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A. Additional Notation and Setup
Let µ be the marginal distribution induced by D over X , and let p(x) be the distribution over [n] conditioned on X = x. For
every function ` : [n]⇥ [k]!R+ and t 2 [k] let `t = [`(1, t), . . . , `(n, t)]> 2 Rn

+. For every surrogate  : [n]⇥ Rd!R+

let  : Rd!Rn
+ be a vector function such that  y(u) =  (y,u) for y 2 [n],u 2 Rd. For any integer d0 2 Z+ and pair

of vectors u,v 2 Rd0
, their inner product is denoted as hu,vi =

Pd0

i=1 uivi. For a vector u 2 Rn and a positive integer
a  n, the vector u

��
1:a

2 Ra gives the first a components of u.

Define the conditional regrets R`H

p , R`?,n

p and R 
p as the regrets incurred for a singleton instance space X , with conditional

probability p 2 �n. In particular, we have that

R`H

p [by] = hp, `Hby i � inf

y02[n]
hp, `Hy0i, 8by 2 [n]

R`?,n

p [by] = hp, `?,nby i � inf

y02[n][{?}
hp, `?,ny0 i, 8by 2 [n] [ {?}

R 
p [u] = hp, (u)i � inf

u02Rd
hp, (u0

)i, 8u 2 Rd .

Let µ be the marginal distribution induced by D over X , and let p(x) be the distribution over [n] conditioned on X = x.
Then we have by linearity of expectation that,

R`H

D [g] = EX⇠µR
`H

p(X)[g(X)] (4)

R`?,n

D [g0] = EX⇠µR
`?,n

p(X)[g
0
(X)] (5)

R 
D[f ] = EX⇠µR

 
p(X)[f(X)] . (6)

For all 0  j  h, define `H,j
: [nj ]⇥ [nj ]!R+ as simply the restriction of `H to [nj ]⇥ [nj ].

B. Proofs
B.1. Proof of Theorem 1

Theorem. Let H = ([n], E,W ) and let `H : [n] ⇥ [n]!R+ be the tree-distance loss for the tree H . Let p 2 �n, and

y 2 [n]. Then there exists a g⇤ : X![n] such that for all x 2 X the following holds:

(a) Sg⇤(x)(p(x)) � 1
2

(b) Sy(p(x))  1
2 , 8y 2 C(g⇤(x)) .

Also, g⇤ is a Bayes optimal classifier for the tree distance loss, i.e.

R`H

D [g⇤] = 0 .

Proof. We shall simply show for all p 2 �n, there exists a y⇤ 2 [n] such that

Sy⇤
(p) � 1

2

(7)

Sy(p)  1

2

, 8y 2 C(y⇤) , (8)
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and is such that
hp, `Hy⇤i = min

y2[n]
hp, `Hy i .

This would imply R`H

p [y⇤] = 0. The theorem then simply follows from linearity of expectation using Equation 4.

Let p 2 �n. We construct a y⇤ 2 [n] satisfying Equations 7 and 8 in the following way. We start at the root node, which
always satisfies Equation 7, and keep on moving to the child of the current node that satisfies Equation 7, and terminate
when we reach a leaf node, or a node where all of its children fail Equation 7. Clearly the resulting node, y⇤, satisfies both
Equations 7 and 8.

Now we show that y⇤ indeed minimizes hp, `Hy i over y 2 [n].

Let y0 2 argminthp, `
H
t i. If y0 = y⇤ we are done, hence assume y0 6= y⇤.

Case 1: y0 /2 D(y⇤)

hp, `Hy0i � hp, `Hy⇤i =

X

y2D(y⇤)

py(`
H
(y, y0)� `H(y, y⇤)) +

X

y2[n]\D(y⇤)

py(`
H
(y, y0)� `H(y, y⇤))

=

X

y2D(y⇤)

py(`
H
(y⇤, y0)) +

X

y2[n]\D(y⇤)

py(`
H
(y, y0)� `H(y, y⇤))

�
X

y2D(y⇤)

py(`
H
(y⇤, y0)) +

X

y2[n]\D(y⇤)

py(�`H(y0, y⇤)))

= `H(y0, y⇤)(2Sy⇤
(p)� 1)

� 0

Case 2: y0 2 D(y⇤) \ C(y⇤)

Let ŷ be the child of y⇤ that is the ancestor of y0. Hence we have Sŷ(p)  1
2 .

hp, `Hy0i � hp, `Hy⇤i =

X

y2D(ŷ)

py(`
H
(y, y0)� `H(y, y⇤)) +

X

y2[n]\D(ŷ)

py(`
H
(y, y0)� `H(y, y⇤))

=

X

y2D(ŷ)

py(`
H
(y, y0)� `H(y, y⇤)) +

X

y2[n]\D(ŷ)

py(`
H
(y⇤, y0))

�
X

y2D(ŷ)

py(�`H(y⇤, y0)) +
X

y2[n]\D(ŷ)

py(`
H
(y⇤, y0))

= `H(y0, y⇤)(1� 2Sŷ(p))

� 0

Case 3: y0 2 C(y⇤)

hp, `Hy0i � hp, `Hy⇤i =

X

y2D(y0)

py(`
H
(y, y0)� `H(y, y⇤)) +

X

y2[n]\D(y0)

py(`
H
(y, y0)� `H(y, y⇤))

=

X

y2D(y0)

py(�`H(y0, y⇤)) +
X

y2[n]\D(y0)

py(`
H
(y0, y⇤))

= `H(y0, y⇤)(1� 2Sy0
(p))

� 0

Putting all three cases together we have
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hp, `Hy⇤i  hp, `Hy0i = min

y2[n]
hp, `Hy i .

B.2. Proof of Lemma 3

We first give the proof of a stronger version of Lemma 3.

Lemma 8. For all p 2 �n,u 2 Rd
we have

R`H

p [⌥

cas
(u)] 

hX

j=1

�j(uj) ·R`?,nj

Aj(p)[⌥
?
j(uj)],

where �j(uj) =

(
2↵j if ⌥

?
j(uj) 6= ?

2�j if ⌥

?
j(uj) = ?

.

Proof. For all j 2 [h], we will first prove a bound relating the tree-distance regret at level j, with the tree-distance regret
at level j � 1 and abstain loss regret at level j as follows:

R`H,j

Aj(p)[⌥
cas
j (u)]  R`H,j�1

Aj�1(p)[⌥
cas
j�1(u)] + �j(uj) ·R`?,nj

Aj(p)[⌥
?
j(uj)] .

The theorem would simply follow from applying such a bound recursively and observing that R`H,0

A0(p)[⌥
cas
0 (u)] = 0.

One observation of the tree-distance loss that will be often of use in the proof is the following:

`H(y, y0)� `H(P (y), y0) =

(
�`H(y, P (y)) if y0 2 D(y)

`H(y, P (y)) otherwise

The details of the proof follows: Fix j 2 [h],u 2 Rd,p 2 �n.

Let y⇤j = argminy2[nj ]R
`H,j

Aj(p)[y].

Case 1: ⌥?
j(uj) 6= ?

R`H,j

Aj(p)[⌥
cas
j (u)] =

njX

y=1

Aj
y(p)(`

H
(y,⌥cas

j (u))� `H(y, y⇤j ))

 `H(y⇤j ,⌥
cas
j (u))(1� 2Aj

⌥cas
j (u)(p)) (9)

We also have,

R`?,nj

Aj(p)[⌥
?
j(uj)] = 1�Aj

⌥?
j(uj)

(p)� min

y2[nj ][{?}
hAj

(p), `?,nj
y i

� 1�Aj

⌥?
j(uj)

(p)� hAj
(p), `

?,nj

? i

=

1

2

�Aj

⌥?
j(uj)

(p)

=

1

2

�Aj
⌥cas

j (u)(p) . (10)

The last inequality above follows because if ⌥?
j(uj) 6= ?, then ⌥

cas
j (u) = ⌥

?
j(uj).
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Putting Equations 9 and 10 together, we get

R`H,j

Aj(p)[⌥
cas
j (u)]  2`H(y⇤j ,⌥

cas
j (u)) ·R`?,nj

Aj(p)[⌥
?
j(uj)]

 2↵j ·R`?,nj

Aj(p)[⌥
?
j(uj)] (11)

Case 2: ⌥?
j(uj) = ?

In this case ⌥

cas
j (u) = ⌥

cas
j�1(u), and hence lev(⌥cas

j (u))  j � 1.

We now have,

hAj
(p), `H,j

⌥cas
j (u)i � hAj�1

(p), `H,j�1
⌥cas

j�1(u)
i = hAj

(p), `H,j
⌥cas

j (u)i � hAj�1
(p), `H,j�1

⌥cas
j (u)i

=

X

y2N=j

Sy(p)
�
`H(y,⌥cas

j (u))� `H(P (y),⌥cas
j (u))

�

=

X

y2N=j

Sy(p)`
H
(y, P (y)) (12)

For ease of analysis, we divide case 2, further into two sub-cases.

Case 2a: lev(y⇤j ) < j

hAj�1
(p), `H,j�1

y⇤
j�1

i � hAj
(p), `H,j

y⇤
j
i = hAj�1

(p), `H,j�1
y⇤
j�1

i � hAj�1
(p), `H,j�1

y⇤
j

i

+hAj�1
(p), `H,j�1

y⇤
j

i � hAj
(p), `H,j

y⇤
j
i

 hAj�1
(p), `H,j�1

y⇤
j

i � hAj
(p), `H,j

y⇤
j
i

=

X

y2N=j

Sy(p)(`
H
(P (y), y⇤j )� `H(y, y⇤j ))

=

X

y2N=j

Sy(p)(�`H(y, P (y))) (13)

Adding, Equation 12 and 13, we get

R`H,j

Aj(p)[⌥
cas
j (u)]  R`H,j�1

Aj�1(p)[⌥
cas
j�1(u)] (14)

Case 2b: lev(y⇤j ) = j

hAj�1
(p), `H,j�1

y⇤
j�1

i � hAj�1
(p), `Hy⇤

j

��
[1:nj�1]

i  hAj�1
(p), `H,j�1

P (y⇤
j )

i � hAj�1
(p), `Hy⇤

j

��
[1:nj�1]

i

=

X

y2Nj�1

Aj�1
y (p)(`H(y, P (y⇤j ))� `H(y, y⇤j ))

=

X

y2Nj�1

Aj�1
y (p)(�`H(y⇤j , P (y⇤j )))

= �`H(y⇤j , P (y⇤j )) (15)

Also,

hAj�1
(p), `Hy⇤

j

��
[1:nj�1]

i � hAj
(p), `H,j

y⇤
j
i =

X

y2N=j

Sy(p)(`
H
(P (y), y⇤j )� `H(y, y⇤j ))

=

X

y2N=j\{y⇤
j }

Sy(p)(�`H(y, P (y))) + Sy⇤
j
(p)(`H(y⇤j , P (y⇤j ))) . (16)



Convex Calibrated Surrogates for Hierarchical Classification

Adding Equations 12, 15 and 16, we get

R`H,j

Aj(p)[⌥
cas
j (u)]  R`H,j�1

Aj�1(p)[⌥
cas
j�1(u)] + (2Sy⇤

j
(p)� 1) · `H(y⇤j , P (y⇤j ))

 R`H,j�1

Aj�1(p)[⌥
cas
j�1(u)] + (2Sy⇤

j
(p)� 1) · �j . (17)

Inequality 17 follows because by the definitions of y⇤j and Theorem 1 , we have Sy⇤
j
(p) � 1

2 .

Also, we have that

R`?,nj

Aj(p)[⌥
?
j(uj)] = R`?,nj

Aj(p)[?]

=

1

2

� min

y2[n][{?}
hAj

(p), `?,nj
y i

� 1

2

� hAj
(p), `

?,nj

y⇤
j

i

=

1

2

� (1� Sy⇤
j
(p))

= Sy⇤
j
(p)� 1

2

. (18)

Putting Equations 17 and 18 together, we have that

R`H,j

Aj(p)[⌥
cas
j (u)]  R`H,j�1

Aj�1(p)[⌥
cas
j�1(u)] + 2�j ·R`?,nj

Aj(p)[⌥
?
j(uj)]. (19)

Putting the results for case 1, case 2a and case 2b, from Equations 11, 14 and 19 respectively, we have

R`H,j

Aj(p)[⌥
cas
j (u)]  R`H,j�1

Aj�1(p)[⌥
cas
j�1(u)] + �j(uj) ·R`?,nj

Aj(p)[⌥
?
j(uj)] .

Now the proof of Lemma 3 follows from certain simple considerations.

Lemma. For any distribution D over X ⇥ [n], let Aj
(D) be the distribution over X ⇥ [nj ] given by the distribution of

(X, ancj(Y )) with (X,Y ) ⇠ D. For all j 2 [h], let fj : X!Rdj
be such that f(x) = [f1(x)>, . . . , fh(x)>]>. Then for all

distributions D over X ⇥ [n] and all functions f : X!Rd

R`H

D [⌥

cas � f ] 
hX

j=1

2↵j ·R`?,nj

Aj(D)[⌥
?
j � fj ] .

Proof. Using Lemma 8 and by the observation that �j  ↵j , we have for all p 2 �n,u 2 Rd that

R`H

p [⌥

cas
(u)] 

hX

j=1

2↵j ·R`?,nj

Aj(p)[⌥
?
j(uj)] .

Let f : X!Rd be a function. Then for all x 2 X ,

R`H

p(x)[⌥
cas
(f(x))] 

hX

j=1

2↵j ·R`?,nj

Aj(p(x))[⌥
?
j(uj)] .

Observe that the the marginal distribution over X for Aj
(D) is exactly the same as for D, while the conditional probability

distribution for the distribution Aj
(D) at x is exactly equal to Aj

(p(x)). The Lemma now immediately follows from
linearity of expectation.
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B.3. Proof of Theorem 4

Theorem. For all j 2 [h], let  j
: [nj ]⇥Rdj

and ⌥

?
j : Rdj!nj be such that for all fj : X!Rdj

, and all distributions D
over X ⇥ [nj ] we have

R`?,nj

D [⌥

?
j � fj ]  C ·R j

D [fj ],

for some constant C > 0. Then for all f : X!Rd
and distributions D over X ⇥ [n],

R`H

D [⌥

cas � f ]  2↵hC ·R cas

D [f ] .

Proof. Fix u 2 Rd,p 2 �n. From Lemma 3, we have that

R`H

p [⌥

cas
(u)] 

hX

j=1

2↵j ·R`?,nj

Aj(p)[⌥
?
j(uj)]

 2↵h ·
hX

j=1

·R`?,nj

Aj(p)[⌥
?
j(uj)]

 2↵hC ·
hX

j=1

R j

Aj(p)[uj ]

= 2↵hC ·R cas

p [u] .

The proof now simply follows from linearity of expectation.

B.4. Proof of Theorem 6

While Theorem 2 from Ramaswamy et al. (2015) , gives an excess risk bound for the abstain loss excess risk in terms of
the OvA-surrogate risk, one can easily get a more refined bound as well from the results of Ramaswamy et al. (2015).

Lemma 9 ((Ramaswamy et al., 2015)). Let ⌧ 2 (�1, 1). For all u 2 Rn,p 2 �n, and A = 1(⌥OvA,n
⌧ (u) = n+1). Then

for all p 2 �n

R`?,n

p [⌥

OvA,n
⌧ (u)] 

✓
1(⌥OvA,n

(u) = ?)

2(1� ⌧)
+

1(⌥OvA,n
(u) 6= ?)

2(1 + ⌧)

◆
R OvA,n

p [u] .

We are now ready to prove Theorem 6.

Theorem. For 1  j  h, let ⌧j =
↵j��j

↵j+�j
. Let the component surrogates and predictors of  cas

and ⌥

cas
be  j

=  OvA,nj

and ⌥

j
= ⌥

OvA,nj
⌧j . Then, for all distributions D and functions f : X!Rd

,

R`H

D [⌥

cas � f ]  1

2

max

j2[h]
(↵j + �j) ·R cas

D [f ]

Proof. Let u 2 Rd,p 2 �n, From Lemmas 8 and 9, we have that

R`H

p [⌥

cas
(u)] 

hX

j=1

�j(uj) ·R`?,nj

Aj(p)[⌥
?
j(uj)]


hX

j=1

�j(uj)

✓
1(⌥OvA,nj

(uj) = ?)

2(1� ⌧j)
+

1(⌥OvA,nj
(uj) 6= ?)

2(1 + ⌧j)

◆
·R OvA,nj

Aj(p) [uj ]

=

hX

j=1

✓
�j · 1(⌥OvA,nj

(uj) = ?)

(1� ⌧j)
+

↵j · 1(⌥OvA,nj
(uj) 6= ?)

(1 + ⌧j)

◆
·R OvA,nj

Aj(p) [uj ]
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For each j 2 [h], the coefficients of both the terms within parantheses (i.e. ↵j

1+⌧j
and �j

1�⌧j ) both evaluate to ↵j+�j

2 when the

thresholds ⌧j are set as ⌧j =

↵j��j

↵j+�j
. In fact it can easily be seen that this value of ⌧j minimizes the worst-case coefficient

of R OvA,nj

Aj(p) [uj ] in the bound. Thus, we have

R`H

p [⌥

cas
(u)] 

hX

j=1

1

2

(↵j + �j) ·R OvA,nj

Aj(p) [uj ]

 1

2

max

j2[h]
(↵j + �j) ·

hX

j=1

R OvA,nj

Aj(p) [uj ]

=

1

2

max

j2[h]
(↵j + �j) ·R cas

p [u] .

The Theorem now follows from linearity of expectation.


