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Abstract

In the Network Inference problem, one seeks to
recover the edges of an unknown graph from the
observations of cascades propagating over this
graph. In this paper, we approach this prob-
lem from the sparse recovery perspective. We
introduce a general model of cascades, includ-
ing the voter model and the independent cascade
model, for which we provide the first algorithm
which recovers the graph’s edges with high prob-
ability and O(s logm) measurements where s is
the maximum degree of the graph and m is the
number of nodes. Furthermore, we show that
our algorithm also recovers the edge weights (the
parameters of the diffusion process) and is ro-
bust in the context of approximate sparsity. Fi-
nally we prove an almost matching lower bound
of Ω(s log m

s ) and validate our approach empiri-
cally on synthetic graphs.

1. Introduction
Graphs have been extensively studied for their propaga-
tive abilities: connectivity, routing, gossip algorithms, etc.
A diffusion process taking place over a graph provides
valuable information about the presence and weights of its
edges. Influence cascades are a specific type of diffusion
processes in which a particular infectious behavior spreads
over the nodes of the graph. By only observing the “in-
fection times” of the nodes in the graph, one might hope
to recover the underlying graph and the parameters of the
cascade model. This problem is known in the literature as
the Network Inference problem.

More precisely, solving the Network Inference problem
involves designing an algorithm taking as input a set of
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observed cascades (realisations of the diffusion process)
and recovers with high probability a large fraction of the
graph’s edges. The goal is then to understand the relation-
ship between the number of observations, the probability
of success, and the accuracy of the reconstruction.

The Network Inference problem can be decomposed and
analyzed “node-by-node”. Thus, we will focus on a sin-
gle node of degree s and discuss how to identify its par-
ents among the m nodes of the graph. Prior work has
shown that the required number of observed cascades is
O(poly(s) logm) (Netrapalli & Sanghavi, 2012; Abrahao
et al., 2013).

A more recent line of research (Daneshmand et al., 2014)
has focused on applying advances in sparse recovery to the
network inference problem. Indeed, the graph can be in-
terpreted as a “sparse signal” measured through influence
cascades and then recovered. The challenge is that influ-
ence cascade models typically lead to non-linear inverse
problems and the measurements (the state of the nodes at
different time steps) are usually correlated. The sparse re-
covery literature suggests that Ω(s log m

s ) cascade obser-
vations should be sufficient to recover the graph (Donoho,
2006; Candes & Tao, 2006). However, the best known up-
per bound to this day is O(s2 logm) (Netrapalli & Sang-
havi, 2012; Daneshmand et al., 2014)

The contributions of this paper are the following:
• we formulate the Graph Inference problem in the con-

text of discrete-time influence cascades as a sparse re-
covery problem for a specific type of Generalized Lin-
ear Model. This formulation notably encompasses the
well-studied Independent Cascade Model and Voter
Model.

• we give an algorithm which recovers the graph’s edges
using O(s logm) cascades. Furthermore, we show
that our algorithm is also able to efficiently recover the
edge weights (the parameters of the influence model)
up to an additive error term,

• we show that our algorithm is robust in cases where
the signal to recover is approximately s-sparse by
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proving guarantees in the stable recovery setting.

• we provide an almost tight lower bound of Ω(s log m
s )

observations required for sparse recovery.

The organization of the paper is as follows: we conclude
the introduction by a survey of the related work. In Sec-
tion 2 we present our model of Generalized Linear Cas-
cades and the associated sparse recovery formulation. Its
theoretical guarantees are presented for various recovery
settings in Section 3. The lower bound is presented in Sec-
tion 4. Finally, we conclude with experiments in Section 5.

Related Work The study of edge prediction in graphs
has been an active field of research for over a
decade (Liben-Nowell & Kleinberg, 2008; Leskovec et al.,
2007; Adar & Adamic, 2005). (Gomez Rodriguez et al.,
2010) introduced the NETINF algorithm, which approx-
imates the likelihood of cascades represented as a con-
tinuous process. The algorithm was improved in later
work (Gomez-Rodriguez et al., 2011), but is not known to
have any theoretical guarantees beside empirical validation
on synthetic networks. Netrapalli & Sanghavi (2012) stud-
ied the discrete-time version of the independent cascade
model and obtained the first O(s2 logm) recovery guaran-
tee on general networks. The algorithm is based on a like-
lihood function similar to the one we propose, without the
`1-norm penalty. Their analysis depends on a correlation
decay assumption, which limits the number of new infec-
tions at every step. In this setting, they show a lower bound
of the number of cascades needed for support recovery with
constant probability of the order Ω(s log(m/s)). They also
suggest a GREEDY algorithm, which achieves aO(s logm)
guarantee in the case of tree graphs. The work of (Abra-
hao et al., 2013) studies the same continuous-model frame-
work as (Gomez Rodriguez et al., 2010) and obtains an
O(s9 log2 s logm) support recovery algorithm, without the
correlation decay assumption. (Du et al., 2013) propose a
similar algorithm to ours for recovering the weights of the
graph under a continuous-time independent cascade model,
without proving theoretical guarantees.

Closest to this work is a recent paper by Daneshmand et al.
(2014), wherein the authors consider a `1-regularized ob-
jective function. They adapt standard results from sparse
recovery to obtain a recovery bound of O(s3 logm) under
an irrepresentability condition (Zhao & Yu, 2006). Under
stronger assumptions, they match the (Netrapalli & Sang-
havi, 2012) bound of O(s2 logm), by exploiting similar
properties of the convex program’s KKT conditions. In
contrast, our work studies discrete-time diffusion processes
including the Independent Cascade model under weaker as-
sumptions. Furthermore, we analyze both the recovery of
the graph’s edges and the estimation of the model’s param-
eters, and achieve close to optimal bounds.

The work of (Du et al., 2014) is slightly orthogonal to ours
since they suggest learning the influence function, rather
than the parameters of the network directly.

2. Model
We consider a graph G = (V,E,Θ), where Θ is a |V | ×
|V | matrix of parameters describing the edge weights of G.
Intuitively, Θi,j captures the “influence” of node i on node
j. Let m ≡ |V |. For each node j, let θj be the jth column
vector of Θ. A discrete-time Cascade model is a Markov
process over a finite state space {0, 1, . . . ,K − 1}V with
the following properties:

1. Conditioned on the previous time step, the transition
events between two states in {0, 1, . . . ,K − 1} for
each i ∈ V are mutually independent across i ∈ V .

2. Of the K possible states, there exists a contagious
state such that all transition probabilities of the
Markov process can be expressed as a function of the
graph parameters Θ and the set of “contagious nodes”
at the previous time step.

3. The initial probability over {0, 1, . . . ,K − 1}V is
such that all nodes can eventually reach a contagious
state with non-zero probability. The “contagious”
nodes at t = 0 are called source nodes.

In other words, a cascade model describes a diffusion pro-
cess where a set of contagious nodes “influence” other
nodes in the graph to become contagious. An influence cas-
cade is a realisation of this random process, i.e. the succes-
sive states of the nodes in graph G. Note that both the “sin-
gle source” assumption made in (Daneshmand et al., 2014)
and (Abrahao et al., 2013) as well as the “uniformly chosen
source set” assumption made in (Netrapalli & Sanghavi,
2012) verify condition 3. Also note that the multiple-source
node assumption does not reduce to the single-source as-
sumption, even under the assumption that cascades do not
overlap. Imagining for example two cascades starting from
two different nodes; since we do not observe which node
propagated the contagion to which node, we cannot at-
tribute an infected node to either cascade and treat the prob-
lem as two independent cascades.

In the context of Network Inference, (Netrapalli & Sang-
havi, 2012) focus on the well-known discrete-time indepen-
dent cascade model recalled below, which (Abrahao et al.,
2013) and (Daneshmand et al., 2014) generalize to contin-
uous time. We extend the independent cascade model in
a different direction by considering a more general class
of transition probabilities while staying in the discrete-time
setting. We observe that despite their obvious differences,
both the independent cascade and the voter models make
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the network inference problem similar to the standard gen-
eralized linear model inference problem. In fact, we define
a class of diffusion processes for which this is true: the
Generalized Linear Cascade Models. The linear threshold
model is a special case and is discussed in Section 6.

2.1. Generalized Linear Cascade Models

Let susceptible denote any state which can become conta-
gious at the next time step with a non-zero probability. We
draw inspiration from generalized linear models to intro-
duce Generalized Linear Cascades:

Definition 1. Let Xt be the indicator variable of “conta-
gious nodes” at time step t. A generalized linear cascade
model is a cascade model such that for each susceptible
node j in state s at time step t, the probability of j becom-
ing “contagious” at time step t+ 1 conditioned on Xt is a
Bernoulli variable of parameter f(θj ·Xt):

P(Xt+1
j = 1|Xt) = f(θj ·Xt) (1)

where f : R→ [0, 1]

In other words, each generalized linear cascade pro-
vides, for each node j ∈ V a series of measurements
(Xt, Xt+1

j )
t∈Tj

sampled from a generalized linear model.

Note also that E[Xt+1
i |Xt] = f(θi ·Xt). As such, f can

be interpreted as the inverse link function of our general-
ized linear cascade model.

2.2. Examples

2.2.1. INDEPENDENT CASCADE MODEL

In the independent cascade model, nodes can be either sus-
ceptible, contagious or immune. At t = 0, all source nodes
are “contagious” and all remaining nodes are “susceptible”.
At each time step t, for each edge (i, j) where j is suscep-
tible and i is contagious, i attempts to infect j with proba-
bility pi,j ∈ [0, 1]; the infection attempts are mutually in-
dependent. If i succeeds, j will become contagious at time
step t+1. Regardless of i’s success, node i will be immune
at time t+ 1, such that nodes stay contagious for only one
time step. The cascade process terminates when no conta-
gious nodes remain.

If we denote by Xt the indicator variable of the set of con-
tagious nodes at time step t, then if j is susceptible at time
step t+ 1, we have:

P
[
Xt+1
j = 1 |Xt

]
= 1−

m∏
i=1

(1− pi,j)X
t
i .

Defining Θi,j ≡ log( 1
1−pi,j ), this can be rewritten as:

P
[
Xt+1
j = 1 |Xt

]
= 1−

m∏
i=1

e−Θi,jX
t
i (IC)

= 1− e−Θj ·Xt

Therefore, the independent cascade model is a Generalized
Linear Cascade model with inverse link function f : z 7→
1−e−z . Note that to write the Independent Cascade Model
as a Generalized Linear Cascade Model, we had to intro-
duce the change of variable Θi,j = log( 1

1−pi,j ). The re-
covery results in Section 3 pertain to the Θj parameters.
Fortunately, the following lemma shows that the recovery
error on Θj is an upper bound on the error on the original
pj parameters.

Lemma 1. ‖θ̂ − θ∗‖2 ≥ ‖p̂− p∗‖2.

2.2.2. THE LINEAR VOTER MODEL

In the Linear Voter Model, nodes can be either red or blue.
Without loss of generality, we can suppose that the blue
nodes are contagious. The parameters of the graph are nor-
malized such that ∀i,

∑
j Θi,j = 1. Each round, every

node j independently chooses one of its neighbors with
probability Θi,j and adopts their color. The cascades stops
at a fixed horizon time T or if all nodes are of the same
color. If we denote by Xt the indicator variable of the set
of blue nodes at time step t, then we have:

P
[
Xt+1
j = 1|Xt

]
=

m∑
i=1

Θi,jX
t
i = Θj ·Xt (V)

Thus, the linear voter model is a Generalized Linear Cas-
cade model with inverse link function f : z 7→ z.

2.2.3. DISCRETIZATION OF CONTINUOUS MODEL

Another motivation for the Generalized Linear Cascade
model is that it captures the time-discretized formula-
tion of the well-studied continuous-time independent cas-
cade model with exponential transmission function (CICE)
of (Gomez Rodriguez et al., 2010; Abrahao et al., 2013;
Daneshmand et al., 2014). Assume that the temporal reso-
lution of the discretization is ε, i.e. all nodes whose (con-
tinuous) infection time is within the interval [kε, (k + 1)ε)
are considered infected at (discrete) time step k. Let Xk

be the indicator vector of the set of nodes ‘infected’ before
or during the kth time interval. Note that contrary to the
discrete-time independent cascade model, Xk

j = 1 =⇒
Xk+1
j = 1, that is, there is no immune state and nodes

remain contagious forever.

Let Exp(p) be an exponentially-distributed random vari-
able of parameter p and let Θi,j be the rate of transmis-
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Figure 1: Illustration of the sparse-recovery approach. Our
objective is to recover the unknown weight vector θj for
each node j. We observe a Bernoulli realization whose pa-
rameters are given by applying f to the matrix-vector prod-
uct, where the measurement matrix encodes which nodes
are “contagious” at each time step.

sion along directed edge (i, j) in the CICE model. By the
memoryless property of the exponential, if Xk

j 6= 1:

P(Xk+1
j = 1|Xk) = P( min

i∈N (j)
Exp(Θi,j) ≤ ε)

= P(Exp(

m∑
i=1

Θi,jX
t
i ) ≤ ε) = 1− e−εΘj ·X

t

Therefore, the ε-discretized CICE-induced process is a
Generalized Linear Cascade model with inverse link func-
tion f : z 7→ 1− e−ε·z .

2.2.4. LOGISTIC CASCADES

“Logistic cascades” is the specific case where the inverse
link function is given by the logistic function f(z) =
1/(1 + e−z+t). Intuitively, this captures the idea that there
is a threshold t such that when the sum of the parameters of
the infected parents of a node is larger than the threshold,
the probability of getting infected is close to one. This is
a smooth approximation of the hard threshold rule of the
Linear Threshold Model (Kempe et al., 2003). As we will
see later in the analysis, for logistic cascades, the graph in-
ference problem becomes a linear inverse problem.

2.3. Maximum Likelihood Estimation

Inferring the model parameter Θ from observed influence
cascades is the central question of the present work. Recov-
ering the edges in E from observed influence cascades is
a well-identified problem known as the Network Inference
problem. However, recovering the influence parameters is
no less important. In this work we focus on recovering Θ,
noting that the set of edgesE can then be recovered through
the following equivalence: (i, j) ∈ E ⇔ Θi,j 6= 0

Given observations (x1, . . . , xn) of a cascade model,
we can recover Θ via Maximum Likelihood Estimation
(MLE). Denoting byL the log-likelihood function, we con-
sider the following `1-regularized MLE problem:

Θ̂ ∈ argmax
Θ

1

n
L(Θ |x1, . . . , xn)− λ‖Θ‖1

where λ is the regularization factor which helps prevent
overfitting and controls the sparsity of the solution.

The generalized linear cascade model is decomposable in
the following sense: given Definition 1, the log-likelihood
can be written as the sum of m terms, each term i ∈
{1, . . . ,m} only depending on θi. Since this is equally
true for ‖Θ‖1, each column θi of Θ can be estimated by
a separate optimization program:

θ̂i ∈ argmax
θ
Li(θi |x1, . . . , xn)− λ‖θi‖1 (2)

where we denote by Ti the time steps at which node i is
susceptible and:

Li(θi |x1, . . . , xn) =
1

|Ti|
∑
t∈Ti

xt+1
i log f(θi · xt)

+ (1− xt+1
i ) log

(
1− f(θi · xt)

)
In the case of the voter model, the measurements include all
time steps until we reach the time horizon T or the graph
coalesces to a single state. For the independent cascade
model, the measurements include all time steps until node
i becomes contagious, after which its behavior is determin-
istic. Contrary to prior work, our results depend on the
number of measurements and not the number of cascades.

Regularity assumptions To solve program (2) effi-
ciently, we would like it to be convex. A sufficient condi-
tion is to assume that Li is concave, which is the case if f
and (1− f) are both log-concave. Remember that a twice-
differentiable function f is log-concave iff. f ′′f ≤ f ′2.
It is easy to verify this property for f and (1 − f) in the
Independent Cascade Model and Voter Model.

Furthermore, the data-dependent bounds in Section 3.1 will
require the following regularity assumption on the inverse
link function f : there exists α ∈ (0, 1) such that

max
{
|(log f)′(zx)|, |(log(1− f))′(zx)|

}
≤ 1

α
(LF)

for all zx ≡ θ∗ · x such that f(zx) /∈ {0, 1}.

In the voter model, f
′(z)
f(z) = 1

z and f ′(z)
(1−f)(z) = 1

1−z . Hence
(LF) will hold as soon as α ≤ Θi,j ≤ 1− α for all (i, j) ∈
E which is always satisfied for some α for non-isolated
nodes. In the Independent Cascade Model, f

′(z)
f(z) = 1

ez−1

and f ′(z)
(1−f)(z) = 1. Hence (LF) holds as soon as pi,j ≥ α for

all (i, j) ∈ E which is always satisfied for some α ∈ (0, 1).

For the data-independent bound of Proposition 1, we will
require the following additional regularity assumption:

max
{
|(log f)′′(zx)|, |(log(1− f))′′(zx)|

}
≤ 1

α
(LF2)
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for some α ∈ (0, 1) and for all zx ≡ θ∗·x such that f(zx) /∈
{0, 1}. It is again easy to see that this condition is verified
for the Independent Cascade Model and the Voter model
for the same α ∈ (0, 1).

Convex constraints The voter model is only defined
when Θi,j ∈ (0, 1) for all (i, j) ∈ E. Similarly the in-
dependent cascade model is only defined when Θi,j > 0.
Because the likelihood function Li is equal to −∞ when
the parameters are outside of the domain of definition of
the models, these contraints do not need to appear explic-
itly in the optimization program.

In the specific case of the voter model, the constraint∑
j Θi,j = 1 will not necessarily be verified by the es-

timator obtained in (2). In some applications, the exper-
imenter might not need this constraint to be verified, in
which case the results in Section 3 still give a bound on
the recovery error. If this constraint needs to be satisfied,
then by Lagrangian duality, there exists a λ ∈ R such that
adding λ

(∑
j θj − 1

)
to the objective function of (2) en-

forces the constraint. Then, it suffices to apply the results
of Section 3 to the augmented objective to obtain the same
recovery guarantees. Note that the added term is linear and
will easily satisfy all the required regularity assumptions.

3. Results
In this section, we apply the sparse recovery framework to
analyze under which assumptions our program (2) recovers
the true parameter θi of the cascade model. Furthermore,
if we can estimate θi to a sufficiently good accuracy, it is
then possible to recover the support of θi by simple thresh-
olding, which provides a solution to the standard Network
Inference problem.

We will first give results in the exactly sparse setting in
which θi has a support of size exactly s. We will then relax
this sparsity constraint and give results in the stable recov-
ery setting where θi is approximately s-sparse.

As mentioned in Section 2.3, the maximum likelihood es-
timation program is decomposable. We will henceforth fo-
cus on a single node i ∈ V and omit the subscript i in the
notations when there is no ambiguity. The recovery prob-
lem is now the one of estimating a single vector θ∗ from a
set T of observations. We will write n ≡ |T |.

3.1. Main Theorem

In this section, we analyze the case where θ∗ is exactly
sparse. We write S ≡ supp(θ∗) and s = |S|. Recall,
that θi is the vector of weights for all edges directed at the
node we are solving for. In other words, S is the set of all
nodes susceptible to influence node i, also referred to as its
parents. Our main theorem will rely on the now standard

restricted eigenvalue condition introduced by (Bickel et al.,
2009a).

Definition 2. Let Σ ∈ Sm(R) be a real symmetric matrix
and S be a subset of {1, . . . ,m}. Defining C(S) ≡ {X ∈
Rm : ‖XSc‖1 ≤ 3‖XS‖1}. We say that Σ satisfies the
(S, γ)-restricted eigenvalue condition iff:

∀X ∈ C(S), XTΣX ≥ γ‖X‖22 (RE)

A discussion of the (S, γ)-(RE) assumption in the context
of generalized linear cascade models can be found in Sec-
tion 3.3. In our setting we require that the (RE)-condition
holds for the Hessian of the log-likelihood functionL: it es-
sentially captures the fact that the binary vectors of the set
of active nodes (i.e the measurements) are not too collinear.

Theorem 1. Assume the Hessian ∇2L(θ∗) satisfies the
(S, γ)-(RE) for some γ > 0 and that (LF) holds for some
α > 0. For any δ ∈ (0, 1), let θ̂ be the solution of (2) with

λ ≡ 2
√

logm
αn1−δ , then:

‖θ̂ − θ∗‖2 ≤
6

γ

√
s logm

αn1−δ w.p. 1− 1

enδ logm
(3)

Note that we have expressed the convergence rate in the
number of measurements n, which is different from the
number of cascades. For example, in the case of the voter
model with horizon time T and for N cascades, we can
expect a number of measurements proportional to N × T .

Theorem 1 is a consequence of Theorem 1 in (Negahban
et al., 2012) which gives a bound on the convergence rate
of regularized estimators. We state their theorem in the
context of `1 regularization in Lemma 2.

Lemma 2. Let C(S) ≡ {∆ ∈ Rm | ‖∆S‖1 ≤ 3‖∆Sc‖1}.
Suppose that:

∀∆ ∈ C(S), L(θ∗ + ∆)− L(θ∗)

−∇L(θ∗) ·∆ ≥ κL‖∆‖22 − τ2
L(θ∗) (4)

for some κL > 0 and function τL. Finally suppose that
λ ≥ 2‖∇L(θ∗)‖∞, then if θ̂λ is the solution of (2):

‖θ̂λ − θ∗‖22 ≤ 9
λ2s

κL
+

λ

κ2
L

2τ2
L(θ∗)

To prove Theorem 1, we apply Lemma 2 with τL = 0.
Since L is twice differentiable and convex, assumption (4)
with κL = γ

2 is implied by the (RE)-condition. For a good
convergence rate, we must find the smallest possible value
of λ such that λ ≥ 2‖∇Lθ∗‖∞. The upper bound on the
`∞ norm of∇L(θ∗) is given by Lemma 3.
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Lemma 3. Assume (LF) holds for some α > 0. For any
δ ∈ (0, 1):

‖∇L(θ∗)‖∞ ≤ 2

√
logm

αn1−δ w.p. 1− 1

enδ logm

The proof of Lemma 3 relies crucially on Azuma-
Hoeffding’s inequality, which allows us to handle corre-
lated observations. This departs from the usual assump-
tions made in sparse recovery settings, that the measure-
ments are independent from one another. We now show
how to use Theorem 1 to recover the support of θ∗, that is,
to solve the Network Inference problem.

Corollary 1. Under the same assumptions as Theorem 1,
let Ŝη ≡ {j ∈ {1, . . . ,m} : θ̂j > η} for η > 0. For
0 < ε < η, let S∗η+ε ≡ {i ∈ {1, . . . ,m} : θ∗i > η + ε} be
the set of all true ‘strong’ parents. Suppose the number of
measurements verifies: n > 9s logm

αγ2ε2 . Then with probability

1 − 1
m , S∗η+ε ⊆ Ŝη ⊆ S∗. In other words we recover all

‘strong’ parents and no ‘false’ parents.

Assuming we know a lower bound α on Θi,j , Corollary 1
can be applied to the Network Inference problem in the fol-
lowing manner: pick ε = η

2 and η = α
3 , then S∗η+ε = S

provided that n = Ω
(
s logm
α3γ2

)
. That is, the support of θ∗

can be found by thresholding θ̂ to the level η.

3.2. Approximate Sparsity

In practice, exact sparsity is rarely verified. For social net-
works in particular, it is more realistic to assume that each
node has few “strong” parents’ and many “weak” parents.
In other words, even if θ∗ is not exactly s-sparse, it can be
well approximated by s-sparse vectors.

Rather than obtaining an impossibility result, we show that
the bounds obtained in Section 3.1 degrade gracefully in
this setting. Formally, let θ∗bsc ∈ argmin‖θ‖0≤s ‖θ − θ

∗‖1
be the best s-approximation to θ∗. Then we pay a cost pro-
portional to ‖θ∗−θ∗bsc‖1 for recovering the weights of non-
exactly sparse vectors. This cost is simply the “tail” of θ∗:
the sum of the m − s smallest coordinates of θ∗. We re-
cover the results of Section 3.1 in the limit of exact spar-
sity. These results are formalized in the following theorem,
which is also a consequence of Theorem 1 in (Negahban
et al., 2012).

Theorem 2. Suppose the (RE) assumption holds for the
Hessian ∇2f(θ∗) and τL(θ∗) = κ2 logm

n ‖θ∗‖1 on the fol-
lowing set:

C′ ≡{X ∈ Rp : ‖XSc‖1 ≤ 3‖XS‖1 + 4‖θ∗ − θ∗bsc‖1}
∩ {‖X‖1 ≤ 1}

If the number of measurements n ≥ 64κ2

γ s logm, then by

solving (2) for λ ≡ 2
√

logm
αn1−δ we have:

‖θ̂ − θ∗‖2 ≤
3

γ

√
s logm

αn1−δ + 4 4

√
s logm

γ4αn1−δ ‖θ
∗ − θ∗bsc‖1

As in Corollary 1, an edge recovery guarantee can be de-
rived from Theorem 2 in the case of approximate sparsity.

3.3. Restricted Eigenvalue Condition

There exists a large class of sufficient conditions under
which sparse recovery is achievable in the context of regu-
larized estimation (van de Geer & Bühlmann, 2009). The
restricted eigenvalue condition, introduced in (Bickel et al.,
2009b), is one of the weakest such assumption. It can be
interpreted as a restricted form of non-degeneracy. Since
we apply it to the Hessian of the log-likelihood function
∇2L(θ), it essentially reduces to a form of restricted strong
convexity, that Lemma 2 ultimately relies on.

Observe that the Hessian of L can be seen as a re-weighted
Gram matrix of the observations:

∇2L(θ∗) =
1

|T |
∑
t∈T

xt(xt)T
[
xt+1
i

f ′′f − f ′2

f2
(θ∗ · xt)

− (1− xt+1
i )

f ′′(1− f) + f ′2

(1− f)2
(θ∗ · xt)

]
If f and (1 − f) are c-strictly log-convex for c > 0, then
min ((log f)′′, (log(1− f))′′) ≥ c. This implies that the
(S, γ)-(RE) condition in Theorem 1 and Theorem 2 re-
duces to a condition on the Gram matrix of the observations
XTX = 1

|T |
∑
t∈T x

t(xt)T for γ′ ≡ γ · c.

(RE) with high probability The Generalized Linear
Cascade model yields a probability distribution over the ob-
served sets of infected nodes (xt)t∈T . It is then natural to
ask whether the restricted eigenvalue condition is likely to
occur under this probabilistic model. Several recent papers
show that large classes of correlated designs obey the re-
stricted eigenvalue property with high probability (Raskutti
et al., 2010; Rudelson & Zhou, 2013).

The (RE)-condition has the following concentration prop-
erty: if it holds for the expected Hessian matrix
E[∇2L(θ∗)], then it holds for the finite sample Hessian ma-
trix ∇2L(θ∗) with high probability.

Therefore, under an assumption which only involves the
probabilistic model and not the actual observations, we can
obtain the same conclusion as in Theorem 1:
Proposition 1. Suppose E[∇2L(θ∗)] verifies the (S, γ)-
(RE) condition and assume (LF) and (LF2). For δ > 0,
if n1−δ ≥ 1

28γαs
2 logm, then∇2L(θ∗) verifies the (S, γ2 )-

(RE) condition, w.p ≥ 1− e−nδ logm.



Inferring Graphs from Cascades: A Sparse Recovery Framework

Observe that the number of measurements required in
Proposition 1 is now quadratic in s. If we only keep
the first measurement from each cascade, which are in-
dependent, we can apply Theorem 1.8 from (Rudelson &
Zhou, 2013), lowering the number of required cascades to
s logm log3(s logm).

If f and (1 − f) are strictly log-convex, then the previous
observations show that the quantity E[∇2L(θ∗)] in Propo-
sition 1 can be replaced by the expected Gram matrix:
A ≡ E[XTX]. This matrix A has a natural interpretation:
the entry ai,j is the probability that node i and node j are
infected at the same time during a cascade. In particular,
the diagonal term ai,i is simply the probability that node i
is infected during a cascade.

4. A Lower Bound
In (Netrapalli & Sanghavi, 2012), the authors explicitate
a lower bound of Ω(s log m

s ) on the number of cascades
necessary to achieve good support recovery with constant
probability under a correlation decay assumption. In this
section, we will consider the stable sparse recovery set-
ting of Section 3.2. Our goal is to obtain an information-
theoretic lower bound on the number of measurements nec-
essary to approximately recover the parameter θ∗ of a cas-
cade model from observed cascades. Similar lower bounds
were obtained for sparse linear inverse problems in (Price
& Woodruff, 2011; 2012; Ba et al., 2011).
Theorem 3. Let us consider a cascade model of the form
(1) and a recovery algorithmA which takes as input n ran-
dom cascade measurements and outputs θ̂ such that with
probability δ > 1

2 (over the measurements):

‖θ̂ − θ∗‖2 ≤ C min
‖θ‖0≤s

‖θ − θ∗‖2 (5)

where θ∗ is the true parameter of the cascade model. Then
n = Ω(s log m

s / logC).

This theorem should be contrasted with Theorem 2: up to
an additive s log s factor, the number of measurements re-
quired by our algorithm is tight. The proof of Theorem 3
follows an approach similar to (Price & Woodruff, 2012).
We present a sketch of the proof in the Appendix and refer
the reader to their paper for more details.

5. Experiments
In this section, we validate empirically the results and as-
sumptions of Section 3 for varying levels of sparsity and
different initializations of parameters (n,m, λ, pinit), where
pinit is the initial probability of a node being a source node.
We compare our algorithm to two different state-of-the-art
algorithms: GREEDY and MLE from (Netrapalli & Sang-
havi, 2012). As an extra benchmark, we also introduce

a new algorithm LASSO, which approximates our SPARSE
MLE algorithm.

Experimental setup We evaluate the performance of the
algorithms on synthetic graphs, chosen for their similarity
to real social networks. We therefore consider a Watts-
Strogatz graph (300 nodes, 4500 edges) (Watts & Stro-
gatz, 1998), a Barabasi-Albert graph (300 nodes, 16200
edges) (Albert & Barabási, 2001), a Holme-Kim power law
graph (200 nodes, 9772 edges) (Holme & Kim, 2002), and
the recently introduced Kronecker graph (256 nodes, 10000
edges) (Leskovec et al., 2010). Undirected graphs are con-
verted to directed graphs by doubling the edges.

For every reported data point, we sample edge weights
and generate n cascades from the (IC) model for n ∈
{100, 500, 1000, 2000, 5000}. We compare for each algo-
rithm the estimated graph Ĝ with G. The initial probability
of a node being a source is fixed to 0.05, i.e. an average of
15 nodes source nodes per cascades for all experiments, ex-
cept for Figure (f). All edge weights are chosen uniformly
in the interval [0.2, 0.7], except when testing for approxi-
mately sparse graphs (see paragraph on robustness). Ad-
justing for the variance of our experiments, all data points
are reported with at most a ±1 error margin. The param-
eter λ is chosen to be of the order O(

√
logm/(αn)). We

report our results as a function of the number of cascades
and not the number of measurements: in practice, very few
cascades have depth greater than 3.

Benchmarks We compare our SPARSE MLE algorithm
to 3 benchmarks: GREEDY and MLE from (Netrapalli &
Sanghavi, 2012) and LASSO. The MLE algorithm is a
maximum-likelihood estimator without `1-norm penaliza-
tion. GREEDY is an iterative algorithm. We introduced the
LASSO algorithm in our experiments to achieve faster com-
putation time:

θ̂i ∈ arg min
θ

∑
t∈T
|f(θi · xt)− xt+1

i |
2 + λ‖θi‖1

LASSO has the merit of being both easier and faster to opti-
mize numerically than the other convex-optimization based
algorithms. It approximates the SPARSE MLE algorithm by
making the assumption that the observations xt+1

i are of the
form: xt+1

i = f(θi ·xt)+ε, where ε is random white noise.
This is not valid in theory since ε depends on f(θi · xt),
however the approximation is validated in practice.

We did not benchmark against other known algorithms
(NETRATE (Gomez-Rodriguez et al., 2011) and FIRST
EDGE (Abrahao et al., 2013)) due to the discrete-time as-
sumption. These algorithms also suppose a single-source
model, whereas SPARSE MLE, MLE, and GREEDY do not.
Learning the graph in the case of a multi-source cascade
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Figure 2: Figures (a) and (b) report the F1-score in log scale for 2 graphs as a function of the number of cascades n: (a)
Barabasi-Albert graph, 300 nodes, 16200 edges. (b) Watts-Strogatz graph, 300 nodes, 4500 edges. Figure (c) plots the
Precision-Recall curve for various values of λ for a Holme-Kim graph (200 nodes, 9772 edges). Figures (d) and (e) report
the `2-norm ‖Θ̂ − Θ‖2 for a Kronecker graph which is: (d) exactly sparse (e) non-exactly sparse, as a function of the
number of cascades n. Figure (f) plots the F1-score for the Watts-Strogatz graph as a function of pinit.

model is harder (see Figure 2 (f)) but more realistic, since
we rarely have access to “patient 0” in practice.

Graph Estimation In the case of the LASSO, MLE and
SPARSE MLE algorithms, we construct the edges of Ĝ :
∪j∈V {(i, j) : Θij > 0.1}, i.e by thresholding. Finally, we
report the F1-score= 2precision·recall/(precision+recall),
which considers (1) the number of true edges recovered by
the algorithm over the total number of edges returned by
the algorithm (precision) and (2) the number of true edges
recovered by the algorithm over the total number of edges
it should have recovered (recall). Over all experiments,
SPARSE MLE achieves higher rates of precision, recall, and
F1-score. Interestingly, both MLE and SPARSE MLE per-
form exceptionally well on the Watts-Strogatz graph.

Quantifying robustness The previous experiments only
considered graphs with strong edges. To test the algorithms
in the approximately sparse case, we add sparse edges to
the previous graphs according to a bernoulli variable of pa-
rameter 1/3 for every non-edge, and drawing a weight uni-
formly from [0, 0.1]. The non-sparse case is compared to
the sparse case in Figure 2 (d)–(e) for the `2 norm show-
ing that both the LASSO, followed by SPARSE MLE are the
most robust to noise.

6. Future Work
Solving the Graph Inference problem with sparse recovery
techniques opens new venues for future work. Firstly, the
sparse recovery literature has already studied regulariza-
tion patterns beyond the `1-norm, notably the thresholded
and adaptive lasso (van de Geer et al., 2011; Zou, 2006).
Another goal would be to obtain confidence intervals for
our estimator, similarly to what has been obtained for the
Lasso in the recent series of papers (Javanmard & Monta-
nari, 2014; Zhang & Zhang, 2014).

Finally, the linear threshold model is a commonly stud-
ied diffusion process and can also be cast as a general-
ized linear cascade with inverse link function z 7→ 1z>0:
Xt+1
j = sign (θj ·Xt − tj). This model therefore falls

into the 1-bit compressed sensing framework (Boufounos
& Baraniuk, 2008). Several recent papers study the the-
oretical guarantees obtained for 1-bit compressed sensing
with specific measurements (Gupta et al., 2010; Plan &
Vershynin, 2014). Whilst they obtained bounds of the order
O(s log m

s ), no current theory exists for recovering positive
bounded signals from binary measurememts. This research
direction may provide the first clues to solve the “adaptive
learning” problem: if we are allowed to adaptively choose
the source nodes at the beginning of each cascade, how
much can we improve the current results?
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7. Appendix
In this appendix, we provide the missing proofs of Sec-
tion 3 and Section 4. We also show additional experiments
on the running time of our recovery algorithm which could
not fit in the main part of the paper.

7.1. Proofs of Section 3

Proof of Lemma 1. Using the inequality ∀x > 0, log x ≥
1 − 1

x , we have | log( 1
1−p ) − log( 1

1−p′ )| ≥ max(1 −
1−p
1−p′ , 1−

1−p′
1−p ) ≥ max(p− p′, p′ − p).

Proof of Lemma 3. The gradient of L is given by:

∇L(θ∗) =
1

|T |
∑
t∈T

xt
[
xt+1
i

f ′

f
(θ∗ · xt)

− (1− xt+1
i )

f ′

1− f
(θ∗ · xt)

]

Let ∂jL(θ) be the j-th coordinate of ∇L(θ∗). Writing
∂jL(θ∗) = 1

|T |
∑
t∈T Yt and since E[xt+1

i |xt] = f(θ∗·xt),

we have that E[Yt+1|Yt] = 0. Hence Zt =
∑t
k=1 Yk is a

martingale.

Using assumption (LF), we have almost surely |Zt+1 −
Zt| ≤ 1

α and we can apply Azuma’s inequality to Zt:

P
[
|ZT | ≥ λ

]
≤ 2 exp

(
−λ2α

2n

)

Applying a union bound to have the previous inequality
hold for all coordinates of∇L(θ) implies:

P
[
‖∇L(θ∗)‖∞ ≥ λ

]
≤ 2m exp

(
−λ2nα

2

)

Choosing λ ≡ 2
√

logm
αn1−δ concludes the proof.

Proof of Corollary 1. By choosing δ = 0, if n > 9s logm
αγ2ε2 ,

then ‖θ̂ − θ∗‖2 < ε < η with probability 1− 1
m . If θ∗i = 0

and θ̂ > η, then ‖θ̂ − θ∗‖2 ≥ |θ̂i − θ∗i | > η, which is
a contradiction. Therefore we get no false positives. If
θ∗i > η + ε, then |θ̂i − θ∗i | < ε =⇒ θj > η and we get all
strong parents.

(RE) with high probability We now prove Proposi-
tion 1. The proof mostly relies on showing that the Hessian
of likelihood function L is sufficiently well concentrated
around its expectation.

Proof. Writing H ≡ ∇2L(θ∗), if ∀∆ ∈ C(S), ‖E[H] −
H]‖∞ ≤ λ and E[H] verifies the (S, γ)-(RE) condition
then:

∀∆ ∈ C(S), ∆H∆ ≥ ∆E[H]∆(1− 32sλ/γ) (6)

Indeed, |∆(H−E[H])∆| ≤ 2λ‖∆‖21 ≤ 2λ(4
√
s‖∆s‖2)2.

Writing ∂2
i,jL(θ∗) = 1

|T |
∑
t∈T Yt and using (LF ) and

(LF2) we have
∣∣Yt − E[Yt]

∣∣ ≤ 3
α . Applying Azuma’s

inequality as in the proof of Lemma 3, this implies:

P
[
‖E[H]−H‖∞ ≥ λ

]
≤ 2 exp

(
−nαλ

2

3
+ 2 logm

)
Thus, if we take λ =

√
9logm
αn1−δ , ‖E[H] − H‖∞ ≤ λ w.p

at least 1 − e−nδ logm. When n1−δ ≥ 1
28γαs

2 logm, (6)
implies ∀∆ ∈ C(S), ∆H∆ ≥ 1

2∆E[H]∆, w.p. at least
1− e−nδ logm and the conclusion of Proposition 1 follows.

7.2. Proof of Theorem 3

Let us consider an algorithm A which verifies the recovery
guarantee of Theorem 3: there exists a probability distri-
bution over measurements such that for all vectors θ∗, (5)
holds w.p. δ. This implies by the probabilistic method that
for all distribution D over vectors θ, there exists an n×m
measurement matrix XD with such that (5) holds w.p. δ (θ
is now the random variable).

Consider the following distribution D: choose S uni-
formly at random from a “well-chosen” set of s-sparse
supports F and t uniformly at random from X ≡

{
t ∈

{−1, 0, 1}m | supp(t) ∈ F
}

. Define θ = t + w where
w ∼ N (0, α s

mIm) and α = Ω( 1
C ).

Consider the following communication game between Al-
ice and Bob: (1) Alice sends y ∈ Rm drawn from a
Bernouilli distribution of parameter f(XDθ) to Bob. (2)
Bob uses A to recover θ̂ from y. It can be shown that at
the end of the game Bob now has a quantity of information
Ω(s log m

s ) about S. By the Shannon-Hartley theorem, this
information is also upper-bounded by O(n logC). These
two bounds together imply the theorem.

7.3. Running Time Analysis

We include here a running time analysis of our algorithm.
In Figure 3, we compared our algorithm to the benchmark
algorithms for increasing values of the number of nodes.
In Figure 4, we compared our algorithm to the benchmarks
for a fixed graph but for increasing number of observed
cascades.

In both Figures, unsurprisingly, the simple greedy algo-
rithm is the fastest. Even though both the MLE algorithm
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Figure 3: Running time analysis for estimating the parents
of a single node on a Barabasi-Albert graph as a function of
the number of nodes in the graph. The parameter k (number
of nodes each new node is attached to) was set to 30. pinit
is chosen equal to .15, and the edge weights are chosen
uniformly at random in [.2, .7]. The penalization parameter
λ is chosen equal to .1.
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Figure 4: Running time analysis for estimating the parents
of a single node on a Barabasi-Albert graph as a function
of the number of total observed cascades. The parameters
defining the graph were set as in Figure 3.

and the algorithm we introduced are based on convex op-
timization, the MLE algorithm is faster. This is due to the
overhead caused by the `1-regularisation in (2).

The dependency of the running time on the number of cas-
cades increases is linear, as expected. The slope is largest
for our algorithm, which is again caused by the overhead
induced by the `1-regularization.


