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Abstract

We consider the problem of quickly localizing
multiple targets by asking questions of the form
“How many targets are within this set” while ob-
taining noisy answers. This setting is a gener-
alization to multiple targets of the game of 20
questions in which only a single target is queried.
We assume that the targets are points on the real
line, or in a two dimensional plane for the experi-
ments, drawn independently from a known distri-
bution. We evaluate the performance of a policy
using the expected entropy of the posterior dis-
tribution after a fixed number of questions with
noisy answers. We derive a lower bound for the
value of this problem and study a specific pol-
icy, named the dyadic policy. We show that this
policy achieves a value which is no more than
twice this lower bound when answers are noise-
free, and show a more general constant factor ap-
proximation guarantee for the noisy setting. We
present an empirical evaluation of this policy on
simulated data for the problem of detecting mul-
tiple instances of the same object in an image. Fi-
nally, we present experiments on localizing mul-
tiple faces simultaneously on real images.
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1. Introduction
The task of localizing structures of interest, or targets, ap-
pears in numerous applications, such as finding quasars in
astronomical data (Mortlock, 2009), localizing faces in im-
ages (Ali et al., 2012) or counting synapses in microscopy
volumes (Merchan-Perez et al., 2009). Once a competent
detection scheme is available, the localization task often re-
duces to evaluating each possible location in an exhaustive
fashion. Such strategies are highly effective and easy to
implement, which contributes to their widespread use.

Yet such localization strategies do not scale with data
size requirements since their computational complexity de-
pends directly on the searchable domain’s size. This prob-
lem is critical in analysis of enormous microscopy volumes
where localizing and counting intra-cellular structures such
mitochondria or synapses is critical to understanding brain
processes (Lee et al., 2007). Similarly, efficient localization
of object instances in images remains challenging given the
growing amount of image data to evaluate.

To address this issue, theoretical works have established
strategies to reduce the computation needed to find targets.
Generally, literature considering such problems falls into
two categories: those that consider a single target (k = 1)
and those that consider multiple targets (k � 1).

For single-target localization, (Jedynak et al., 2012) con-
sidered a Bayesian setting and used the entropy of the
posterior distribution to measure accuracy, as we do here.
Within this context, a number of policies have been pro-
posed, such as the dyadic policy and the greedy proba-
bilistic bisection (Horstein, 1963), which was further stud-
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ied in (Castro & Nowak, 2007; Waeber et al., 2013).
(Tsiligkaridis et al., 2013) more recently generalized this
probabilistic bisection policy to multiple questioners as
well. A discretized version of probabilistic bisection was
studied by (Burnashev & Zigangirov, 1975).

For multiple-target localization, three variations appear fre-
quently: the Group Testing problem (Du & Hwang, 2000;
Stinson et al., 2000; Eppstein et al., 2007; Harvey et al.,
2007; Porat & Rothschild, 2008), the subset-guessing game
associated with the Random Chemistry algorithm (Kauff-
man, 1996; Buzas & Warrington, 2013) and the Guessing
Secret game (Chung et al., 2001). In each case, the goal is
to query subsets, A, of the search space to determine an un-
known set S. In the Group Testing problem, questions are
of the form: “Is A \ S 6= ;?” In the subset-guessing game
associated with the Random Chemistry algorithm, ques-
tions are of the form “Is S ⇢ A?” In the Guessing Secret
game, when queried with a set A, the responder chooses
an element from S according to any self-selected rule and
specifies whether this chosen element is in A. The chosen
element itself is not revealed and may change after each
question. Thus, the answer is 1 when S ⇢ A, 0 when
A \ S = ;, and can be 0 or 1 otherwise.

Four major practical considerations, however, severely
limit the usability of existing theoretical results in real
applications. First, when multiple targets need to be lo-
cated, significant noise in the query answers are typically
observed in real applications but ignored in most theoret-
ical analyses. Second, existing theoretical analyses lack
generality, considering very specific models for what is
observed, rather than a general observational model that
could be adapted to the application at hand. Third, many
methods with theoretical guarantees on query complexity
require a great deal of computation, and cannot be used
in computation-constrained applications. Fourth, exist-
ing theoretical analysis often do not make clear the com-
putational gain possible over repeatedly applying optimal
strategies for single-target localization, making simpler
strategies based on localizing single-targets more attractive.

This work addresses these concerns, by proposing and then
analyzing the dyadic policy for simultaneous localization
of multiple targets. This policy and our analysis uses
an observational model that allows noise, and is general
enough to subsume Group Testing, Random Chemistry,
and a wide variety of other problems. We provide an ex-
plicit expression for the expected entropy of the posterior
after N queries from this policy, and together with a simple
information-theoretic lower bound on the expected entropy
under the optimal policy, we show an approximation guar-
antee for the expected entropy reduction under the dyadic
policy. Using this result, we can then demonstrate signifi-
cant computation gains over repeated single-target optimal

localization. The dyadic policy can be computed quickly
and is non-adaptive, making it easy to parallelize, and far
simpler to implement than dynamic strategies. Moreover, it
allows easy and exact computation of the expected number
of targets at each location of our space.

2. PROBLEM FORMULATION
Let ✓ = (✓1, . . . , ✓k) be a random vector taking values in
Rk. ✓i represents the location of the ith target of interest,
i = 1, . . . , k. We assume that ✓1, . . . , ✓k are i.i.d. with den-
sity f0, and joint density p0. We refer to p0 as the Bayesian
prior probability distribution on ✓. Note that even if the
targets are indistinguishable, they are modeled as a vector,
and not a set. This is a key requirement for simplifying the
combinatorics of the probabilistic analysis. We will ask a
series of N > 0 questions to locate ✓1, . . . , ✓k, where each
question takes the form of a subset of R. The answer to
this question is the number of targets in this subset. How-
ever, this answer is not available to the questioner. Instead,
a noisy version of this answer is available. More precisely,
for each n 2 {1, 2, . . . , N}, the nth question is An ⇢ R
and its noiseless answer is

Zn = An(✓1) + · · · + An(✓k), (1)

where A is the indicator function of the set A. The noisy
observable answer is a random function of Zn, namely

Xn = h(Zn, Wn) (2)

where h is a known function and Wn is a collection of in-
dependent random variable, which are also independent of
✓. Note that our choice of the set An may depend upon
the answers to all previous questions. Thus, the set An is
random.

We call a rule for choosing the questions An a policy, and
indicate it with the notation ⇡. The distribution of An thus
implicitly depends on ⇡. When we wish to highlight this
dependence, we use the notation P⇡ and E⇡ to indicate
probability and expectation respectively. However, when
the policy being studied is clear, we simply use P and E .
We let ⇧ be the space of all policies.

Throughout the paper, we use the notation Xa:b for any
a, b 2 N to indicate the sequence (Xa, . . . , Xb) if a  b,
and the empty sequence if a > b. We define ✓a:b and Aa:b

similarly.

We refer to the posterior probability distribution on ✓ after
n questions and answers as pn, so pn is the conditional
distribution of ✓ given X1:n and A1:n.

After we exhaust our budget of N questions, we measure
the quality of what we have learned via the differential en-
tropy H(pN ) of the posterior distribution pN on the targets
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at this final time,

H(pN ) = �
Z

Rk

pN (u1:k) log(pN (u1:k)) du1:k. (3)

Throughout this paper, we use “ log ” to denote the log-
arithm to base 2. We let H0 = H(p0), and we assume
�1 < H(p0) < +1. The posterior distribution pN , as
well as its entropy H(pN ), are random for N > 0, as they
depend on X1:N . Thus, we measure the quality of a policy
⇡ 2 ⇧ as

R(⇡, N) = E⇡
[H(pN )]. (4)

Our goal is to characterize the solution to the optimization
problem

inf

⇡2⇧
R(⇡, N). (5)

Any policy that attains this infimum is called optimal.

Beyond theoretical interest, a policy for which H(pN ) is
small is of practical interest. It was shown in (Jedynak et
al. 2012), section 4.3, that an optimal policy allows for lo-
calizing ✓ efficiently in the case of k = 1. We conjecture
that the same occurs for arbitrary values of k. While (5) can
be formulated as a partially observable Markov decision
process (Frazier, 2010), and can be solved, in principle, via
dynamic programming, the state space of this dynamic pro-
gram (which is the space of posterior distributions over ✓)
is too large to allow solving it through brute-force computa-
tion. Thus, in this paper, rather than attempting to compute
the optimal policy, we provide an easily computed lower
bound on (5), and then study a particular policy, called
the dyadic policy and defined below, whose performance
is close to this lower bound.

3. THEORETICAL RESULTS
We first present an information-theoretic lower bound on
the best expected entropy achievable, and a proof sketch.
Proofs of all results may be found in the supplement.
Theorem 1.

H0 � log(k + 1)N  H0 � CkN  inf

⇡2⇧
R(⇡, N) (6)

The main arguments of the proof are as follows: First, at
step n, the largest reduction in entropy that can be obtained
in one question and on average occurs when the answer
Xn+1 and the targets ✓ have the largest mutual information
given the history I(✓, Xn+1|X1:n), see Geman and Jedy-
nak (1996). Second, since Xn+1 depends on ✓ only through
Zn+1 given X1:n,

I(✓, Xn+1|X1:n) = I(Zn+1, Xn+1|X1:n). (7)

Third, (7) is upper bounded by the channel capacity

Ck = sup

q
H

 
kX

z=0

q(z)f(.|z)

!
�

kX

z=0

q(z)H (f(.|z)) ,

(8)
where q is a point mass function over the set {0,. . . ,k} and
f(.|z) is the density, or point mass function of the noisy
answer Xn+1 given the noiseless answer Zn+1. Since the
noiseless answer Zn+1 is discrete and takes values in a set
of size k+1, Ck is bounded above by log(k+1) providing
the first inequality in (6).

In the noiseless case, both lower bounds in (6) are identi-
cal. Moreover, they are not achievable. Indeed, at N = 1,
the target locations are independent, and so the answer to
the first question is Binomial, and must have an entropy no
better than H

�
Bin

�
k, 1

2

��
< log(k + 1). Moreover, as

the expected entropy reduction is the sum of the expected
entropy reduction at each question, the lower bound is not
achievable for any N .

We now define an easy-to-compute policy, called the
dyadic policy, and indicate it with the notation ⇡D. We
first recall that the quantile function of ✓1 is

Q(p) = inf {u 2 R : p  F0(u)} , (9)

where F0 is the cumulative distribution function of ✓1, cor-
responding to its density f0. Then, the dyadic policy con-
sists in choosing at step n � 1 the set

An =

0

@
2n�1[

j=1

✓
Q

✓
2j � 1

2

n

◆
, Q

✓
2j

2

n

◆�1

A
\

supp(f0),

(10)
where supp(f0) is the support of f0, i.e., the set of values
u 2 R for which f0(u) > 0. This definition of the dyadic
policy generalizes a definition provided in Jedynak et al.
(2012) for single targets.

The dyadic policy is easy to implement, and is non-
adaptive, allowing its use in parallel computing environ-
ments. Figure 1 illustrates this policy.

n=1

n=2

n=3

A1

A2 A2

A3 A3 A3 A3

prior

u0 1

f0(u)

1

Figure 1. Illustration of the dyadic policy. The prior density f0
displayed at top is uniform over (0,1]. The question set An is the
union of the dark subsets for n = 1, 2, 3.
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The following theorem provides an explicit expression for
the expected entropy of the posterior distribution under the
dyadic policy.
Theorem 2. Under the dyadic policy ⇡D,

R(⇡D, N) = H0 � DkN, (11)

where

Dk = H

 
1

2

k

kX

z=0

✓
k

z

◆
f(.|z)

!
� 1

2

k

kX

z=0

✓
k

z

◆
H (f(.|z)) .

(12)
In the noiseless case, this simplifies to

Dk = H

✓
Bin

✓
k,

1

2

◆◆
, (13)

the entropy of a Binomial distribution Bin(k, 1
2 ).

This result is easier to interpret in a discrete setting. Con-
sider, as we will in Section 4, an image of M ⇥ M pix-
els containing k instances of an object, located at random,
uniformly and independently. The instances are our tar-
gets. The starting entropy, neglecting the fact that several
instances might occupy the same location, is

H0 = k log M2. (14)

According to (11), the expected number of questions N⇤

such that the k targets are located with certainty when using
the dyadic policy, i.e, R(⇡D, N⇤

) = 0, is such that

N⇤
=

k

Dk
log M2. (15)

Consider the noiseless case for simplicity. Firstly, N⇤ is
negligible compared to the number of questions asked by a
naive algorithm that queries the pixels in a fixed, predeter-
mined order, for example line by line and column by col-
umn. This naive algorithm requires on average M2

2 queries
for a single target and more for more targets. Secondly,
N⇤ is also better than querying optimally one target, which
requires log M2 queries, and repeating this k times, for a
total of k log M2 queries. Indeed,

N⇤ ⇠ 2k

log

⇡ek
2

log M2 (16)

using the approximation of the Binomial distribution
B(k, 1

2 ) with the Normal distribution.

We can also compare the expression (11) for the expected
entropy under the dyadic policy to the lower bound on the
optimal expected entropy from Theorem 1. In both cases
the expected entropy decreases linearly in the number of
questions, with a reduction per question of Dk under the
dyadic policy, and a reduction of Ck in the lower bound.
This implies the following approximation guarantee for the
entropy reduction under the dyadic policy, relative to opti-
mal.

Corollary 1.

H0 � R(⇡D, N)

H0 � inf⇡2⇧ R(⇡, N)

� Ck

Dk
.

The approximation ratio Ck/Dk depends upon the noise
model and the number of targets k.

In the noiseless case, this approximation ratio is
H(Bin(k, 1

2 ))/ log(k + 1) � 1
2 (this inequality is shown

in the supplement), showing that the dyadic policy is a 2-
approximation in the noiseless case. Moreover, this ap-
proximation ratio approaches 1/2 as k ! 1, showing that
the dyadic policy does not achieve the lower bound from
Theorem 1 for large values of k. However, as previously
noted, this lower bound is not achievable. The precise value
of an optimal policy remains unknown.

To support algorithms described in Section 4 that use the
dyadic policy as a first phase procedure for deciding the
order over pixels in which to call the oracle in computer
vision applications, we introduce here some additional no-
tation and derive an explicit formula for the posterior dis-
tribution over the targets ✓ given the history of the noiseless
answers.

Consider a fixed n, where 1  n  N . For each binary
sequence s = {s1, . . . , sn}, define

Cs =

0

@
\

1jn;sj=1

Aj

1

A
\

0

@
\

1jn;sj=0

Ac
j

1

A
\

supp(f0).

(17)

The collection C = {Cs : Cs 6= ;, s 2 {0, 1}n} provides a
partition of the support of f0. A history of n questions pro-
vides information on which sets Cs contain which targets
among ✓1:k.

For each C 2 C, let N(C) =

Pk
i=1 1{✓i 2 C} be the

number of targets in C.

We now provide a result that shows how to compute
E[N(C)|X1:N ], the expected number of targets within one
of these sets C under the posterior distribution. This is used
by the algorithms presented in Section 4, at the start of
a second stage following the use of the dyadic policy, in
which an expensive noise-free oracle is called on some of
the small sets C to establish definitively the number of tar-
gets in each. The algorithms use the value E[N(C)|X1:N ]

to determine the order over sets in which to call the oracle.

Theorem 3. For each instance ✓i and each C 2 C, the
posterior likelihood P (✓i 2 C|X1:N = x1:N ) satisfies

P (✓i 2 C|X1:N = x1:N ) =

NY

n=1

⇣en
k

⌘sn ⇣
1 � en

k

⌘1�sn
.

(18)
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where en = E[Zn|Xn = xn] and sn = 1{C ✓ An}.
Moreover,

E[N(C)|X1:N = x1:N ] = kP (✓i 2 C|X1:N = x1:N ) .

The quantity en can be computed according to Bayes rule:

en = E[Zn|Xn = xn] =

kX

j=0

jP (Zn = j|Xn = xn)

=

kX

j=0

jP (Xn = xn|Zn = j)P (Zn = j)

P (Xn = xn)

,

where Zn ⇠ Bin

�
k, 1

2

�
, P (Xn = xn|Zn = j) can be

computed directly from the noise model (2), and P (Xn =

xn) =

Pk
j=0 P (Xn = xn|Zn = j)P (Zn = j).

4. ALGORITHMS AND EXPERIMENTS
We now show how the dyadic policy, analyzed above in
the continuous setting using the entropy, can be used in an
idealized computer vision setting to reduce the number of
oracle calls required to locate k instances of a given object
within a M ⇥ M digital image.

We consider algorithms that proceed in 2 phases, eventu-
ally iterated. The first phase consists in querying the dyadic
sets. As opposed to the continuous domain, there is here a
limited supply of dyadic sets. Choosing for M a power
of 2, there are log M dyadic horizontal queries and log M
dyadic vertical queries. Figure 2 presents the dyadic ques-
tions for M = 16. The second phase consists in order-
ing the pixels and querying the oracle according to this
ordering. We compare three algorithms: Posterior Rank
(PR), Iterated Posterior Rank (IPR) and Entropy Pursuit
(EP). We will see that all these three algorithms signifi-
cantly outperform the baseline algorithm–the Index Rank
(IR) algorithm–in terms of the expected number calls to
the oracle (see Figure 4).

The PR algorithm computes the expected number of in-
stances E[N(C)|X1:N ] in each pixel C using Theorem 3,
orders the pixels in decreasing order of this quantity
E[N(C)|X1:N ], and runs oracle calls according to this or-
der until all the instances are found. This algorithm is sum-
marized below, and a detailed implementation is provided
in the supplementary file.

Algorithm 1 Posterior Rank (PR) Algorithm
1: Compute the answers to the screening questions.
2: Compute the posterior rank r according to (18).
3: Run the oracle on the pixels according to r until all the

instances are found.

The IPR algorithm is a variation of the PR Algorithm. As
before, the pixels are searched in decreasing order of the

expected number of instances. When the oracle locates
an instance (or instances) at a pixel, the expected number
of unlocalized instances at each pixel is recomputed using
(20) as described below, and provides an updated ranking
for the remainder of the search.

Computing the expected number of unlocalized instances
at a pixel, given the locations of 0  i < k previously
localized instances, is most straightforward in the case of
additive noise, i.e.,

h(Zn, Wn) = Zn + Wn (19)

In this case, this computation is accomplished by masking
the instances already found, i.e., by subtracting those in-
stances localized in An from Xn, subtracting the overall
number of localized instances from k, and recomputing us-
ing (18).

More generally, we re-use the expression (18), but replace
the number of unlocalized instances k by k0

= k � i, and
alter en to account for those previously localized instances
residing in the queried set An. Letting N 0

(C) = N(C) �Pi
j=1 1{✓j 2 C} be the number of unlocalized instances

in C, we have

E[N 0
(C)|X1:N , ✓1:i] = k0

NY

n=1

✓
e0n
k0

◆sn ✓
1 � e0n

k0

◆1�sn

.

(20)
Here, e0n = E[Z 0

n|Xn = xn, ✓1:i], with Z 0
n = Zn �Pi

j=1 1{✓j 2 C} being the number of unlocalized in-
stances in the queried set An. The quantity e0n can be com-
puted as,

e0n =

k0X

j=0

jP (Xn = xn|Z 0
n = j, ✓1:i)P (Z 0

n = j)

P (Xn = xn|✓1:i)
,

where Z 0
n ⇠ Bin

�
k0, 1

2

�
, P (Xn = xn|Z 0

n = j, ✓1:i)

can be computed from the noise model (2), and P (Xn =

xn|✓1:i) =

Pk0

j=0 P (Xn = xn|Z 0
n = j, ✓1:i)P (Z 0

n = j).

In the special case when no instances have been localized,
so i = 0, (20) recovers (18).

We now summarize the IPR algorithm:

Algorithm 2 Iterated Posterior Rank (IPR) Algorithm
1: Compute the answers to the screening questions.
2: repeat
3: Compute the posterior rank r according to (20).
4: Run the oracle on the pixels according to r until one (sev-

eral) instance(s) is (are) found at a pixel.
5: until all the instances are found.

IPR’s Step 4 may request the oracle’s feedback on a pixel
that was already queried in a previous stage. This is be-
cause we condition on previously localized instances, but



Bayesian Multiple Target Localization

not on previous negative reports from the oracle that there
were no instances at a particular pixel. When this occurs,
we simply report the oracle’s previous value, rather than re-
running the oracle. We do not condition on all previous or-
acle results because computing the posterior expected num-
ber of instances is much more challenging computationally.

Figure 2 and 3 illustrate the procedures in the IPR algo-
rithm for a 16 ⇥ 16 image with k = 4 instances. Figure 2
illustrates the screening questions under the dyadic policy,
with light regions marking the questions sets. The first line
of Figure 3 shows the true but unknown locations of the in-
stances in each iteration of the IPR algorithm. The second
line shows the expected number of instances within each
pixel computed after screening questions in each iteration,
respectively, with lighter regions having a higher expected
number of instances.

Figure 2. The queried regions under the dyadic policy for a 16 ⇥
16 image shown in white.

Figure 3. (row 1) Example image with 4 instances of the object
initially, one instance is found after each iteration of the IPR al-
gorithm. (row 2) The corresponding posterior distribution after
each iteration. Light regions indicate pixels more likely to con-
tain the object instance, while dark regions are less likely.

The Entropy Pursuit (EP) algorithm is a greedy algorithm
aimed at reducing the expected entropy on the joint loca-
tion of the instances. It has been studied and used for locat-
ing and tracking instances in (Sznitman & Jedynak, 2010;
Jedynak et al., 2012; Geman & Geman, 1984; Sznitman
et al., 2013b;a). This algorithm can be related to the IPR
algorithm. The differences between EP and IPR are: i) EP
uses a different ordering criterion; ii) EP updates the order-
ing each time after running the oracle at a pixel instead of
after an instance being found. Specifically, EP computes

for each pixel the expected entropy reduction in the dis-
tribution of the location of the instances which would be
achieved by running the oracle at this pixel. It then selects
the pixel for which this quantity is maximal. A detailed
implementation is given in the supplementary file.

We use simulations to compare the performances of the
three algorithms described above with a baseline algorithm,
called Index Rank (IR) . IR sweeps the image from left to
right, top to bottom, until all the instances of the object are
found. For the sake of simplicity, the object to be found
in our simulation is a dot of size 1 pixel. We use 100 ran-
dom assignments for the locations of the object instances
for each k and each image size in the simulation, and mea-
sure the number of calls to the oracle required in each case.

4.1. Noiseless answers to the queries

We consider first the situation where the answers to the
screening questions are noiseless, which is consistent with
the theoretical analysis presented in the previous sections.

Figure 4, top row compares the algorithms for k = 2,
k = 3 and k = 10 object instances for image sizes
{8 ⇥ 8, 16 ⇥ 16, . . . , 1024 ⇥ 1024}. Algorithms PR, IPR
and EP require a smaller average number of calls to the or-
acle compared to the baseline IR. An example will show
how dramatic this is for large size images. In the case of
1024⇥ 1024 pixel images and k = 2 instances, IR requires
2

20 evaluations of the oracle while IPR requires less than 2

8

on average. IPR is also much more efficient than PR. IPR
and EP show similar performances, however, IPR is supe-
rior to EP in terms of the computational complexity. Due
to the EP algorithm’s large computational and memory re-
quirements, we have only plotted EP for k = 2 and k = 3,
and have only gone up to 512 ⇥ 512 image for k = 3.

4.2. Noisy answers to the queries

In an actual computer vision setting, screening questions
would be answered by an image processing algorithm,
trained using labeled data. These answers would then be
noisy. We performed experiments to measure the effective-
ness of the Posterior Rank (PR) and the Iterated Posterior
Rank (IPR) algorithms in this case, while the oracle is still
considered perfect. We use the additive model presented in
(19) and we choose Wn to be independent, Normally dis-
tributed random variable with standard deviation �. Figure
4, second and third row compares the Posterior Rank (PR),
Iterated Posterior Rank (IPR) and the Index Rank (IR) al-
gorithms for k = 2, k = 3 and k = 10 object instances
for two levels of noise � = 0.5, 1. We note that both al-
gorithms outperform the default IR algorithm in all cases.
The IPR algorithm is more robust to noise than the PR al-
gorithm. As expected, the performances of both algorithms
decrease as the amount of noise increases.
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Figure 4. The mean number of calls to the oracle over 100 samples plotted against the image size for k = 2, k = 3 and k = 10 object
instances using the algorithms described in section 4. (row 1): No noise in the screening answers. (row 2): Gaussian noise with � = 0.5
in the screening answers. (row 3): Gaussian noise with � = 1.0 in the screening answers.
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4.3. Face detection

To illustrate potential benefits of IP and IPR, we evaluate
their performance in the context of finding faces in images.
In particular, we consider how these strategies can be used
as cost effective ways to determine regions where faces
may be located such that high-performing (and computa-
tionally expensive) classifiers may then be more effectively
be used.

We begin by training an extremely efficient but poorly-
performing face classifier, with the intention of evaluating
it at each location of an image. To this end, we train a
Boosted classifier, as described in (Ali et al., 2012), but
only with 50 stumps (i.e. 5% compared to state-of-the-
art classifiers), using 4000 faces and 5 million background
samples of size 30 ⇥ 30. Once trained, we evaluated our
poor-classifier at multiple scales on 35 images from the
MIT+CMU face dataset. For each image location, a pixel
was scored as the sum of weighted stump outputs of our
trained classifier (e.g. Fig. 5 (2nd row) illustrate these
scores: higher values in white and lower values in black).
From these response image, we calculated the answers to
the screening questions using an integral image representa-
tion followed by the PR algorithm (Alg. 1)

Fig. 5 depicts for 2 images with 4 faces each, the corre-
sponding response maps for the poor classifier and the pos-
terior distribution after a new face has been located using
the PR algorithm (i.e. higher values in white and lower
values in black).

No. of Pixels Oracle Calls Oracle Calls per face
12713984 347238 2671

Table 1. Results for PR algorithm on a dataset with 35 images
containing 130 faces in total.

5. CONCLUSION
In this work, we have considered the problem of localizing
several targets simultaneously. We have derived a close-
to-optimal policy within a Bayesian framework using the
expected entropy of the posterior as a value function. We
have then empirically evaluated this policy for a toy prob-
lem related to the localization of several instances of the
same object in computer vision. We have shown dramatic
performance increases compared to a baseline method. We
have also shown that the method is robust to a reasonable
level of noise.
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