⊤
u1α

∗
S +

1

2
u2α

∗
S − πu3α

∗
S.

Since0 ≤ ϕj(x) ≤ 1, ‖α∗
S‖2 ≤ Mα and‖α̂S‖2 ≤ Mα,

|ĴS(α̂S)− JS(α
∗
S)| ≤ |ĴS(α̂S)− ĴS(α

∗
S)|+ |ĴS(α

∗
S)− JS(α

∗
S)|

≤ Op(‖α̂S −α∗
S‖2) +Op(‖u1‖Fro + ‖u2‖2 + ‖u3‖2)

= Op(n
−1/2 + n′−1/2),

which completes the proof.

A.7. Proof of Theorem 6

Letu3 andu4(α) be defined as in Eq. (14). The gradient ofu4 is given by

∇u4(α) =
1

n′

n′∑

i=1

ϕ(x′
i)

1 + exp(−ϕ(x′
i)

⊤α)
−

∫
ϕ(x)

1 + exp(−ϕ(x)⊤α)
p(x)dx.

According to the central limit theorem,

‖u3‖2 = Op(n
−1/2), Lip(u4) = Op(n

′−1/2),

asn, n′ → ∞, sinceLip(u4) = supα ‖∇u4(α)‖2 and

supα∈Rm,x∈Rd

∥∥∥∥
ϕ(x)

1 + exp(−ϕ(x)⊤α)

∥∥∥∥
2

≤ m1/2 < ∞.

Thus, we have

‖α̂LL −α∗
LL‖2 ≤ λ−1ω(u)

= O(‖u3‖2 + Lip(u4))
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= Op(n
−1/2 + n′−1/2)

by Lemma 2, Lemma 5, and Proposition 6.1 in Bonnans & Shapiro (1998, p. 19).

On the other hand,

|ĴLL (α̂LL )− JLL (α
∗
LL )| ≤ |ĴLL (α̂LL )− ĴLL (α

∗
LL )|+ |ĴLL (α

∗
LL )− JLL (α

∗
LL )|.

For the second term,

|ĴLL (α
∗
LL )− JLL (α

∗
LL )| = | − πu⊤

3 α
∗
LL + u4(α

∗
LL )|

≤ πMα‖u3‖2 + |u4(α
∗
LL )|

= Op(n
−1/2 + n′−1/2)

according to the central limit theorem. For the first term, itis a bit more complex:

|ĴLL (α̂LL )− ĴLL (α
∗
LL )| ≤

∣∣∣∣
λ

2
(α̂LL +α∗

LL )
⊤(α̂LL −α∗

LL )

∣∣∣∣+

∣∣∣∣∣∣
π

(
1

n

n∑

i=1

ϕ(xi)

)⊤

(α̂LL −α∗
LL )

∣∣∣∣∣∣

+
1

n′

n′∑

i=1

| ln(1 + exp(ϕ(x′
i)

⊤α̂LL ))− ln(1 + exp(ϕ(x′
i)

⊤α∗
LL ))|.

Let f(z, t) = ln(1 + exp(z + t)), thenlimt→0 f(z, t) = f(z, 0) and

lim
t→0

f(z, t)− f(z, 0)

t
= lim

t→0

∂

∂t
f(z, t) =

1

1 + exp(−z − t)
< ∞,

where we useL’Hôpital’s rule. In other words,f(z, t) approachesf(z, 0) in O(t) ast → 0. Subsequently, for anyx ∈ R
d,

by z = ϕ(x)⊤α∗
LL andt = ϕ(x)⊤α̂LL −ϕ(x)⊤α∗

LL we can obtain

| ln(1 + exp(ϕ(x)⊤α̂LL ))− ln(1 + exp(ϕ(x)⊤α∗
LL ))| = O(|ϕ(x)⊤α̂LL −ϕ(x)⊤α∗

LL |)

= O(m1/2‖α̂LL −α∗
LL‖2),

which results in|ĴLL (α̂LL )− ĴLL (α
∗
LL )| = Op(n

−1/2 + n′−1/2).

A.8. Proof of Theorem 8

The proof goes along the same line as that of Theorem 6. Letu3 andu5(α) be defined as in Eq. (15). Note that the function
max{0, (1+z)/2, z} is piecewise linear inz, differentiable almost everywhere, and0 ≤ (d/dz)max{0, (1+z)/2, z} ≤ 1.
As a result,

‖u3‖2 = Op(n
−1/2), Lip(u5) = Op(n

′−1/2),

asn, n′ → ∞, and

‖α̂DH −α∗
DH‖2 ≤ λ−1ω(u)

= O(‖u3‖2 + Lip(u5))

= Op(n
−1/2 + n′−1/2)

by Lemma 2, Lemma 7, and Proposition 6.1 in Bonnans & Shapiro (1998, p. 19).

On the other hand,

|ĴDH(α̂DH)− JDH(α
∗
DH)| ≤ |ĴDH(α̂DH)− ĴDH(α

∗
DH)|+ |ĴDH(α

∗
DH)− JDH(α

∗
DH)|

≤
1

n′

n′∑

i=1

|max{0, (1 +ϕ(x′
i)

⊤α̂LL )/2,ϕ(x
′
i)

⊤α̂LL}
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−max{0, (1 +ϕ(x′
i)

⊤α∗
LL )/2,ϕ(x

′
i)

⊤α∗
LL}|+Op(n

−1/2 + n′−1/2).

Let f(z, t) = max{0, (1 + z + t)/2, z + t}, thenlimt→0 f(z, t) = f(z, 0) and forz ∈ R \ {0, 1},

lim
t→0

f(z, t)− f(z, 0)

t
= lim

t→0

∂

∂t
f(z, t) ∈

{
0,

1

2
, 1

}
.

In other words,f(z, t) approachesf(z, 0) in O(t) as t → 0 almost surely. Subsequently, for anyx ∈ R
d, by z =

ϕ(x)⊤α∗
DH andt = ϕ(x)⊤α̂DH −ϕ(x)⊤α∗

DH we can obtain

|max{0, (1 +ϕ(x)⊤α̂LL )/2,ϕ(x)
⊤α̂LL} −max{0, (1 +ϕ(x)⊤α∗

LL )/2,ϕ(x)
⊤α∗

LL}| = O(|ϕ(x)⊤α̂LL −ϕ(x)⊤α∗
LL |)

= O(m1/2‖α̂LL −α∗
LL‖2)

= Op(n
−1/2 + n′−1/2),

which completes the proof.

B. Optimization problems

In this section, we give exact optimization problems for theoptimization methods presented in the paper. The logistic
regression and logistic loss method is solved with a quasi-Newton method, and therefore we provide the derivatives in
Sec. B.1.

The Hinge loss and Double Hinge loss result in quadratic problems. The ramp-loss is solved via a sequence of quadratic
problems. All quadratic problems are expressed in the form

minα
1
2α

⊤Hα+ f⊤α

s.t. Lα � k

l � α

This standard form can then just be plugged into an off-the-shelf optimization package such as Gurobi, IBM CPLEX or
MATLAB’s internal ‘quadprog’ function.

B.1. Logistic loss

The gradient for the objective function in Eq. (8) is

∂ĴLL (α, b)

∂α
= −

π

n
Φ⊤

P 1+ λα

−
1

n′

n′∑

j=1

ℓ′LL
(
−α⊤ϕ(x′

j)− b
)
ϕ(x′

j),

whereℓ′LL(z) is the derivative ofℓLL(z):

ℓ′LL(z) = −
exp(−z)

1 + exp(−z)
.

The derivative with respect to the unregularized constantb is

∂ĴLL (α, b)

∂b
= −π −

1

n′

n′∑

j=1

ℓ′LL
(
−α⊤ϕ(x′

j)− b
)
.

B.2. Double Hinge Loss - PU Learning

The objective function can be expressed as

−
π

n

n∑

i=1

g(xi) +
1

n′

n′∑

j=1

max

(
0,max

(
g(x′

j),
1

2
+

1

2
g(x′

j)

))
+

λ

2
‖g‖22
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= −
π

n

n∑

i=1

(
m∑

ℓ=1

αℓϕℓ(xi)+b

)
+

1

n′

n′∑

j=1

max

(
0,max

(
m∑

ℓ=1

αℓϕℓ(x
′
j) +b,

1

2
+
1

2

(
m∑

ℓ=1

αℓϕℓ(x
′
j)+b

)))
+
λ

2

m∑

ℓ=1

α2
ℓ

The objective function can then be expressed as

min
α,b,ξ

−π
n1

⊤ΦPα− πb+ 1
n′
1
⊤ξ + λ

2α
⊤α

s.t. ξ � 0,
ξ � 1

21+ 1
2ΦUα+ 1

2b1,
ξ � ΦUα+ b1,

Let

γ =




αb×1

b
ξn′×1


 .

ThenH is defined as

H =




λIm×m Om×1 Om′×n′

O1×m 0 O1×n′

On′×m On′×1 On′×n′


 ,

whereOn×m is a zero matrix ofn rows andm columns. The linear part of the objective is

f =




−π
nΦ

⊤
P 1

−π
1
n′
1n′×1




The lower-bound is

l =




−∞m×1

−∞
0n′×1


 .

The first linear constraint is

ξ �
1

2
1+

1

2
ΦUα+

1

2
b1

1

2
ΦUα+

1

2
b1− ξ � −

1

2
1

[
1
2ΦU

1
21n′×1 −In′×n′

]



α

u
ξ


 � −

1

2
1n′×1.

The second linear constraint is

ξ � ΦUα+ b1

ΦUα+ b1− ξ � 0n′×1

[
ΦU 1n′×1 −In′×n′

]



α

b
ξ


 � 0n′×1.

Combining the two sets of inequalities, we get

L =

[
1
2ΦU

1
21n′×1 −In′×n′

ΦU 1n′×1 −In′×n′

]
,

and

k =

[
− 1

21n′×1

0n′×1

]
.
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B.3. Weighted hinge loss classifier

We want a cost-sensitive classifier with a per-sample weighting. Using the model

g(x) =
m∑

ℓ=1

αℓϕℓ(x) + b,

where

{c1, . . . , cm} := {x1, . . . ,xn} ,

we wish to minimize

J(g) =
1

n

b∑

i=1

wiℓH

(
yi

m∑

ℓ=1

αℓϕℓ(xi) + b

)
+

λ

2
α⊤α,

=
1

2n

n∑

i=1

wi max

(
0, 1− yi

m∑

ℓ=1

αℓϕℓ(xi) + b

)
+

λ

2
α⊤α.

This gives a QP of

min
α,b,ξ

1
2nw

⊤ξ + λ
2α

⊤Rα

s.t. ξi ≥ 0, ∀i = 1, . . . , n

ξi ≥ 1− yi
∑b

ℓ=1 αℓk(xi, cℓ) + u ∀i = 1, . . . , n.

We then set

γ =




α

b
ξ


 .

H is then

H =




λI Om×1 Om×n

O1×n 0 O1×n

On×n On×1 On×n


 .

The linear term is

f =




0m×1

0
1
2nw




The lower bound is

l =




−∞m×1

−∞
0n×1




DefineΦ̄ as

Φ̄iℓ = yiϕℓ(xi).

The constraint can be written in matrix form as

ξ � 1n×1 −
(
Φ̄α+ by

)

−Φ̄α− by − ξ � −1n×1

The matrix is then

L =
[
−Φ −y −In×n

]
,

andk is

k = [−1n×1] .
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Figure 6.Decomposition of the ramp-loss into convex and concave parts.

B.4. Weighted ramp-loss classifier (CCCP)

Classification with the ramp-loss is difficult, due to the thenon-convexity of the loss function. One popular method to
perform optimization is to split the non-convex function into a convex and concave part. The concave part is then upper-
bounded by a linear function, and optimization is iteratively performed: minimization of the upper-bound, and tightening
of the upper-bound around the new minima. We minimize the ramp-loss problem here using this approach. This is a
straightforward application of the convex-concave procedure (CCCP) in Yuille & Rangarajan (2002) and is essentially the
same as Collobert et al. (2006).

We wish to minimize the following non-convex objective function:

J(α, b) =
1

n

n∑

i=1

wiℓR

(
yi

m∑

ℓ=1

αℓϕℓ(xi) + b

)
+

λ

2
α⊤α, (16)

where the ramp lossℓR(z) is defined as

ℓR(z) = max

(
0,min

(
1,

1

2
−

1

2
z

))
=

1

2
max (0,min(2, 1− z)) .

By defining the following (slightly more general) hinge loss

Hǫ(z) =
1

2
max(0, ǫ− z),

the ramp lossℓR(z) can be decomposed as:

ℓR(z) = H1(z)−H−1(z).

This is illustrated in Fig. 6. The objective Eq. (16) can therefore be decomposed as

J(α, b) = Jvex(α, b) + Jcave(α, b),

Jvex(α, b) =
1

n

n∑

i=1

wiH1

(
m∑

ℓ=1

αℓϕℓ(xi) + b

)
+

λ

2
α⊤α,

Jcave(α, b) = −
1

n

n∑

i=1

wiH−1

(
m∑

ℓ=1

αℓϕℓ(xi) + b

)

The following self-evident relation can be used to upper-bound the concave part

tz − f(z) ≤ sup
y∈R

yt− f(y)

⇒ f(z) ≥ tz − f∗(t), (17)

where

f∗(t) = sup
y∈R

yt− f(y).
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The inequality in Eq.(17) is known as theFenchel inequalityand the functionf∗(z) is known as theFenchel dualor convex
conjugate. Applying the above inequality toHǫ(z), we can obtain a bound as

Hǫ(z) ≥ zt−H∗
ǫ (t),

−Hǫ(z) ≤ H∗
ǫ (t)− zt,

whereH∗
ǫ (t) is the Fenchel dual ofHǫ(z). The Fenchel dual ofH−1(t) is (the full calculation is given in Appendix B.4.3)

H∗
−1(t) =

{
−t − 1

2 ≤ t ≤ 0,

∞ otherwise.

We can minimize the upper-bound as

argmin
t

H∗
−1(t)− tz =

{
t = 0 z > −1.

t = − 1
2 z ≤ −1.

The concave part is then bounded, with the parametera as

J̄cave(α, b,a) =
1

n

n∑

i=1

wi

(
H∗

1 (ai)− aiyi

(
m∑

ℓ=1

αℓϕℓ(xi) + b

))
,

whereJcave(α, u) ≤ J̄cave(α, b,a), for anya.

B.4.1. TIGHTENING OF THE UPPER-BOUND

The upperbound is minimized (tightened) when

ai =

{
− 1

2 yi (
∑m

ℓ=1 αℓϕℓ(xi) + b) ≤ −1,

0 otherwise.

B.4.2. MINIMIZING THE OBJECTIVE

We wish to minimize the convex part and the upper boundJ̄(α, u,a) = Jvex(α, u) + J̄cave(α, u,a) with respect toa.
This gives an objective of

J̄(α, b,a) =
1

n

n∑

i=1

wiH1

(
yi

(
m∑

ℓ=1

αℓϕℓ(xi) + b

))
+

λ

2
α⊤α−

1

n

n∑

i=1

wiaiyi

(
m∑

ℓ=1

αℓϕℓ(xi) + b

)
.

We define the following matrices:

Φi,ℓ = yik(xi, cℓ),

Φ̄i,ℓ = wiaiyik(xi, cℓ),

The QP for this is then

min
α,b,ξ

1
2nw

⊤ξ + λ
2α

⊤α− 1
n1

⊤Φ̄α− b 1
n

∑n
i=1 wiaiyi.

s.t. ξi ≥ 0 ∀i = 1, . . . , n

ξi ≥ 1− yi

(∑b
ℓ=1 αℓϕℓ(xi) + b

)
∀i = 1, . . . , n.

We define again

γ =




α

b
ξ


 .
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The quadratic term is

H =




λIm×m Om×1 On×n

O1×n 0 O1×n

On×n On×1 On×n


 .

The linear term is

f =




− 1
n Φ̄

⊤
1

− 1
n

∑n
i=1 wiaiyi

1
2nw




The lower-bound is

lb =




−∞m×1

−∞
0n×1


 .

The linear term is

−Φα− by − ξ � −1n×1.

This gives a matrix of

L =
[
−Φ −y −In×n

]
,

andk is

k = [−1n×1] .

B.4.3. CALCULATION OF THE FENCHEL DUAL OF Hǫ(z)

In this section, we briefly give the derivation of the Fencheldual ofHǫ(z)

H∗
ǫ (t) = sup

v
tv −Hǫ(v)

= sup
v

tv −
1

2
max (0, ǫ− v) .

To make the above easier, we split the domain of thev:

H∗
ǫ (t) = max

(
sup
v≤ǫ

tv −
1

2
max (0, ǫ− v) , sup

v>ǫ
tv −

1

2
max (0, ǫ− v)

)
,

= max

(
sup
v≤ǫ

tv −
1

2
(ǫ− v) , sup

v>ǫ
tv

)
.

For the first part:

sup
v≤ǫ

tv −
1

2
(ǫ− v) = sup

v≤ǫ
v

(
t+

1

2

)
−

1

2
ǫ,

=

{
ǫt t ≥ − 1

2 ,

∞ t < 1
2

The second part is

sup
t>ǫ

tv =

{
ǫv t ≤ 0,

∞ t > 0.

Putting these two together gives:

H∗
ǫ (t) =

{
ǫt − 1

2 ≤ t ≤ 0,

∞ otherwise.


