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Abstract

We provide new concentration inequalities for
functions of dependent variables. The work ex-
tends that of Janson (2004), which proposes con-
centration inequalities using a combination of
the Laplace transform and the idea of fractional
graph coloring, as well as many works that de-
rive concentration inequalities using the entropy
method (see, e.g., (Boucheron et al., 2003)). We
give inequalities for fractionally sub-additive and
fractionally self-bounding functions. In the way,
we prove a new Talagrand concentration inequal-
ity for fractionally sub-additive functions of de-
pendent variables. The results allow us to envi-
sion the derivation of generalization bounds for
various applications where dependent variables
naturally appear, such as in bipartite ranking.

1. Introduction
We present new concentration inequalities for specific
functions of possibly dependent random variables. The ap-
proach that we advocate is based on the entropy method
and the idea of breaking up the dependencies between ran-
dom variables thanks to a graph coloring approach. Having
these results at hand allows us to envision the study of the
generalization properties of predictors trained over inter-
dependent data for which a suitable dependency structure
exist. As discussed by Amini & Usunier (2015), this struc-
ture could be naturally related to the dependency graph of
the data, or it could be obtained a posteriori from a transfor-
mation that reduces a general learning problem to a more
simple case, e.g. some reductions of multiclass classifica-
tion problems to binary classification problems.
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Related Works. Learning with interdependent data is a
topic that has received quite interest over the past few years;
from a theoretical point of view, it ultimately pertains to
the availability of concentration inequalities designed to ac-
count for the dependencies at hand. Among the prominent
works that address this problem are a series of contribu-
tions on learning from mixing processes, where the depen-
dencies within a sequence of random variables decreases
over time (Yu, 1994; Karandikar & Vidyasagar, 2002; Kon-
torovich & Ramanan, 2008; Mohri & Rostamizadeh, 2008;
2009; Samson, 2000; Steinwart & Christmann, 2010). An-
other line of research within this field, is based on the
idea of graph coloring, designed to divide a graph into
sets of independent sets, and considers subsets of inde-
pendent random variables deduced from the graph, link-
ing these variables. By mixing the idea of graph color-
ing with the Laplace transform, Hoeffding-like concentra-
tion inequalities for the sum of dependent random variables
were proposed by Janson (2004). Usunier et al. (2006)
later extended this result to provide a generalization of the
bounded differences inequality of McDiarmid (1989) to
the case of interdependent random variables. This exten-
sion then paved the way for the definition of the fractional
Rademacher complexity that generalizes the idea of Rade-
mancher complexity and allows one to derive generaliza-
tion bounds for scenarios where the training data are made
of dependent data. The Chromatic PAC-Bayes bound pro-
posed by Ralaivola et al. (2009; 2010) is another instance of
a generalization bound that builds upon the coloring prin-
ciple; London et al. (2014) later provided another PAC-
Bayesian result for dependent inputs. However, one im-
portant issue that has not been explored in these studies, is
the use of second-order (i.e. variance) information: such
information is pivotal to get generalization bounds with
fast learning rates as outlined for instance in (Boucheron
et al., 2005). To this aim, we here consider the entropy
method (Boucheron et al., 2003) that is a central tech-
nique to obtain concentration inequalities for certain types
of functions (namely, sub-additive and self-bounding) and
it is at the core of a proof of the well-known Talagrand
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concentration inequality for empirical processes (Bous-
quet, 2002; Ledoux, 1996; Massart, 2000). This inequal-
ity makes it possible then to derive generalization bounds
based on Local Rademacher Complexities (Bartlett et al.,
2005; Koltchinskii, 2006) that may induce fast convergence
rates. To the best of our knowledge, the question of pairing
the entropy method together with the coloring approach has
not yet been studied and, we propose to address it in this
paper.

Contributions. The main theoretical results of the
present paper essentially are of three different kinds. First,
we show that, according to the idea of fractional color-
ing, it is possible to extend the applicability of concen-
tration of certain types of sub-abdditive and self-bounding
functions, namely fractionally sub-additive and fraction-
ally self-bounding functions to the case of dependent vari-
ables; the new Bernstein’s type concentration inequalities
we propose reduce to the usual concentration inequalities
when the random variables at hand are independent. Sec-
ond, thanks to the derived concentration inequality, we in-
troduce the notion of local fractional Rademacher complex-
ity. Finally, we show how these technical results can be
instantiated for the learning scenario of bipartite ranking.

Organization of the paper. Section 2 states the general
problem we are interested in. In Section 3, we give the for-
mal definition of our framework and explicit the progres-
sion of our analysis over the paper. Section 4 presents new
entropy-based concentration inequalities which will allow
to extend several inequalities proposed for empirical pro-
cesses to the case of dependent variables, and, in Section 5,
we prove a generalization bound for bipartite ranking.

2. Statement of the Problem
Many learning problems deal with interdependent training
data. The study of the consistency of the ERM principle
requires in this case, the availability of concentration in-
equalities tailored to handle general functions of dependent
random variables. A common example is the reduction of
learning problems to classification of pairs of examples like
in the bipartite ranking or in multiclass classification with
the all-pairs approach (Amini & Usunier, 2015). The for-
mer problem deals with the search of a scoring function
over a class F = {f : X → R} of real-valued functions
using a training set S = {(Ti, Yi)}ni=1 where the observa-
tions (Ti, Yi) are supposed to be identically and indepen-
dently distributed according to some distributionD, in such
a way that P(T,Y ),(T ′,Y ′)∼D((Y −Y ′)(f(T )−f(T ′)) ≤ 0)
is as small as possible. Without loss of generality, we will
preferrably term the problem as that of controlling

PT+∼D+,T−∼D−(f(T+) < f(T−)), (1)

where D+ (resp. D−) is the conditional distribution of the
positive or relevant (resp. negative or irrelevant) examples.
To this end, it is natural to consider some empirical risk
R̂`(f, S) on S related to the AUC and defined as

R̂`(f, S)
.
=

1

n+n−

∑
i:Yi=+1

∑
j:Yj=−1

1If(Ti)<f(Tj), (2)

where 1Iπ is the indicator function that is equal to 1 if
the predicate π holds and 0 otherwise. The optimization
of (2) can be carried out by finding a classifier of the form
cf (T, T ′) = sgn(f(T )− f(T ′)) that minimizes the classi-
fication error over the pairs (T,+1) and (T ′,−1) (Agarwal
& Niyogi, 2005; Clémençon et al., 2008).

Yet, if we consider the random variables Xij
.
= (T+

i , T
−
j )

made of pairs of positive T+
i and negative T−j examples

in S, then each pair Xij is dependent to another pair Xkl

whenever i = k or j = l, and the empirical classification
error over these pairs is a function of dependent variables.

In this work, we are interested in deriving concentration
inequalities for some functions of dependent variables.

3. Notation and Background Results
3.1. Notation

Throughout, we use the following notation. For any pos-
itive integer N , [N ] denotes the set [N ]

.
= {1, . . . , N}.

For a sequence (U1, . . . , UN ) of elements, that will later
refer to sequences of real values or sequence of random
variables, and any subset C of [N ], UC is the subsequence
UC

.
= (Ui)i∈C and, therefore U[N ] = (U1, . . . , UN ). For

k ∈ C, the sequence U\kC is given by U\kC
.
= (Ui)i∈C\{k}

We assume that X[N ]
.
= (X1, . . . , XN ) is a sequence

of (not necessarily independent) random variables taking
value in some space X ; A denotes the σ-algebra generated
by X[N ] and, for n ∈ [N ], An the σ-algebra generated by

X
\n
[N ]

.
= (X1, . . . , Xn−1, Xn+1, . . . , XN )

Further, f : XN → R is some A-measurable function
which allows us to define the random variable Z as:

Z
.
= f(X[N ])

If X ′[N ]

.
= (X ′1, . . . , X

′
N ) is an independent copy of X[N ],

then, for each n, X(n)
[N ] and Z(n) are respectively defined as

X
(n)
[N ]

.
= (X1, . . . , X

′
n, . . . , XN ) (3)

Z(n) .= f(X
(n)
[N ]). (4)

Given a subset C = {n1, . . . , n|C|} of [N ] and some nk ∈
C, X(nk)

C is defined as

X
(nk)
C

.
= (Xn1

, . . . , X ′nk
, . . . , Xn|C|) (5)
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Finally, the expectations taken with respect to An and the
σ-algebra genrated byXC are denoted by En and EC ; when
the context is clear, the former is simply denoted by E.

3.2. Concentration of Sub-Additive and Self-Bounding
Functions

Essential to some of our results are the notions of sub-
additive functions and self-bounding functions.
Definition 1 (Sub-additive functions). A function f :
XN → R of N variables is sub-additive if there exists a
sequence (fn)n∈[N ] of functions of N − 1 variables such
that for all x[N ] = (x1, . . . , xN ),

N∑
n=1

(f(x[N ])− fn(x
\n
[N ])) ≤ f(x[N ]). (6)

Definition 2 (Self-bounding functions). A function f :
X → R of N variables is (a, b)-self-bounding if there ex-
ists a sequence (fn)n∈[N ] of functions of N − 1 variables
such that for all x[N ] = (x1, . . . , xN ),

0 ≤ f(x[N ])− fn(x
\n
[N ]) ≤ 1, ∀n ∈ [N ], (7a)

N∑
n=1

(f(x[N ])− fn(x
\n
[N ])) ≤ af(x[N ]) + b. (7b)

The concentration inequalities for sub-additive and self-
bounding functions (Boucheron et al., 2009; Bousquet,
2003) are based on bounding the log-Laplace transform
function G : R→ R defined as

G(λ)
.
= logE[exp(λ(Z − EZ))]. (8)

Using Markov’s inequality with the bound exhibited for
G(λ) together with a clever setting of λ is the traditional
way to get concentration inequality per se.

As it will shortly appear, it is convenient (and usual) in the
setting of concentration results to introduce functions ψ :
R→ R and ϕ : [0; +∞)→ R defined as

ψ(x)
.
= exp(−x) + x− 1 (9)

ϕ(x)
.
= (1 + x) log(1 + x)− x. (10)

Theorem 1 ((Bousquet, 2002; 2003)). Let f : XN → R
be a sub-additive function. Assume X[N ] is a sequence
of independent random variables and that (Yn)n∈[N ] is
a sequence of real-valued A-measurable random vari-
ables such that P(Yn ≤ Z − Z(n) ≤ 1) = 1 and
P(En[Yn] ≥ 0) = 1. Let σ2 ∈ R be such that

P
(
σ2 ≥

∑N
n=1 En

[
Y 2
n

])
= 1, If there exists b > 0 such

that for all n ∈ [N ], P(Yn ≤ b) = 1 then, for all λ ≥ 0

G(λ) ≤ ψ(−λ)v (11)

where v .
= (1 + b)EZ + σ2.

We recall the following result which provides a bound on
the expectation of the Laplace transform of self-bounding
functions due to McDiarmid & Reed (2006). Note that sim-
ilar results for weakly self-bounding—a slightly weaker no-
tion than self-bounding— functions are given by Maurer
(2006) and this set of results were refined (with better con-
stants) by Boucheron et al. (2009). We decide to refer to
the result of McDiarmid & Reed (2006) because it implies
upper and lower tail bound in a more compact way—but
the extensions to the dependent case that we propose also
apply to the more recent versions of the results.

Theorem 2 ((McDiarmid & Reed, 2006)). Let f : XN →
R be a (a, b)-self-bounding function. Assume X[N ] is a
sequence of independent random variables. Let µ .

= EZ.
The following holds.

G(λ) ≤ (aµ+ b)ψ(λ), ∀λ ≤ 0 (12)

G(λ) ≤ aµ+ b

2(1− aλ)
λ2, 0 ≤ λ ≤ 1/a. (13)

3.3. Dependency Graph

Specific graphs, namely dependency graphs, are also at the
core of the present study: a graph G = (V,E) is made of
a finite set V of vertices and a set E ⊆ V × V of edges
that connect the vertices. We have the following definition
of an exact proper fractional cover of a graph that we will
make intensive use of afterwards.

Definition 3 (Exact proper fractional cover ofG). LetG =
(V,E) be a graph. C = {(Cj , ωj)}j∈[J], for some positive
integer J , with Cj ⊆ V and ωj ∈ [0, 1] is an exact proper
fractional cover of G, if:

1. it is proper: ∀j, Cj is an independent set, i.e., there is
no connections between vertices in Cj ;

2. it is an exact fractional cover of G: ∀v ∈
V,
∑
j:v∈Cj ωj = 1.

The weight W (C) of C is given by: W (C) .
=
∑
j∈[J] ωj

and the minimum weight χ∗(G) = minC∈K(G)W (C) over
the set K(G) of all exact proper fractional covers of G is
the fractional chromatic number of G.

Note that, as observed by Janson (2004), Lemma 3.2, we
may restrict ourselves to working with exact fractional cov-
ers, which requires ∀v ∈ V,

∑
j:v∈Cj ωj = 1 instead of the

weaker condition ∀v ∈ V,
∑
j:v∈Cj ωj ≥ 1 for non-exact

fractional covers, without loss of generality, since any frac-
tional covers induces an exact fractional cover.

From now on, it must be understood that we refer to exact
proper fractional cover when using the simpler term of frac-
tional cover. The reader that is not familiar with this notion
of fractional covers may regard them as generalization of
graph coloring, where the question is to assign the smallest
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number of colors to nodes of a graph so that no two con-
nected nodes share the same color. When colored this way,
the set of points that have the same color are necessarily
independent sets and the coloring might be thought of an
exact proper fractional coloring with every Cj correspond-
ing to color j and every ωj being equal to 1. Given some
graph G, the smallest number of colors χ(G) is its chro-
matic number and the following holds: χf (G) ≤ χ(G).

Definition 4 (Dependency Graph). Let X[N ]
.
=

(X1, . . . , XN ) be a sequence of random variables.
We may associate the dependency graph GX

.
= (VX , EX)

to X[X] so that i) VX = [N ] and ii) (i, j) ∈ EX if and only
if Xi and Xj are dependent random variables.

Note that there are other notions of dependency graphs that
can be envisioned (see (Janson, 2004)). The present notion
of dependency graph will however suffice to our purpose.
As we shall see, computing an exact proper fractional cover
{(Cj , ωj)}j∈[J] of GX allows one to decompose X[N ] in
sets of independent variables XCj . This will make it pos-
sible to have the usual concentration inequalities for inde-
pendent variables to carry over to the dependent case.

4. New Concentration Inequalities
As stated above, we build upon the works on the en-
tropy method (see, for a somewhat exhaustive overview the
method the work of Boucheron et al. (2003)) and that of
Janson (2004) to provide new concentration inequalities for
functions of dependent random variables.

4.1. Fractionally Colorable Functions

We aim at establishing concentration results for functions
that are more complex than sums of dependent random
variables. To this end, we introduce the notions of frac-
tionally colorable functions, colorable sub-additive func-
tions and colorable self-bounding functions; they refine the
definitions given in the previous section.

Definition 5 (Fractionally colorable function). Let G =
([N ], E) be a graph. A function f : XN → R is fraction-
ally colorable with respect to G if there exists a decompo-
sition DG(f) = {(fj , Cj , ωj)}j∈[J] of J triplets, such that:

1. C = {(Cj , ωj)}j∈[J] is an exact proper fractional
cover of G;

2. for all j, fj : X |Cj | → R is a function of |Cj | variables
and f decomposes as

∀x[N ] ∈ XN , f(x[N ]) =
∑
j

ωjfj(xCj ) (14)

The decomposition DG(f) of f is optimal if the weight
of the cover C = {(ωj , Cj)}j∈[J] is the smallest over all
decompositions of f . In that case, the chromatic decom-

position number χf of f is the weight of such an optimal
decomposition.

In the sequel, and without loss of generality, we will always
consider optimal decompositions of fractionally colorable
functions. Also, we will assume that the graph G at hand is
the dependency graph of the sequence X[N ] under study.

We may now assume that we are working with a fraction-
ally colorable function f and we may recall/introduce no-
tation: as before, Z and Z(n) are defined as

Z
.
= f

(
X[N ]

)
, Z(n) .= f

(
X

(n)
[N ]

)
,

and, for j ∈ [J ], n ∈ Cj , Zj and Z(n)
j are defined as:

Zj
.
= fj

(
XCj

)
, Z

(n)
j

.
= fj

(
X

(n)
Cj

)
,

where X(n)
Cj is defined as in equation (5). Hence,

Z =
∑
j

ωjZj . (15)

Let ΠJ be the family of discrete probability distributions
over J-sets:

ΠJ
.
=

{
(p1, . . . , pJ) :

J∑
j=1

pj = 1 and pj > 0, ∀j

}
(16)

We then have the following central lemma .
Lemma 1 (Central Lemma). If f is fractionally colorable
then ∀(p1, . . . , pJ) ∈ ΠJ ,∀λ ∈ R,

G(λ) ≤ log
∑
j∈[J]

pj exp

[
Gj

(
λ
ωj
pj

)]
(17)

where

Gj(λ)
.
= logECj

[
exp

(
λ
(
Zj − ECj [Zj ]

))]
. (18)

Proof.

G(λ) = logE[exp(λ(Z − E[Z]))]

= logE

exp

λ ∑
j∈[J]

ωj
(
Zj − ECj [Zj ]

)
= logE

exp

λ ∑
j∈[J]

pj
ωj
pj

(
Zj − ECj [Zj ]

)
≤ logE

∑
j∈[J]

pj exp

(
λ
ωj
pj

(
Zj − ECj [Zj ]

))
(convexity of x 7→ ex and the Jensen inequality)

= log
∑
j∈[J]

pjECj
[
exp

(
λ
ωj
pj

(
Zj − ECj [Zj ]

))]
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Remark that the functions Gj’s are the counterparts of G
for the random variables Zj , which are defined with respect
to the set Cj of independent variables.

4.2. Concentration of Fractionally Sub-Additive
Functions

Definition 6 (Fractionally Sub-Additive function). Let
G = ([N ], E) be some graph. A function f : XN →
R is fractionally sub-additive if it is fractionally col-
orable with respect to G with decomposition DG(f) =
{(fj , Cj , ωj)}j∈[J] and each fj is sub-additive.

Proposition 1. Suppose the following assumptions are
true. f is fractionally sub-additive with decomposition
D(f) = {(fj , Cj , ωj)}j∈[J]. Assume that for all j ∈ [J ]:

• (Yj,n)n∈Cj is a sequence of real-valued σ(XCj )-
measurable random variables such that ∀n ∈ Cj ,

P(Yj,n ≤ Zj − Z(n)
j ≤ 1) = 1,

P(Ej,n[Yj,n] ≥ 0) = 1,

where Ej,n denotes the expectation with respect to the
σ-algebra generated by (XCj\{n});

• there exists σ2
j ∈ R so that

P

σ2
j ≥

∑
n∈Cj

Ej,n
[
Y 2
j,n

] = 1;

• there exists a positive bj ∈ R such that ∀n ∈
Cj , P(Yj,n ≤ bj) = 1;

• vj ∈ R denotes the real vj
.
= (1 + bj)E[Zj ] + σ2

j .

The following result holds: for all λ ≥ 0 and for all
(p1, . . . , pJ) ∈ ΠJ ,

G(λ) ≤ log
∑
j

pj exp

(
vjψ

(
−λωj

pj

))
, (19)

where ψ is defined as in (9).

Proof. Let (p1, . . . , pJ) ∈ ΠJ and λ > 0 (the proof is
trivially true for λ = 0).

G(λ) ≤ log
∑
j∈[J]

pj exp

[
Gj

(
λ
ωj
pj

)]
(Lemma 1)

≤ log
∑
j∈[J]

pj exp

(
vjψ

(
−λωj

pj

))
(Theorem 1)

The following result extends Bennett’s inequality presented
by (Bousquet, 2002) to the dependent case.

Theorem 3 (Bennett’s Inequality for Dependent Variables).
Suppose the assumptions of Proposition 1 hold with b1 =
. . . = bJ

.
= b and define the constants

σ2 .
=
∑
j∈[J]

ωjσ
2
j , v

.
= (1 + b)E[Z] + σ2, c

.
= 25χf/16.

The following results hold:

• for all t ≥ 0

P(Z ≥ E[Z] + t) ≤ exp

(
− v

χf
ϕ

(
4t

5v

))
; (20)

where ϕ is defined as in (10).
• for all t ≥ 0

P
(
Z ≥ E[Z] +

√
2cvt+

ct

3

)
≤ e−t. (21)

Proof. To get the results, we start from Proposition 1 and
we follow the steps of Janson (2004) (Theorem 3.4). Set

v
.
=
∑
j∈[J]

ωjvj , W
.
=
∑
j∈[J]

ωj , (22)

U
.
=
∑
j∈[J]

ωj max
(

1, v
1/2
j W 1/2v−1/2

)
, (23)

pj
.
= ωj max

(
1, v

1/2
j W 1/2v−1/2

)
/U. (24)

With these choices, we observe that each summand
of the sum in (19) is such that vjψ(−λUωj/pj) ≤
vψ(−λU)/W . Indeed, if v1/2j W 1/2v−1/2 ≤ 1, then
pj = ωj/U , vj ≤ v/W , and

vjψ

(
−λωj

pj

)
= vjψ(λU) ≤ v

W
ψ(−λU).

Otherwise (i.e. v1/2j W 1/2v−1/2 > 1)

pj = ωjv
1/2
j W 1/2v−1/2/U

and

vjψ

(
−λωj

pj

)
= vjψ

(
−λU v1/2

v
1/2
j W 1/2

)

≤ vj
(

1

W 1/2

)2

ψ(−λU) =
vj
W
ψ(−λU),

where the inequality comes from a property of ψ that is
recalled in Proposition 5 (in Appendix A).

This bounding of vjψ(−λUωj/pj), and the fact that x 7→
ex is an increasing function give

∑
j∈[J]

pj exp

(
vjψ

(
−λU ωj

pj

))
≤ exp

( v
W
ψ(−λU)

)
.
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Using Markov’s inequality (cf. Theorem 6, Appendix A),

P(Z − E[Z] ≥ t) = P (exp (λ(Z − E[Z])) ≥ exp(λt))

≤ exp
( v
W
ψ(−λU)− λt

)
.

The upper bound of this inequality is minimized for λ =
ln(1 + tW/vU)/U ; plugging in this value yields

P(Z − E[Z] ≥ t) ≤ exp

(
− v

W
ϕ

(
tW

Uv

))
.

Now using the fact that ∀x ∈ R, x ≤ 1 + x2/4, we get

U ≤
∑
j

ωj

(
1 +

vjW

4v

)
= W +

vW

4v
=

5

4
W.

Since x 7→ ϕ(t/x) is decreasing for t > 0, we readily have
the following upper bound

P(Z − E[Z] ≥ t) ≤ exp

(
− v

W
ϕ

(
4t

5v

))
.

As said before, we consider only optimal decompositions
of f and the total weight W may be readily replaced by the
chromatic number χf . Finally, we observe that:

v =
∑
j

ωjvj =
∑
j

ωj((1 + b)E[Zj ] + σ2
j )

= (1 + b)E[Z] + σ2.

Inequality (21) is deduced from (20) and the fact that x ≥
0, ϕ(x) ≥ x2/(2(1 + x/3).

This, in turn, gives the following Talagrand’s type inequal-
ity for empirical processes in the dependent case.

Theorem 4. Let F be a set of functions from X to R
and assume all functions in F are measurable, square-
integrable and satisfy E[f(Xn)] = 0,∀n ∈ [N ] and
supf∈F ‖f‖∞ ≤ 1. Assume that C = {(Cj , ωj)} is a cover
of the dependency graph of X[N ] and let χf

.
=
∑
j ωj .

Let us define:

Z
.
=
∑
j∈[J]

ωj sup
f∈F

∑
n∈Cj

f(Xn)

Let σj be so that σ2
j ≥

∑
n∈Cj supf∈F E

[
f2(Xn)

]
.

Let v .
=
∑
j ωjσ

2
j + 2E[Z]. For any t ≥ 0,

P(Z ≥ E[Z] + t) ≤ exp

(
− v

χf
ϕ

(
4t

5v

))
(25)

Also, if c .= 25χf/16.

P
(
Z ≥ E[Z] +

√
2cvt+

ct

3

)
≤ e−t (26)

Proof. (Sketch.) The proof is similar to the one of Bous-
quet (2003) (Theorem 7.3) and it hinges on the fact that, by
Lemma 2, Appendix A, the Zj’s are indeed sub-additive
functions and by studying the random variables Yj,n de-
fined for n ∈ Cj as: Yj,n

.
= fnj (Xn), where f jn is such that∑

k∈Cj\{n} f
n
j (Xk) = supf∈F

∑
k∈Cj f(Xk) which also

yields that b = 1 in the definition of v.

We may now introduce the Local Fractional Rademacher
Complexity which, combined with the previous inequality,
is useful to get generalization bounds (see Section 5).

Definition 7. The Local Fractional Rademacher Complex-
ityR(F , r) is defined as

R(F , r) .
=

2

N
Eξ
∑
j∈[J]

ωjEXCj sup
f∈F :Vf≤r

∑
n∈Cj

ξif(Xn)

(27)
where ξ = (ξ1, . . . , ξN ) is a sequence of N independent
Rademacher variables: P(ξn = 1) = P(ξn = −1) = 1/2.

This is a generalization of the fractional Rademacher com-
plexity of Usunier et al. (2006). The following holds:

Proposition 2. For all r > 0,

EX[N]

∑
j

ωj sup
f∈F:Vf≤r

∑
n∈Cj

[Ef(Xn)− f(Xn)] ≤ NR(F , r).

Proof. A simple symmetrization argument carefully used
in combination with the fractional decomposition of f
gives the result.

4.3. Concentration of Fractionally Self-Bounding
Functions

We provide concentration inequalities for a generaliza-
tion of self-bounding functions, namely, fractionally self-
bounding functions. Such results may have some use to
problems that naturally make self-bounding functions ap-
pear (Boucheron et al., 2009; McDiarmid & Reed, 2006).

Definition 8 (Fractionally Self-Bounding Function). Let
G = ([N ], E) be some graph. A function f : XN →
R with decomposition DG(f) = {(fj , Cj , ωj)}j∈[J] is
({aj}j , {bj}j)-fractionally self-bounding if each fj is
(aj , bj)-self-bounding.

Proposition 3. Let GX be the dependency graph associ-
ated with X[N ]. Let f : XN → R be ({aj}j , {bj}j)-
fractionally self-bounding. The following holds for all
(p1, . . . , pJ) ∈ ΠJ ,

• for all λ ≤ 0

G(λ) ≤ log
∑
j∈[J]

pj exp

(
(ajµj + bj)ψ

(
λ
ωj
pj

))
(28)
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• for all 0 ≤ λ < min(pj/(ajωj)), with µj = ECj [Zj ],

G(λ) ≤ log
∑
j∈[J]

pj exp

(
ajµj + bj

2(1− λajωj/pj)

(
λωj
pj

)2
)
.

(29)

Proof. A combination of Lemma 1 and Theorem 2.

This proposition entails the following concentration in-
equalities for the upper and lower tails of Z.

Theorem 5. Let f : XN → R be ({aj}j , {bj}j)-
fractionally self-bounding, with decomposition DGX

(f) =
{(fj , Cj , ωj)}j∈[J]. Define

γj
.
= (ajµj + bj), γ

.
=
∑
j∈[J]

ωjγj , χf
.
=
∑
j

ωj .

The following results hold: for all t > 0,

P(Z ≤ E[Z]− t) ≤ exp

(
− γ

χf
ϕ

(
4t

5γ

))
, (30)

P(Z ≥ E[Z] + t) ≤ exp

(
− γ

χf
ϕ

(
t

γρ

))
, (31)

where ρ .
= 1

χf

∑
j∈[J] ωjaj + 1

4γ

∑
j∈[J] ωj

γj
aj
.

If a .
= a1 = . . . = aJ , then ρ simplifies to ρ = a + 1

4a
and (31) takes the more convenient form

P(Z ≥ E[Z] + t) ≤ exp

(
− γ

χf
ϕ

(
4at

(4a2 + 1)γ

))
, (32)

which is similar to Equation (30) for a = 1.

Proof. The proof of Equation (30) follows exactly the same
steps as the proof of Theorem 3 after noticing that the start-
ing point of the former, namely Equation (28), is similar to
the Equation (19), the starting point of the latter, with λ in
place of −λ and γj in place of vj .

The proof of Equation (31) hinges on the following
choices:

U
.
=
∑
j∈[J]

ajωj max
(

1, a−1
j γ

1/2
j χ

1/2
f γ−1/2

)
,

pj
.
= ajωj max

(
1, a−1

j γ
1/2
j χ

1/2
f γ−1/2

)
/U,

which allow the argument of the exponential in the right-
hand side of Equation (29) to be rewritten as, for all j ∈ [J ]

θj(λ)
.
=

γj
2(1− λajωj/pj)

(
λωj
pj

)2

=
γj/a

2
j · U2/max2

(
1, a−1

j γ
1/2
j χ

1/2
f γ−1/2

)
2
(

1− λU/max
(

1, a−1
j γ

1/2
j χ

1/2
f γ−1/2

))λ2.

It is easy to verify that for all λ ≥ 0 we have

θj(λ) ≤ γ/χf
2 (1− λU)

(λU)2

Indeed, if a−1j γ
1/2
j χ

1/2
f γ−1/2 ≤ 1 then θj is bounded as

θj(λ) =
γj/a

2
j

2 (1− λU)
(λU)2 ≤ γ/χf

2 (1− λU)
(λU)2.

And if, a−1j γ
1/2
j χ

1/2
f γ−1/2 > 1, then

θj(λ) =
γ/χf

2
(

1− λU · ajγ−1/2
j χ

−1/2
f γ1/2

) (λU)2

≤ γ/χf

2
(

1− λU · χ1/2
f γ−1/2χ

−1/2
f γ1/2

) (λU)2

=
γ/χf

2 (1− λU)
(λU)2,

where the upper-bounding is possible because λ ≥ 0.
Therefore, from the bound (29) it comes

expG(λ) = E [exp (λ(Z − E[Z]))] ≤ exp

(
γ/χf

2 (1− λU)
(λU)2

)
.

Using Markov’s inequality, and the fact that pj/(ajωj) ≥
1/U for all j ∈ [J ], we get

P(Z − E[Z] ≥ t) = P(exp (λ(Z − E[Z])) ≥ exp(λt))

≤ exp

(
inf

0≤λ<1/U

γ/χf
2 (1− λU)

(λU)2 − λt
)

= exp

(
− γ

χf
ϕ

(
χf t

γU

))
,

where we used Lemma 3 (Appendix A) to get the last line.
Using the inequality ∀x ∈ R, x ≤ 1 +x2/4 once again, we
may bound U as

U ≤
∑
j∈[J]

ajωj

(
1 +

χfγj
4a2jγ

)
=
∑
j∈[J]

ωjaj +
χf
4γ

∑
j∈[J]

ωj
γj
aj

and use the fact that x 7→ ϕ(t/x) is decreasing for t >
0.

5. Induced Generalization Bounds for
Bipartite Ranking

In this section, we show how the concentration inequalities
we established in the previous section can be of some use
to derive generalization bounds for predictors trained on
interdependent data. We will more precisely take advan-
tage of the concentration inequality given by Theorem 3
and provide a generalization bound for the problem of bi-
partite ranking that can be reduced to the classification of
pairs of examples (see Section 2). To do so, our proof will
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rest on the notion of local fractional Rademacher complex-
ity, a generalization of both notions of local Rademacher
complexity (Bartlett et al., 2005; Koltchinskii, 2006) and
fractional Rademacher complexity (Usunier et al., 2006).
If we assume that n+ ≤ n−, it is easy to see that C .

=
{(Cj , ωj

.
= 1)}j∈[n−] with

Cj
.
= {(i, (j + i− 2 mod n−) + 1) : i = 1, . . . , n+}

is an exact cover of the dependency graph of (Xij)ij . The
chromatic number of this cover is therefore χf =

∑
j ωj =

n− and R̂`(f, S) decomposes as

R̂`(f, S) =
1

N

∑
j∈[n−]

∑
(k,l)∈Cj

`(f,Xkl), (33)

where, abusing notation, `(f,Xkl) = `(f, T+
i , T

−
j ) and

N
.
= n+n−. This is a colorable function with respect to

the sequenceX .
= (Xkl)kl and the tools we have developed

will help us derive a generalization bound for f .

Given a family of functions F , and r > 0, we define the
parameterized family F`,r which, for r > 0, is given by

F`,r
.
= {f : f ∈ F ,VX1,1`(f,X1,1) ≤ r},

where V denotes the variance (recall that all the Xkl are
identically distributed). Now denote the function Φ as

Φ(X, r)
.
= N sup

f∈F`,r

[
EX′ [R̂`(f,X ′)]− R̂`(f,X)

]
,

where X ′ is a copy X and where we have used the nota-
tion EX′ [R̂`(f,X ′)] for ESR̂`(f, S) to make explicit the
dependence on the sequence of dependent variables X ′. It
is easy to see that

Φ(X, r) ≤
∑
j∈[n−]

sup
f∈F`,r

∑
(k,l)∈Cj

[
EX′

kl
[`(f,X ′kl)]− `(f,Xkl)

]
.
= Z. (34)

When ` takes values in the interval [0, 1] then Theorem 4
readily applies to upper bound the right hand side of (34).
Therefore, for t > 0, the following holds with probability
at least 1− e−t:

Φ(X, r) ≤ E[Z] +
√

2cvt+
ct

3

where c = 25χf/16 = 25n−/16 and v ≤ Nr + 2E[Z].
Using

√
a+ b ≤

√
a +
√
b and 2

√
ab ≤ ua + b/u for all

u > 0, we further have, for all α > 0

Φ(X, r) ≤ (1 + α)E[Z] +
√

2cNrt+

(
1

3
+

1

α

)
ct,

and, using Proposition 2, we get, the following proposition.

Proposition 4. With probability 1− e−t, for all α > 0

Φ(X, r) ≤ (1 + α)NR(F`,r, r) +
√

2cNrt+

(
1

3
+

1

α

)
ct,

or, using χf = n−, N = n+n−, with probability at least
1− e−t, for all f ∈ F`,r
ES [R̂(f, S)]− R̂(f, S)

≤ inf
α>0

(
(1 + α)R(F`,r, r) +

5

4

√
2rt

n+
+

25

16

(
1

3
+

1

α

)
t

n+

)
.

As is common with generalization bounds for bipartite
ranking, the convergence rate is governed by the least rep-
resented class, i.e. the positive class here. Note this result
is only the starting point of a wealth of results that may be
obtained using the concentration inequalities studied here.
In particular, it might be possible to sutdy how arguments
based on star hulls and subroot functions may help us to get
fast-rate-like results akin to (Clémençon et al., 2008).

6. Conclusion
We have proposed new concentration inequalities for func-
tions of dependent variables. From these, we derived
a new Talagrand concentration inequality for fractionally
sub-additive functions and fractionally self-bounding func-
tions of dependent variables. An instance of a generaliza-
tion bounds based on Fractional Local Rademacher Com-
plexity for bipartite ranking exemplifies the usefulness of
our concentration results.
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A. Technical Results
Theorem 6 (Markov Inequality). Let X be a nonnegative
random variable. For all a > 0 P(X > a) ≤ E[X]

a .

Proposition 5 (Lemma A.3 of Bousquet (2003)). Let gλ be
as gλ

.
= ψ(−λx)/x2. If λ ≥ 0 then gλ is non-decreasing

on R. If λ ≤ 0 then gλ is non-increasing on R.
Lemma 2 (Lemma C.1 of Bousquet (2003)). Let F be a
set of functions and let Z .

= supf∈F
∑n
k=1 f(Xk). Then,

definingZk
.
= supf∈F

∑
i 6=k f(Xi), Z is sub-additive. The

same is true if Z .
= supf∈F |

∑n
k=1 f(Xk)| and Zk

.
=

supf∈F

∣∣∣∑i6=k f(Xi)
∣∣∣.

Lemma 3 (Lemma 11 of Boucheron et al. (2003)). Let C
and a denote two positive real numbers. Then

supλ∈[0,1/a)

(
λt− Cλ2

1− aλ

)
=

2C

a2
ϕ

(
at

2C

)
,

and the supremum is at λ = 1
a

(
1−

(
1 + at

C

)−1/2)
.
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