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Abstract
The rank aggregation problem has been studied
with varying desiderata in varied communities
such as Theoretical Computer Science, Statistics,
Information Retrieval and Social Welfare The-
ory. We introduce a variant of this problem we
call distributional rank aggregation, where the
ranking data is only available via the induced dis-
tribution over the set of all permutations. We pro-
vide a novel translation of the usual social wel-
fare theory axioms to this setting. As we show
this allows for a more quantitative characteriza-
tion of these axioms: which then are not only less
prone to misinterpretation, but also allow sim-
pler proofs for some key impossibility theorems.
Most importantly, these quantitative characteri-
zations lead to natural and novel relaxations of
these axioms, which as we show, allow us to get
around celebrated impossibility results in social
choice theory. We are able to completely char-
acterize the class of positional scoring rules with
respect to our axioms and show that Borda Count
is optimal in a certain sense.

1. Introduction
We study the problem of rank aggregation: a set of agents
provide their ranked preferences over a set of alternatives,
and we wish to aggregate them into a consensus ranking.
Due in part to its generality and importance, this problem
has been studied with varying desiderata in varied commu-
nities.

In Theoretical Computer Science, this has been framed as a
combinatorial optimization problem of finding the ranking
that minimizes the average distance (for some appropriate
distance measure such as the Kemeny distance) to the set of
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agent rankings. These resulting problems are however typ-
ically NP-hard, and research effort has been devoted to de-
veloping polynomial time algorithms with approximation
guarantees (Ailon, 2010; Dwork et al., 2001a;b). These can
also be cast as maximizing the average utility (in contrast to
minimizing the average distance); Pivato (2013); Conitzer
& Sandholm (2005) in particular showed that a large class
of existing voting rules could also be interpreted as such
average utility maximizers. Lu & Boutilier (2010) design
a suitable utility measure that in their context captured the
facet of uncertainty about the availability of alternatives.

In the field of Information Retrieval, the problem of rank
aggregation arises as a “meta-algorithm” where for in-
stance we are given the output rankings from multiple
search engines, and we are to combine these into a sin-
gle ranking (Dwork et al., 2001a;b). Also in this domain,
Cheng et al. (2010) cast the aggregation task in a condi-
tional or supervised setting, where we are given a training
set of (feature-vector, ranking) pairs, and the task is to learn
a map from the feature vector space to the set of permuta-
tions.

In Sociometrics, “social welfare theories” by Condorcet
(1785); Arrow (1951) specify normative properties (ax-
ioms) that any reasonable rank aggregation should satisfy.
Some results (including the celebrated impossibility theo-
rem of Arrow (1951)) then state that some subsets of ax-
ioms cannot be jointly compatible. Several voting rules
such as Condorcet methods, Borda Count, Runoff proce-
dures, etc. have then been suggested, which satisfy differ-
ent subsets of these axioms.

In Statistics, the agents’ preferences are viewed as i.i.d.
samples from a statistical model and the problem is re-
formulated to that of learning a distribution over permu-
tations and of computing the Maximum Likelihood Esti-
mate (MLE) of the parameters; the final aggregation re-
turned is then typically just the mode of this distribution.
The focus in this line of work has then been on investigat-
ing efficiently learnable models for different types of in-
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puts (Critchlow et al., 1991; Lebanon & Lafferty, 2002a;b;
Hunter, 2004; Lebanon & Mao, 2008; Guiver & Snelson,
2009; Negahban et al., 2012; Soufiani et al., 2013). There
have also been other proposals that go beyond this MLE
based approach. In the social choice domain, where the aim
is to pick a single winner, Young (1988) proposed to select
a winning alternative that is “most likely to be the best (i.e.,
top-ranked in the true ranking)” and provided formulas to
compute it for three alternatives. This idea has been for-
malized and extended by Procaccia et al. (2012) to choose
a given number of alternatives with highest marginal prob-
ability under the Mallows model. In recent work, Soufi-
ani et al. (2014) considered the estimation of the Mallows
model (P (·|W ) ∝ φ`KT (·,W )), and outputting a point es-
timate of the distribution based on statistical decision the-
oretic considerations. The interesting aspect of this work
was that they then derived constraints on the dispersion pa-
rameter φ of the Mallows model for their estimator to sat-
isfy different social-choice theoretic axioms.

We consider rank aggregation from the computer science
and social-welfare theoretic viewpoint: and wish to aggre-
gate an arbitrary set of ranking preferences over a set of
alternatives into a consensus ranking over the entire set of
alternatives. We note that we focus on the more difficult so-
cial welfare problem of providing a ranking over the entire
set of alternatives, in contrast to the simpler social choice
problem of outputting only the winner, i.e. the top position,
in the aggregation. In many cases however, we do not have
access to the specific agent or voter identities associated
with a particular preference, as for instance with data from
a secret ballot. Even given access to such voter identities,
the key normative property (i.e. social choice theoretic ax-
iom) of anonymity entails that the consensus ranking not
make use of this information. Accordingly, one might con-
sider a rank aggregation algorithm that has access to (or
makes use of) only the histogram of the ranking prefer-
ences, or in other words, the empirical distribution over the
set of all possible rankings as entailed by the given set of
agent ranking preferences. We term this problem as dis-
tributional rank aggregation: given any distribution over
the set of all possible rankings over a set of alternatives,
output a consensus ranking, that in effect serves as a point-
estimate of this distribution. (We note that this is distinct
from the statistical viewpoint of assuming preferences are
i.i.d. samples from some distribution, and estimating this
distribution.) Such distributional rank aggregation is also
natural when aggregating preferences of a very large popu-
lation, where we would expect almost all possible rankings
to be present in differing relative proportions, and it would
be natural to collate these preferences into a distribution
over the set of all possible rankings over the set of alterna-
tives.

The first contribution of this paper is in translating the set

of normative axioms studied in the social choice literature
to our distributional ranking setting. As we show, our more
general distributional setting allows to quantitatively char-
acterize these axioms: which addresses a common problem
in social choice practice where the qualitatively stated so-
cial choice theoretic axioms are frequently misunderstood
or misinterpreted. This also provides a potential way to un-
derstand the relationships between the varied social welfare
axioms. We also provide a counterpart of a classical impos-
sibility theorem stating that it is impossible to satisfy all of
a set of key axioms simultaneously, but where our quanti-
tative characterization of the axioms allows a very simple
proof.

Another key advantage of a quantitative characterization of
the axioms is in potentially relaxing them. In our second
key contribution, we provide precisely such a novel quan-
titative characterization of approximately satisfiable or re-
laxed variants of the set of social choice axioms.

In our third key contribution, we leverage these relaxed ax-
iom variants to finesse the celebrated impossibility theo-
rem(s): we show that there exist distributional rank aggre-
gation algorithms that satisfy the relaxed variants of all of
a set of key axioms. We build towards this in the follow-
ing stages: we first deconstruct the set of normative axioms
and derive an equivalent characterization in terms of certain
margin-like quantities. We then focus on a particular class
of rank aggregation algorithms known as positional scoring
rules, and exhaustively characterize which members of this
class satisfy the set of exact axioms as well as their relaxed
counterparts. As we then show, there exist members of this
family that do satisfy the relaxed variants of all of a set of
key axioms, thus allowing us to finesse a key impossibility
theorem.

Our development leads us to a surprising result: that Borda
Count has the minimum worst-case margin with respect to
approximate satisfiability for certain axioms over all distri-
butions. For specific distributions, our framework also al-
lows us to identify positional losses which can outperform
Borda and we present experiments to this effect.

2. Problem Setup
Consider a set of alternatives or a label set X of size n;
without loss of generality, we will assume this set is X
:= [n] = {1, . . . , n}. A total ordering over the label set is
given by a permutation σ over the set [n], so that σ(x) = j
indicates that the position of label x is j in σ. Let Sn be the
set of all permutations. We also frequently refer to permu-
tations as votes or rankings in this paper. We will refer to
the alternatives or labels with alphabets {x, y}. The alter-
native x being preferred to y in a permutation σ is equiva-
lent to having σ(x) < σ(y).
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Consider any distribution P over the set of permutations
Sn. Let the marginal probability of x being ranked first be
denoted by P 1(x) =

∑
σ:σ(x)=1

P (σ) and the marginal prob-

ability of x being ranked above y be denoted as Px<y =∑
σ:σ(x)<σ(y) P (σ).

Definition 1. Let Pn denote the set of all distributions
over Sn. We then say that a distributional rank aggre-
gation function is any map σ∗ : Pn 7→ Sn, that given
any distribution P over Sn outputs a “consensus” ranking
σ∗(P ) ∈ Sn.

We note that this differs from the standard rank aggregation
algorithm framework in two subtle respects: (a) the aggre-
gation function takes as input only histogram information
of the set of agent preferences, so that it does not have ac-
cess to voter identities, and (b) it does not assume a finite
set of voters. Note that an infinite set of voter preferences
can be naturally aggregated into a distribution over the set
of all rankings and provided as input to a distributional rank
aggregation algorithm. Indeed, typical social-choice the-
oretic settings implicitly assume a very small number of
voters, which in a distributional setting would translate to
a distribution with support limited to a very small subset
of Sn. Another facet of the distributional setting is that
all possible ranking preferences are present, in potentially
differing proportions (as specified by the distribution over
the set of all rankings), so that it also does not assume any
notion of consistency among the voter preferences.

But the key advantage of the distributional rank aggregation
framework is that it allows us to characterize social-choice
theoretic axioms quantitatively in terms of the distribution
P over Sn. In the following sections, we first review stan-
dard social-choice theoretic axioms which specify norma-
tive properties that any rank aggregation algorithm should
satisfy, and extend these to our distributional rank aggrega-
tion setting.

3. Axiomatic Analysis
Social choice/welfare theory was put on an axiomatic foun-
dation by Arrow (1951) who stated the following axioms
that a voting (rank aggregation) procedure should satisfy:

(S1) Non-dictatorship: The social welfare function
should account for the wishes of multiple voters. It
cannot simply mimic the preferences of a single voter.

(S2) Universality: For any set of individual voter pref-
erences, the social welfare function should yield a
unique, deterministic and complete ranking of societal
choices.

(S3) Transitivity: The final aggregation should be strictly
transitive i.e. if alternative x is preferred over y, y is

preferred over z then x should also be preferred over
z.

(S4) Pareto-efficiency: For every pair x and y of alterna-
tives, If everyone prefers x to y, then x is preferred to
y in the resulting social preference order.

(S5) Independence of irrelevant alternatives (IIA): The
social preference between x and y should depend only
on the individual preferences between x and y. i.e. if
one or more voters change their preferences, but no
one changes their relative positions of x and y, then
the relative positions of x and y in the aggregation
should still remain the same.

Arrow (1951) proves Arrow’s Impossibility Theorem,i.e.
when then the number of alternatives is strictly greater
than 2, then no function exists which satisfies the above
stated axioms and thus, these axioms are inconsistent. Brief
proofs of Arrow’s theorem are presented in Geanakoplos
(2005).

In addition to Arrow’s axioms, some other axioms are
also well-established in the Social Welfare Theory litera-
ture (Soufiani et al., 2014):

(S6) Anonymity: The social welfare procedure is insensi-
tive to permutations over voters.

(S7) Monotonicity: For any alternative, say x, if one of
the voters moves the position of x up in his list, the
position of x can only improve in the aggregation.

(S8) Consistency: Let S = {σ1, σ2, . . . , σn} and S
′

=
{σ′1, σ

′

2, . . . , σ
′

n} be two sets of voters/permutations
such that the aggregation procedure assigns the same
alternative to the top position in each, then when the
input is Ŝ = {S ∪ S′}, the winner should remain the
same.

(S9) Majority rule: For any set of voters, if an alternative
x is ranked in the top position in strictly more than
half the votes, then in the final aggregation, x should
be ranked at the highest position.

(S10) Condorcet Criterion: If there exists an alternative
say x, such that for every other alternative y, x is pre-
ferred over y, by strictly more than half of the voters,
then x should be ranked at the highest position in the
aggregation.

3.1. Translating Axioms to the Distributional Rank
Aggregation Framework

We consider a distributional view of the rank aggregation
problem where the individual rankings cannot be accessed
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directly and are available only through a distribution, i.e. a
histogram, over the permutations.

It is unclear what the social-choice theoretic axioms above
imply in such a setting. Further, we would prefer more
quantitative characterizations of these axioms, and perhaps
even axioms whose preconditions involve quantitative con-
ditions. In this section, we thus discuss a translation of each
of the axioms above Section 3 to the distributional setting.

For any distribution P over Sn, we specify the axioms
below for a general distributional rank aggregation map
σ∗(P ), and for which we use the shorthand σ∗P .

(D1) Non-dictatorship: To be a dictatorship, a social wel-
fare function must be able to identify the votes of in-
dividual voters (and subsequently follow the vote of
the dictator). In the distributional framework, we only
observe the aggregate distribution over Sn and hence
cannot determine the vote of any individual voter.
Thus, the non-dictatorship condition is always satis-
fied by the distributional framework.

(D2) Universality: Since σ∗P ∈ Sn, the output of our rank-
ing procedure is always a complete ranking. Univer-
sality then requires that the output of the aggregation
procedure should be unique.

(D3) Transitivity: Since σ∗P ∈ Sn, transitivity is automati-
cally satisfied.

(D4) Pareto-efficiency: The Pareto-efficiency condition
can be translated as, for all permutations in the sup-
port of P , if alternative x is ranked above y, then x
should be ranked above y in the aggregation i.e. if
∀σ : P (σ) > 0;σ(x) < σ(y), then Pareto-efficiency
is satisfied iff σ∗P (x) < σ∗P (y).

(D5) Independence of irrelevant alternatives (IIA): If
voters change their preferences in a way that pre-
serves the relative positions of x and y in each vote,
the marginal probability of x being preferred over y
remains constant. Let Px<y =

∑
σ:σ(x)<σ(y) P (σ)

be the marginal probability of x being preferred over
y. Then, the IIA condition can be translated as:
∀x, y ∈ X , given any two distributions P and Q
such that Px<y = Qx<y , then IIA is satisfied iff
sign [σ∗P (x)− σ∗P (y)] = sign

[
σ∗Q(x)− σ∗Q(y)

]
.

(D6) Anonymity: As in the non-dictatorship condition, we
only have access to the votes through the distribu-
tion and thus cannot identify individual voters and
anonymity is implicitly satisfied in the distributional
framework.

(D7) Monotonicity: If one or more voters improves the
position of an alternative x in their respective rank-

ings, this shifts probability mass between certain per-
mutations where the position of x goes up while that
of other alternatives goes down or remains the same.
Let σ1 and σ2 ∈ Sn such that σ2(x) < σ1(x) and
σ2(y) ≥ σ1(y)∀y ∈ X\{x}. Then, we can trans-
late the monotonicity condition as: Given two distri-
butions P and Q s.t. P (σ2) = Q(σ2) + δ, P (σ1) =
Q(σ1) − δ, δ > 0 and P (σ) = Q(σ) for σ 6= σ1, σ2

then, monotonicity is satisfied iff σ∗P (x) ≤ σ∗Q(x).

(D8) Consistency: Consistency requires that if an alterna-
tive wins in two separate sets of votes, it should also
win in the (multiset) union of those sets. For distribu-
tions the union of the sets is given as (P + Q)/2 and
we have the condition: Given two distributions P and
Q such that σ∗P (x) = 1, σ∗Q(x) = 1, then consistency
is satisfied iff σ∗P+Q

2

(x) = 1.

(D9) Majority rule: If an alternative x ranks at top of
strictly greater than half of the votes, then x must win.
Let P 1(x) =

∑
σ:σ(x)=1

P (σ) measure the marginal

probability of x being ranked first. Then, majority rule
is satisfied iff P 1(x) > 1

2 ⇒ σ∗P (x) = 1

(D10) Condorcet Criterion: Given a distribution P such
that if Px<y > 1

2 ∀ y ∈ X\{x} then the Condorcet
criterion is satisfied iff σ∗P (x) = 1. Observe that, if
the Condorcet criterion is satisfied, then Majority rule
is also satisfied.

This translation is a novel contribution of this paper. The
following theorem, which follows from the above discus-
sion, summarizes the equivalence of these axioms to those
from social welfare theory:

Theorem 1 (Equivalence of axioms). If voting data is ac-
cessible only via its distribution over Sn, the Social Welfare
Axioms (S1-S10) are equivalent to the axioms (D1-D10) in-
troduced above.

Since non-dictatorship and transitivity are implicit in the
distributional framework, Arrow’s Impossibility Theorem
states that a procedure cannot satisfy Universality, Pareto
and IIA simultaneously. However, the quantitative nature
of these axioms suggests that they can be relaxed and we
will do so in the next section.

3.2. Relaxations of Social Welfare Axioms

We see that in the distributional setting, most axioms can be
interpreted in terms of marginals of the distribution P , and
represent constraints on σ∗P based on these marginals. This
probabilistic interpretation of the axioms motivates us to
account for noise in the observed rankings by introducing
a margin-like notion and go beyond impossibility results.
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Consider for example, IIA. Let Mγ(x, y) = {P |Px<y =
γ} be the family of distributions with marginal probability
γ for σ(x) < σ(y), then IIA is satisfied, if for all 0 ≤ γ ≤
1, and distributions Q1, Q2 ∈Mγ(x, y),

sign
[
σ∗Q1

(x)− σ∗Q1
(y)
]

= sign
[
σ∗Q2

(x)− σ∗Q2
(y)
]
(1)

i.e. moving probability mass such that the marginals remain
the same does not alter the relationship between x and y in
the aggregation.

Intuitively, the hardest case for IIA is when γ = 1
2 , as it is

unclear which of x and y should be preferred based on the
marginal probability. However, as γ moves away from 1

2 ,
a decision between x and y can be made more easily. This
intuition motivates the definition below, where we require
IIA to hold only for such distributions where the distinction
between x and y can be made more easily:

Definition 2. ε-IIA is satisfied, iff for all Q1, Q2 ∈
{P |Px<y = γ}, where |γ − 1

2 | ≥ ε, ε > 0, then
sign

[
σ∗Q1

(x)− σ∗Q1
(y)
]

= sign
[
σ∗Q2

(x)− σ∗Q2
(y)
]
.

Note that ε = 0 corresponds to the usual IIA.

Similarly, the Majority Rule axiom can be parameterized
in terms of marginal probability of an alternative x being
ranked at the top, P 1(x) =

∑
σ:σ(x)=1

P (σ) = γ . As this

marginal probability goes to 1, a reasonable rank aggre-
gation procedure would place x at the top. This intuition
motivates the following definition:

Definition 3. The ε-Majority Rule axiom is satisfied, iff for
all P : P 1(x) ≥ 1

2 + ε ; ε > 0, σ∗P (x) = 1.

The Condorcet Criterion also allows for a similar exten-
sion:

Definition 4. ε-Condorcet Rule is satisfied, if for all P :
Px<y ≥ 1

2 + ε ; ε > 0 ∀ y ∈ X\{x}, σ∗P (x) = 1.

While it is also possible to relax the other axioms in a sim-
ilar manner, it is not as natural; for instance, we expect
Pareto to always be satisfied for any reasonable rank aggre-
gation procedure. In addition, as we will see in Section 4,
the above relaxations are sufficient to ensure that a ranking
procedure satisfying all our axioms exist.

Note that the Condorcet criterion is stronger than Pareto
in that Condorcet implies Pareto. It is also possible to
strengthen the Condorcet criterion further by dropping the
∀y requirement. We call this the ε-Strong Condorcet crite-
rion:

Definition 5. ε-Strong Condorcet Rule is satisfied, if for all
P : Px<y ≥ 1

2 + ε ; ε > 0, then σ∗P (x) < σ∗P (y).

Thus, if x is ranked above y in a significant fraction of the
votes, x should be ranked above y in the aggregation. We

note that this may not always be desirable, due to the fol-
lowing proposition:

Proposition 1. For ε < 1/6, ε-Strong Condorcet is incom-
patible with universality.

We also have:

Proposition 2. ε-Strong Condorcet⇒ ε-IIA.

3.3. Comparative Analysis of Axioms

While the previous sections provided a quantitative char-
acterization of social-choice theoretic axioms, as well as
suitable relaxations of these, one might ask if there were
commonalities between these different axioms. In this sec-
tion, we investigate this question further. Before doing so,
we first obtain a optimization based characterization of any
distributional rank aggregation procedure.

Consider the following class of distributional rank aggre-
gation procedures:

σ∗P = argmin
σ∈Sn

g(σ, P ) (2)

where g : Sn × Pn 7→ R, and Pn is the set of all distribu-
tions on Sn. This characterization is WLOG as:

Proposition 3. Any distributional rank aggregation proce-
dure can be expressed in the form (2) for some function g.

We now define two quantities for any pair of alternatives x
and y based on g and 0 ≤ γ ≤ 1.

Lγ(g;x, y) = min
P :Px<y=γ

[
min

σ:σ(x)<σ(y)
gP (σ)− min

σ:σ(x)>σ(y)
gP (σ)

]
Uγ(g;x, y) = max

P :Px<y=γ

[
min

σ:σ(x)<σ(y)
gP (σ)− min

σ:σ(x)>σ(y)
gP (σ)

]
Thus, Lγ(g;x, y) and Uγ(g;x, y) are the lower and upper
bounds for the quantity in brackets. We now show how
most of the axioms can be re-written in terms of these two
quantities.

Proposition 4. g satisfies Pareto-efficiency iff
Uγ(g;x, y) < 0, ∀ x, y ∈ X for γ = 1

Proposition 5. g satisfies IIA iff Lγ(g;x, y), Uγ(g;x, y) >
0, ∀γ : 0 ≤ γ ≤ 1 and ∀ x, y ∈ X ,

Proposition 6. g satisfies the Condorcet criterion iff
Uγ(g;x, y) < 0, for 1

2 < γ ≤ 1, ∀ x, y ∈ X .

We define another quantity for any alternative x based on g
and 0 ≤ γ ≤ 1

U1
γ (g;x) = max

P :P 1(x)=γ

[
min

σ:σ(x)=1
gP (σ)− min

σ:σ(x) 6=1
gP (σ)

]
Proposition 7. g satisfies Majority Rule iff U1

γ (g;x) < 0,
for all 1

2 < γ ≤ 1, ∀ x ∈ X .
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Similar conditions can be obtained for the relaxed defini-
tions of axioms discussed before. Consistency and mono-
tonicity both depend on the structure of g in ways that
we believe cannot be captured as easily by the quantities
Lγ(g;x, y) and Uγ(g;x, y) and we leave these for future
work.

3.4. An Impossibility Theorem for Distributional Rank
Aggregation

We now present an impossibility theorem regarding the
ability of any distributional rank aggregation procedure
to satisfy both Universality and Pareto axioms simultane-
ously. Recall that Arrow’s impossibility theorem in our
setting states that no procedure satisfies Pareto, IIA and
Universality. This result then provides an alternative in-
tuitive proof of Arrow’ theorem for the special case of g
continuous in P .

Theorem 2. For n ≥ 2, if g(σ, P ) in (2) is a continuous
function of P for each fixed σ, both Universality and Pareto
cannot be satisfied simultaneously.

The continuity property is desirable for computational pur-
poses and procedures used in practice for rank aggregation
use a continuous g. Since Pareto is an important condition
that we do not wish to relax, the above result implies that
we must abandon the universality assumption, i.e. we must
be content with procedures that sometimes return multiple
aggregations.

Regarding Arrow’s impossibility theorem for general g, we
first note that the usual proofs of Arrow’s theorem which
rely on identifying pivotal voters fail completely in this
framework. In fact, Fishburn (1970) gives a possibility re-
sult in the case of infinite voters, which our framework cap-
tures. However, the proof there is not constructive and the
g involved will quite likely be pathological — it will cer-
tainly not be continuous in P . We hope to investigate this
further in future work.

4. Positional Scoring Losses
The impossibility theorems derived in the previous section
state that there are no distributional rank aggregation proce-
dures that simultaneously satisfy a set of key axioms. But
would the impossibility theorem continue to hold if we only
need satisfy our relaxed variants of the exact axioms? We
can ask a more general and more difficult question: for each
axiom, and its relaxed variant, can we exhaustively charac-
terize which rank aggregation procedures would satisfy or
not satisfy these?

We consider a simplification of the above general question,
and ask for such an exhaustive characterization for a sim-
pler family of rank aggregation procedures known as posi-

tional scoring rules (Kenneth J. Arrow & Suzumura, 2002,
Chapter 7).

Recall from Section 3.3 that any distributional rank aggre-
gation function can be expressed in the form in (2) as the
the minimizer of some loss functional g(σ, P ). Let us first
consider the following specialization of these loss func-
tionals that are commonly used in varied computer scien-
tific domains. Specifically, for any bivariate loss function
` : Sn × Sn 7→ R that measures the discrepancy between
two rankings, consider the loss functional g(σ, P ) set to the
expected value of ` over P . We then obtain the following
rank aggregation procedure:

σ∗`,P = argmin
σ∈Sn

g(σ, P ) = argmin
σ∈Sn

Eσ′∼P [`(σ, σ′)] (3)

In general, `(σ′, σ) can be any bivariate function but the
following are of special interest:

• `0−1(σ, σ′) = 1[σ 6= σ′]: This corresponds to the zero-
one distance between permutations. The corresponding
σ∗`0−1,P

is then the mode of the distribution P . Statis-
tical and machine learning approaches to the rank ag-
gregation problem fit a (unimodal) distribution to the P
and then return the mode of the estimated distribution
as a point estimate. Thus, these techniques implicitly
use the zero-one loss.

• `KT (σ, σ′) =
∑

(x,y)∈[n]

1[sign(σ(x) − σ(y)) 6=

sign(σ′(x) − σ′(y))]: This loss measures the Kendall-
Tau distance between two permutations, i.e. the
number of inversions between them. The minimization
problem for this loss has been shown to be NP-hard
and this loss has been studied widely in the Theoretical
Computer Science literature.

• `(σ, σ′) =
∑
x∈[n]

|σ(x)− σ′(x)|: This loss measures the

Spearman-footrule distance and is used as an approxi-
mation to the Kendall-Tau.

Positional scoring methods assign a score to each alterna-
tive in a permutation based on its position, these scores are
aggregated across permutations and the final aggregation is
obtained by sorting the alternatives based on their cumula-
tive scores. Equivalently,
Definition 6 (Positional Scoring Loss). A loss `h is a Posi-
tional Scoring Loss iff it can be decomposed as `h(σ, σ′) =∑
x
h(σ′(x)).σ(x), where h : [n] 7→ R

Using Equation (3), the corresponding σ∗P,`h can be written
as:

σ∗P,`h = argmin
σ∈Sn

Eσ′∼P [`h(σ, σ′)]

= argmin
σ∈Sn

∑
x

Eσ′∼P [h(σ′(x))].σ(x)
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Name h : [n] 7→ R Ωh ωh ω1
h ε for IIA/Cond. ε for Maj.

Borda Count h(i) = n− i n− 1 1 1 1/2− 1/n 1/2− 1/n
Plurality Rule h(i) = 1 if i = 1, 0 else 1 0 1 1/2 0
Anti-Plurality Rule h(n) = 0;h(i) = 1 ∀i 6= n 1 0 0 1/2 1/2
Log Rule h(i) = − log(i) log(n) log( n

n−1 ) log(2) log(n)
2 log(n2/(n−1))

log(n)
2 log(n2/(n−1))

Squared Rule h(i) = −i2 n2 − 1 3 3 n2−4
2(n2+2)

n2−4
2(n2+2)

Table 1. Different Positional Scoring Rules and their key properties

= argmin
σ∈Sn

∑
x

fP (x).σ(x) (4)

where fP : X 7→ R is given by fP (x) = Eσ′∼P [h(σ′(x))]
is the cumulative scoring function.

Proposition 8. Given fP (x) = Eσ′∼P [h(σ′(x))], then
σ∗P,`h is the permutation achieved by sorting the alterna-
tives in descending order of fP (x)

This proposition also shows that the rank aggregation using
Positional Scoring rules can be computed efficiently. Ta-
ble 1 give examples of some well-known positional scor-
ing rules, their corresponding h-functions, and their key-
properties.

4.1. Axiomatic Analysis of Positional Scoring Rules

Non-dictatorship, Transitivity and Anonymity are implicit
in the distributional framework. Positional scoring rules
are continuous in P , so Theorem 2 applies and we will not
require Universality.

We define three properties of interest for any positional loss
function. These quantities play a key role in establishing
several axioms:

• Ωh = max
{i,j∈[n]|i<j}

h(i)− h(j).

This is the maximum variation in possible scores for h.
• ωh = min

{i,j∈[n]|i<j}
h(i)− h(j)

This is the minimum variation in possible scores for h.
• ω1

h= min
j∈[n]|j>1

h(1)− h(j)

This is the minimum variation in possible scores for h
with respect to the first position. This is used in analyz-
ing the Majority Rule.

We observe the following:

• For n = 2, Ωh = ωh = ω1
h.

• For n > 3, Ωh ≥ ωh with equality holding iff h :
[n] 7→ R is a constant function.

Proposition 9 (IIA). No positional scoring loss `h satisfies
IIA exactly.

Proposition 10 (ε−IIA). A positional scoring loss `h sat-
isfies ε−IIA iff ε > 1

2

(
Ωh−ωh

Ωh+ωh

)
.

Proposition 11 (Pareto Efficiency). A positional scoring
loss `h satisfies Pareto-efficiency exactly iff h : [n] 7→ R is
strictly monotonically decreasing.
Proposition 12 (Monotonicity). A positional scoring loss
`h satisfies Monotonicity iff h : [n] 7→ R is non-increasing.
Proposition 13 (Consistency). Every positional loss func-
tion `h satisfies consistency.
Proposition 14 (Majority rule). A positional scoring loss
`h satisfies Majority rule iff max(Ωh,−ωh)− ω1

h = 0 and
ω1
h + max(Ωh,−ωh) > 0

Proposition 15 (ε-Majority rule). A positional scoring loss
`h satisfies ε−Majority Rule iff ε > 1

2

(
max(Ωh,−ωh)−ω1

h

max(Ωh,−ωh)+ω1
h

)
.

Proposition 16 (Condorcet Criterion). No positional scor-
ing loss `h satisfies the Condorcet Criterion
Proposition 17 (ε−Strong Condorcet Criterion). A posi-
tional scoring loss `h satisfies the ε−Strong Condorcet Cri-
terion iff ε > 1

2

(
Ωh−ωh

Ωh+ωh

)
Recall from Proposition 2, that ε-Strong Condorcet implies
ε-IIA, consistent with propositions 10 and 17. Thus, we
have the same ε for both IIA and Condorcet for positional
loss functions and they are shown together in Table 1.

4.2. A Possibility Theorem with Relaxed Axioms

Given the theory above, we can now quantify the extent to
which a given positional loss satisfies each of the approx-
imate axioms. A natural first question is whether any loss
satisfies our relaxed axioms.
Theorem 3. The set of positional loss functions which ad-
mits the following axioms is non-empty: exact versions of
Pareto and Monotonicity, relaxed axioms ε-IIA, ε-Strong
Condorcet, ε′-Majority Rule

A second question is whether we can design losses that sat-
isfy the approximate axioms to the greatest extent possible.
The following theorems show a surprising result, that the
Borda Count is the optimal positional ranking function in a
certain sense.
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Figure 1. Performance of different positional scoring rules on the mixture of Mallows’ models

Lemma 1. For any positional scoring loss `h that satisfies
Pareto, Ωh

ωh
≥ n−1, where n is the number of alternatives.

Theorem 4. For any fixed n, Borda count is optimal w.r.t.
the ε-Strong Condorcet condition and ε-IIA, i.e. has the
least ε among all positional loss functions.

This fact seems to have been noted previously in the liter-
ature. Saari (1990) states “the Borda method is the unique
positionalist method to minimize the kinds and number of
paradoxes that can occur”. However, the justification given
in (Saari, 1990) uses the much more complex machinery
that our relaxation-based approach.

5. Experiments
Theroem 4 showed that Borda Count is optimal in a “worst-
case” sense in satisfying certain relaxed axioms. However,
this does not mean that it dominates all other positional
losses over all distributions and we present experiments to
demonstrate this fact. Our framework shows that the key
quantities to take into account when designing a positional
loss are Ωh and ωh. For a non-increasing h, h can be scaled
so that Ωh is fixed. Then ωh, intuitively the smallest (dis-
crete) gradient of h, is the key quantity to compare among
losses. A key factor in the following discussion will be
the position in the list where this minimum value ωh is
achieved. Our discussion will be terse for lack of space
and we discuss the results in detail in Appendix B.

Setup. We consider the following losses: Borda count
where h is linear, a “Convex” loss log, a “concave” loss
Square and the limiting convex and concave losses Plural-
ity and AntiPlurality. The convex losses achieve minimum
ωh = h(n)−h(n−1) at the bottom of the list and thus pay
more attention to relative positions at the top. The concave
losses achieve minimum ωh = h(1)−h(2) at the top of the

list and thus pay more attention to relative positions at the
bottom. See Table 1 for details on the losses.

Let {A,B,C,D,E} be the set of alternatives X , n = 5. A
Mallows model is given by P (·|W ) ∝ φ`KT (·,W ), where
W is the central permutation, φ ∈ (0, 1] is the disper-
sion parameter and `KT is the Kendall-Tau distance. A
higher φ makes the distribution more concentrated around
the central permutation. We use a mixture of two Mallows
models for our experiments. Let Z1 and Z2 be the two
central permutations and w and 1 − w be their weights
in the mixture. We perform two experiments. In Ex-
periment 1, we fix centers Z1 = {D,E,A,B, C} and
Z2 = {B, C,D,E,A}, while in Experiment 2 we fix cen-
ters Z1 = {A,B, C,D,E} and Z2 = {B, C,D,E,A}.
Then, for φ = 0.8, we vary w from 0.51 to 1.0. Thus,
in both experiments, we put higher weight on Z1 having
σ(A) < σ(B) and as we increase the weight, we are effec-
tively increasing Px<y . For a givenw, we generate samples
from the mixture of Mallows model and aggregate them us-
ing the positional scoring rules.

Metric. We call an aggregation a “success” if it ranks A
aboveB. We perform multiple trials for eachw to calculate
the probability of success.

Results. Figure 1 shows the probability of success
against the weight value w for both experiments. As ex-
pected, there is an inverse relationships between the two
plots w.r.t. the order of the best performing methods.
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