Appendix: Variational Inference with Normalizing Flows

Danilo Jimenez Rezende
Shakir Mohamed

Google DeepMind, London

DANILOR@ GOOGLE.COM
SHAKIR@GOOGLE.COM

A. Invertibility conditions

We describe the constraints required to have invertible maps for the planar and radial normalizing flows described in section 3 .

A.1. Planar flows

Functions of the form (10) are not always invertible depending on the non-linearity and parameters chosen. When using $h(x)=\tanh (x)$, a sufficient condition for $f(\mathbf{z})$ to be invertible is that $\mathbf{w}^{\top} \mathbf{u} \geq-1$.

This can be seen by splitting \mathbf{z} as a sum of a vector \mathbf{z}_{\perp} perpendicular to \mathbf{w} and a vector $\mathbf{z}_{\|}$, parallel to \mathbf{w}. Substituting $\mathbf{z}=\mathbf{z}_{\perp}+\mathbf{z}_{\|}$into (10) gives

$$
\begin{equation*}
f(\mathbf{z})=\mathbf{z}_{\perp}+\mathbf{z}_{\|}+\mathbf{u} h\left(\mathbf{w}^{\top} \mathbf{z}_{\|}+b\right) \tag{1}
\end{equation*}
$$

This equation can be solved for \mathbf{z}_{\perp} given $\mathbf{z}_{\|}$and $\mathbf{y}=f(\mathbf{z})$, having a unique solution

$$
\begin{equation*}
\mathbf{z}_{\perp}=y-\mathbf{z}_{\|}-\mathbf{u} h\left(\mathbf{w}^{\top} \mathbf{z}_{\|}+b\right) \tag{2}
\end{equation*}
$$

The parallel component can be further expanded as $\mathbf{z}_{\|}=$ $\alpha \frac{\mathbf{w}}{\|\mathbf{w}\|^{2}}$, where $\alpha \in \mathbb{R}$. The equation that must be solved for α is derived by taking the dot product of (1) with \mathbf{w}, yielding the scalar equation

$$
\begin{equation*}
\mathbf{w}^{T} f(\mathbf{z})=\alpha+\mathbf{w}^{T} \mathbf{u} h(\alpha+b) . \tag{3}
\end{equation*}
$$

A sufficient condition for (3) to be invertible w.r.t α is that its r.h.s $\alpha+\mathbf{w}^{T} \mathbf{u} h(\alpha+b)$ to be a non-decreasing function. This corresponds to the condition $1+\mathbf{w}^{T} \mathbf{u} h^{\prime}(\alpha+b) \geq 0 \equiv$ $\mathbf{w}^{T} \mathbf{u} \geq-\frac{1}{h^{\prime}(\alpha+b)}$. Since $0 \leq h^{\prime}(\alpha+b) \leq 1$, it suffices to have $\mathbf{w}^{T} \mathbf{u} \geq-1$.

We enforce this constraint by taking an arbitrary vector \mathbf{u} and modifying its component parallel to \mathbf{w}, producing a new vector $\hat{\mathbf{u}}$ such that $\mathbf{w}^{\top} \hat{\mathbf{u}}>-1$. The modified vector can be compactly written as $\hat{\mathbf{u}}(\mathbf{w}, \mathbf{u})=$ $\mathbf{u}+\left[m\left(\mathbf{w}^{\top} \mathbf{u}\right)-\left(\mathbf{w}^{\top} \mathbf{u}\right)\right] \frac{\mathbf{w}}{\|\mathbf{w}\|^{2}}$, where the scalar function $m(x)$ is given by $m(x)=-1+\log \left(1+e^{x}\right)$.

A.2. Radial flows

Functions of the form (14) are not always invertible depending on the values of α and β. This can be seen by
splitting the vector \mathbf{z} as $\mathbf{z}=\mathbf{z}_{0}+r \hat{\mathbf{z}}$, where $r=\left|\mathbf{z}-\mathbf{z}_{0}\right|$. Replacing this into (14) gives

$$
\begin{equation*}
f(\mathbf{z})=\mathbf{z}_{0}+r \hat{\mathbf{z}}+\beta \frac{r \hat{\mathbf{z}}}{\alpha+r} . \tag{4}
\end{equation*}
$$

This equation can be uniquely solved for $\hat{\mathbf{z}}$ given r and $\mathbf{y}=$ $f(\mathbf{z})$,

$$
\begin{equation*}
\hat{\mathbf{z}}=\frac{\mathbf{y}-\mathbf{z}_{0}}{r\left(1+\frac{\beta}{\alpha+r}\right)} . \tag{5}
\end{equation*}
$$

To obtain a scalar equation for the norm r, we can subtract both sides of (4) and take the norm of both sides. This gives

$$
\begin{equation*}
\left|y-\mathbf{z}_{0}\right|=r\left(1+\frac{\beta}{\alpha+r}\right) . \tag{6}
\end{equation*}
$$

A sufficient condition for (6) to be invertible is for its r.h.s. $r\left(1+\frac{\beta}{\alpha+r}\right)$ to be a non-decreasing function, which implies $\beta \geq-\frac{(r+\alpha)^{2}}{\alpha}$. Since $r \geq 0$, it suffices to impose $\beta \geq-\alpha$. This constraint is imposed by reparametrizing β as $\hat{\beta}=-\alpha+m(\beta)$, where $m(x)=-1+\log \left(1+e^{x}\right)$.

