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Abstract
Zero-shot learning consists in learning how to
recognise new concepts by just having a descrip-
tion of them. Many sophisticated approaches
have been proposed to address the challenges this
problem comprises. In this paper we describe a
zero-shot learning approach that can be imple-
mented in just one line of code, yet it is able to
outperform state of the art approaches on stan-
dard datasets. The approach is based on a more
general framework which models the relation-
ships between features, attributes, and classes as
a two linear layers network, where the weights
of the top layer are not learned but are given by
the environment. We further provide a learning
bound on the generalisation error of this kind
of approaches, by casting them as domain adap-
tation methods. In experiments carried out on
three standard real datasets, we found that our
approach is able to perform significantly better
than the state of art on all of them, obtaining a
ratio of improvement up to 17%.

1. Introduction
Automatic classification is arguably the first problem con-
sidered in machine learning, thus it has been thoroughly
studied and analysed, leading to a wide variety of classifi-
cation approaches which have been proved useful in many
areas such as computer vision and document classification.
However, these approaches cannot generally tackle chal-
lenging scenarios in which new classes may appear after
the learning stage. We find this scenario in lots of real
world situations. One happens when dealing with an ever
growing set of classes, such as detecting new species of
living beings. Another scenario occurs when the granular-
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ity of the description of the categories to be distinguished
makes it unfeasible to obtain training instances for each
of them, e.g. when a user wants to recognise a particular
model of dress.

There is an increasing interest in the study of zero-shot
learning (ZSL) approaches with the aim of solving this
problem. ZSL consists in recognising new categories of
instances without training examples, by providing a high-
level description of the new categories that relate them to
categories previously learned by the machine. This can be
done by means of leveraging an intermediate level: the at-
tributes that provide semantic information about the cate-
gories to classify. This paradigm is inspired by the way
human beings are able to identify a new object by just
reading a description of it, leveraging similarities between
the description of the new object and previously learned
concepts. Similarly, zero-shot learning approaches are de-
signed to learn this intermediate semantic layer, the at-
tributes, and apply them at inference time to predict new
classes, provided with their description in terms of these
attributes. Hereafter we use the term signature to refer to
the attribute description of a class.

Zero-shot learning is inherently a two stage process: train-
ing and inference. In the training stage, knowledge about
the attributes is captured, and in the inference stage this
knowledge is used to categorise instances among a new set
of classes. Many efforts have been made to improve the
training stage (Hwang et al., 2011; Farhadi et al., 2009; Ja-
yaraman et al., 2014), whereas the inference stage has re-
ceived little attention (Jayaraman & Grauman, 2014). For
example many approaches are unable to fully exploit the
discriminative capacity of attributes, and cannot harness the
uncertainty of the attribute prediction obtained in the first
stage.

We study a framework that is able to integrate both stages,
overcoming the general deficiencies previously described.
This framework, introduced in (Akata et al., 2013), is based
on modelling the relationship between features, attributes,
and classes as a (linear) model composed of two layers.
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The first layer contains the weights that describe the re-
lationship between the features and the attributes, and is
learned at the training stage. The second layer models
the relationship between the attributes and the classes and
is fixed using the prescribed attribute signatures of the
classes. Given that the training classes and the test classes
are different, this second layer is interchangeable.

The main contributions of this paper are:

• An approach, based on the described framework and
a principled choice of the regularizer, which has three
nice properties: first, it performs comparably or better
than the state of the art; second, it is efficient both at
training and inference stage; and third, it is extremely
easy to implement: one line of code for training and
another one for inference (without calling any external
functions).

• We provide a bound on the generalisation error of the
approaches comprised in this framework. This is done
by bridging the gap between zero-shot learning and
domain adaptation.

The remainder of the paper is organised as follows. In Sec.
2 we briefly review methods proposed to deal with zero-
shot learning. In Sec. 3 we describe the above ZSL frame-
work, and present our method. In Sec. 4 we analyse its
learning capabilities. In Sec. 5 we report the results of
our experiments on one synthetic and three standard real
datasets. Finally in Sec. 6 we discuss the main contribu-
tions of this paper and propose several research lines that
can be explored.

2. Related work
Attributes learning, defined as the process of learning to
recognise several properties from objects, precedes zero-
shot learning. Indeed, it is the capability of predicting at-
tributes from instances what drives the possibility of learn-
ing new classes based only on their description. The no-
tion of using a description to represent a class dates back to
(Dietterich & Bakiri, 1995). The aim was using these bi-
nary descriptors as error-correcting codes, although these
did not convey any semantic meaning. Recently, there has
been an increasing interest in automatic recognition of at-
tributes, partially due to the availability of data containing
tags or meta-information. This has proved to be particu-
larly useful for images (Ferrari & Zisserman, 2007; Farhadi
et al., 2009; Lampert et al., 2009), as well as videos (Fu
et al., 2014; Liu et al., 2011).

Many papers focus on attributes learning, namely the train-
ing stage in zero-shot learning methods, putting special em-
phasis on the need to disentangle the correlations between

attributes at the training set, because these properties may
not be present in the target data (Jayaraman et al., 2014).
For example in (Farhadi et al., 2009) the authors focus on
the feature extraction process with the aim of avoiding con-
fusion in the learning process of attributes that often appear
together in the training set instances.

With regard to the inference stage in which the predicted
attributes are combined to infer a class, many approaches
employ 1-nearest neighbour, probabilistic frameworks, or
modified versions of either.

Approaches based on 1-nearest neighbour consist in look-
ing in the attribute space for the closest test class signature
to the predicted attribute signature of the input instance. It
is used in (Farhadi et al., 2009), and in (Palatucci et al.,
2009) the authors study risk bounds of this approach when
using the Hamming distances between the predicted sig-
nature and the signatures of the target classes. Whereas
1-nearest neighbour is an intuitive way for inferring classes
from the attributes, it presents several drawbacks. Namely,
it treats equally all dimensions of the attribute space, which
may be sub-optimal, as some attributes are more important
than others for discriminating between classes, and metrics
such as Hamming distance ignore quantitative information
in the prediction of the attributes.

In (Lampert et al., 2009; 2014) the authors propose a cas-
caded probabilistic framework in which the predictions ob-
tained in the first stage can be combined to determine the
most likely target class. Within this framework two ap-
proaches are proposed: directed attribute prediction (DAP),
and indirected attribute prediction (IAP). In DAP a proba-
bilistic classifier (e.g. logistic regression model) is learned
at training stage for each attribute. At inference stage the
previous estimators are used to infer the new classes pro-
vided their attributes signatures. In IAP one probabilistic
classifier is learned for each training class, whereas at in-
ference stage the predictions are combined accounting for
the signatures of both training and test classes. The DAP
approach has been widely used by many other methods. In
(Suzuki et al., 2014) the authors extend DAP by weighting
the importance of each attribute, based on its frequency of
appearance. These probabilistic approaches bring a princi-
pled way of combining the attribute predictions of a new
instance in order to infer its class. However, in addition
of being unable to ponder the reliability of the predicted
attributes, they introduce a set of independence assump-
tions that hardly ever hold in real world, for example, when
describing animals the attributes “terrestrial” and “farm”
are dependent, but are treated as independent in these ap-
proaches.

Very recently, the authors of (Jayaraman & Grauman,
2014) proposed an approach that acknowledges unrelia-
bility in the prediction of attributes, having mechanisms
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Figure 1. Summary of the framework described in Sec. 3. At training stage we use the matrix of signatures S together with the training
instances to learn the matrix V (in grey) which maps from the feature space to the attribute space. At inference stage, we use that matrix
V , together with the signatures of the test classes, S�, to obtain the final linear model W �.

to deal with it. The approach is based on random forests
that classify attribute signatures into the test classes, using
a validation partition from the training set. The resultant
model empirically proves to be superior to previous infer-
ence methods, such as DAP, and it obtains state of the art
results in the benchmark datasets. One of the limitations
of this model is the need to have the attribute signatures of
the test classes at the training stage. In other words, the
model learned at training stage is tailored to work with a
predefined set of target classes.

The approach we describe in Sec. 3 bypasses the limita-
tions of these methods by expressing a model based on
an optimisation problem which relates features, attributes
and classes. There are some works which follow a simi-
lar strategy. A relevant approach is the one described in
(Akata et al., 2013), where the authors propose a model
that implicitly learns the instances and the attributes em-
beddings onto a common space where the compatibility
between any pair of them can be measured. The approach
we describe in the paper is based on the same principle,
however we use a different loss function and regularizer
which not only makes the whole process simpler and effi-
cient, but also leads to much better results. Another related
approach is proposed in (Hariharan et al., 2012), where the
authors use the information regarding the correlations be-
tween attributes in both training and test instances. The
main differences are that they focus on attribute prediction,
and they employ a max-margin formulation that leads to a
more complex approach.

Other approaches consider the attributes as latent variables
to be learned. For example in (Wang & Mori, 2010) an
explicit feature map is designed to model the relationships
between features, attributes and classes. Other approaches,

such as (Liu et al., 2011; Mahajan et al., 2011), consider
different schemes where attributes representations are to be
learned.

The approach we describe is grounded on the machine
learning areas of transfer learning and domain adapta-
tion. Transfer learning, also known as learning to learn
(Lawrence & Platt, 2004) or inductive transfer (Croonen-
borghs et al., 2008; Raykar et al., 2008; Rückert & Kramer,
2008), shares with zero-shot learning the aim of extracting
knowledge from a set of source tasks that can be applied in
future tasks. The main difference is that in transfer learn-
ing the information about the new tasks is given as a set of
labelled instances. An extensive review of these methods
can be found in (Pan & Yang, 2010).

The aim of domain adaptation is to learn a function from
data in one domain, so that it can be successfully applied
to data from a different domain (Ben-David et al., 2007;
Daumé III, 2009; Jiang & Zhai, 2007). It resembles trans-
fer learning but there are important differences to note. In
transfer learning the input distribution in both source and
target tasks is supposed to be the same whereas there are
several labelling functions. Domain adaptation makes the
reverse assumption, that is, the learning function is the
same but the input distributions for source and target tasks
are different. The link between our approach and domain
adaptation becomes clear in Sec. 4.1.

3. Embarrassingly simple ZSL
Let us start by defining some notation. We assume that at
training stage there are z classes, each of them having a
signature composed of a attributes. We can represent these
signatures in a matrix S ∈ [0, 1]a×z . This matrix may con-
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tain boolean entries, when the description of classes is de-
fined as a list of attributes, or more generally, it may contain
for each attribute any value in [0, 1] providing a soft link be-
tween attributes and classes. Let us denote by X ∈ Rd×m

the instances available at training stage, where d is the di-
mensionality of the data, and m is the number of instances.
Similarly we use Y ∈ {−1, 1}m×z to denote the ground
truth labels of each training instance belonging to any of the
z classes. Note that both matrices Y and S provide enough
information so that one can easily obtain the ground truth
attributes for each instance. In most cases each row of Y
contains only one positive entry indicating the class it be-
longs to. Nevertheless, the present framework allows an
instance to belong to several classes simultaneously.

If we were interested in learning a linear predictor for the z
training classes, we would optimise the following problem:

minimise
W∈Rd×z

L
�
X�W,Y

�
+ Ω (W ) , (1)

where W contains the parameters to be learned, L is a loss
function, and Ω a regularizer. Problem (1) encompasses
several approaches, depending on the choice of L and Ω.
For example if L is the hinge loss, and Ω is the Frobenius
norm, this would lead to a standard SVM, but one can con-
sider other loss functions such as logistic loss, and other
regularizers, such as the trace norm, leading to multitask
learning methods (Argyriou et al., 2008; Romera-Paredes
et al., 2013).

In problem (1) the attributes are not used, and therefore,
there is no way to perform knowledge transfer from this
set of classes to new classes. Instead, one can introduce
the given information about the attributes, S, by replacing
W = V S�, where V ∈ Rd×a. That leads to the following
problem:

minimise
V ∈Rd×a

L
�
X�V S, Y

�
+ Ω (V ) . (2)

At inference stage we want to distinguish between a new set
of z� classes. To do so, we are provided with their attributes
signatures, S� ∈ [0, 1]a×z�

. Then, given a new instance, x,
the prediction is given by

argmax
i

x�V S�
i.

A scheme of this framework is shown in Fig. 1, and it is
also used in (Akata et al., 2013). Unlike other zero-shot
learning methods, the approach in eq. (2) does not try to
minimise explicitly the classification error of the attributes.
Instead it minimises the multiclass error, by both learning
implicitly how to recognise attributes, and also pondering
the importance of each of them in the decision of the class.

There are several points to note from problem (2). Firstly,
if the regularizer Ω is of the form Ω(B) = Ψ

�
B�B

�
for

some function Ψ, then by using the Representer theorem
(Argyriou et al., 2009), it is straightforward to contemplate
a kernel version of the problem, where only inner products
between instances are used:

minimise
A∈Rm×a

L (KAS, Y ) +Ψ
�
S�A�KAS

�
, (3)

where K ∈ Rm×m is the Gram matrix, Ki,j =
�φ(xi),φ(xj)�, being φ(x) the representation of x in a
given feature space. Secondly, problem (2) and its equiva-
lent problem (3) are convex, and its global optimal solution
can be computed efficiently.

3.1. Regularisation and loss function choices

The framework described above comprises several ap-
proaches, which vary depending on their regularizer and
loss function. Here we design a regularizer which accom-
plishes the following desiderata:

• The Euclidean norm of the representation of any
(training) attribute signature, s ∈ [0, 1]a, on the fea-
ture space, V s, must be controlled so that ideally the
representation of all signatures on the feature space
have a similar Euclidean norm. This allows fair com-
parisons between signatures, and prevents problems
that stem from highly unbalanced training sets.

• Conversely, it would be interesting to bound the vari-
ance of the representation of all (training) instances X
on the attribute space, V �X . The aim of this point is
to make an approach that is invariant enough to the
training feature distribution, so that it can generalise
to other test feature distributions.

A regularizer that accomplishes the previous points can be
written as follows:

Ω (V ;S,X) = γ �V S�2Fro + λ
��X�V

��2
Fro

+ β �V �2Fro ,
(4)

where the scalars γ,λ,β are the hyper-parameters of this
regularizer, and �·�Fro denotes the Frobenius norm. The
first two terms account for the above points, and we have
added one further term consisting in a standard weight
decay penalising the Frobenius norm of the matrix to be
learned.

Having made these choices, we note that if:

• L (P, Y ) = �P − Y �2Fro.

• β = γλ

then the solution to problem (2) can be expressed in closed
form:

V =
�
XX� + γI

�−1
XY S� �

SS� + λI
�−1

. (5)
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This, and the corresponding kernel version that can be de-
rived from eq. (3), are the one-line-of-code solutions we
mentioned in the introduction.

4. Risk bounds
In this section we provide some theoretical guarantees
about our approach, bounding the expected error on the in-
ference stage with respect to the training error. In order to
do so, we first transform our problem into a domain adap-
tation one.

4.1. Simple ZSL as a domain adaptation problem

Let us assume that problem (2) can be expressed in the fol-
lowing way:

minimise
V ∈Rd×a

m�

i=1

z�

t=1

�
�
x�
i V s�t , yt,i

�
+ Ω (V ) , (6)

where � (·, ·) : R × {−1, 1} −→ [0, 1]. That implies that
one instance may be classified to belong to zero, one, or
more than one classes. Such an assumption may be realistic
in some cases, for example when there are some instances
in the training set that do not belong to any training class.
Then, problem (6) can be expressed in a more conventional
form:

minimise
v∈Rda

m�

i=1

T�

t=1

�
�
�x�
t,iv, yt,i

�
+ Ω (v) , (7)

where
�xt,i = vec

�
xis

�
t

�
∈ Rda. (8)

Note that at inference time, given a new instance, x�, the
predicted confidence of it belonging to a new class t with
attribute signature st, is given by �x��

t v =vec
�
x�s�t

��
v.

Therefore, even if the original test instances x were sam-
pled from the same distribution as the training instances,
the transformation of them using attributes signatures
makes the training and test instances come from different
distributions. As a consequence, we are facing a domain
adaptation problem.

4.2. Risk bounds for domain adaptation

Domain adaptation has been analysed from a theoretical
viewpoint in several works (Ben-David et al., 2007; Blitzer
et al., 2008). Here we apply these developments to our
problem.

In a domain adaptation problem we assume that the train-
ing instances are sampled from a source distribution D, and
the test instances are sampled from a target distribution D�.
Following the definition of (Ben-David et al., 2007), a func-
tion h is said to be a predictor if it maps from the feature

space to {0, 1}, and f is the (stochastic) ground truth la-
belling function for both domains, mapping from the fea-
ture space to [0, 1]. Then the expected error of h with re-
spect to the source distribution is defined as:

�(h) = Ex∼D [|f(x)− h(x)|],

and the expected error of h with respect to the target distri-
bution, ��(h), is defined accordingly.

Theorem 1 in (Blitzer et al., 2008) states that given a hy-
pothesis space H of VC-dimension d̄, and sets U , U � of m̄
instances sampled i.i.d. from D and D� respectively, then
with probability at least 1− δ, for every h ∈ H:

��(h) ≤ �(h) + 4

�
2d̄

m̄

�
log

2m̄

d̄
+ log

4

δ

�
(9)

+ λ+
1

2
d̂HΔH (U ,U �) , (10)

where

• λ is an upper-bound of inf
h∈H

[�(h) + ��(h)]. In partic-

ular if the ground truth function f is contained in H,
then λ = 0.

• dH (D,D�) is known as the A-distance between distri-
butions D and D� over the subsets defined in H (Kifer
et al., 2004):

dH (D,D�) = 2sup
h∈H

|PD(h)− PD�(h)|,

where PD(h) denotes the probability of any event in
h, under the distribution D. This is equivalent to the
expected maximal accuracy achieved by a hypothesis
in H separating the instances generated by the two
different distributions D and D�. In a similar vein,
d̂H (US ,UT ) is defined as the empirical distance be-
tween the samples U and U �.

• HΔH is the symmetric difference hypothesis space of
H and it is defined as:

HΔH = {h(x)⊕ h�(x) : h, h� ∈ H},

being ⊕ the XOR operator. That is, a hypothesis f is
in HΔH, if for a couple of hypothesis h,h� in H, f(x)
is positive if and only if h(x) �= h�(x) for all x.

In our case H is the hypothesis space composed of all lin-
ear classifiers, m̄ = mz, and d̄ = da + 1. Let us as-
sume that both train and test instances are sampled from
the same distribution, C. When we do the transformation
specified in eq. (8) using S and S� for the training and test
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instances, we end up having two different distributions, D,
and D� and we are interested in quantifying the A-distance
between them over our symmetric difference hypothesis
space, dHΔH (D,D�). The previous assumption may not
hold true in many cases, however it can be a fair approx-
imation in the standard case where the contribution of the
differences of training and test distributions of the feature
spaces is negligible in comparison to the differences be-
tween S and S� when quantifying the distance between dis-
tributions D and D�.

We observe two extreme cases. The first one contemplates
the trivial scenario where S = S�, so that both distribu-
tions are similar and thus the distance is 0. In that case,
if λ = 0, the bound given in eq. (10) becomes equiva-
lent to the Vapnik-Chervonenkis bound on a standard clas-
sifier. The second case arises when each attribute signature
of the training classes is orthogonal to each attribute sig-
nature of the test classes, that is, for each i ∈ {1 . . . z},
j ∈ {1 . . . z�},

�
si, s

�
j

�
= 0. In Section A of the supple-

mentary appendix we prove that, in this case, the right hand
side term in eq. (10) becomes bigger than one. Thus, the
bound is vacuous, implying that no transfer can be done as
one would expect. All real scenarios lay between the pre-
vious cases. One interesting question is to characterise the
value dHΔH (D,D�) as a function of solely S and S�. We
leave this question open in the present paper.

5. Experiments
In order to assess our approach and the validity of the state-
ments we made, we conducted a set of experiments on one
synthetic and three real datasets, which comprise a standard
benchmark of evaluation of zero-shot learning methods1.

5.1. Synthetic experiments

First we used synthetic generated data with the aim of
both checking the correctness of the described method,
which we refer to as ESZSL (embarrassingly simple zero-
shot learning), and comparing it with the baseline algo-
rithm DAP on a controlled set up. All hyper-parameters
required by these methods were tuned by a validation
process using in all cases the range of values 10b, for
b = −6,−5, . . . , 5, 6. This set of values was chosen af-
ter performing preliminary experiments which empirically
showed that the optimal performance for both approaches
is found within this interval.

The data were generated as follows. Initially, we created
the signatures for the classes by sampling each element of
S from a Bernoulli distribution with 0.5 mean. We created
the ground truth mapping from the attributes to the features,
V + ∈ Ra×d, where we have fixed a = 100 and d = 10, by

1The code can be found at romera-paredes.com/zsl.
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Figure 2.
Multiclass accuracy obtained by DAP (Lampert et al.,
2009), and ESZSL (Sec. 3.1), when varying the number
of training classes, z. Vertical bars indicate ±1 standard
deviation.

sampling every element of it from a Gaussian distribution
G(0, 1). The value of d is intentionally low so that there
appear correlations between the attributes, as is usually the
case in real data. For each class t, we created 50 instances
by first generating their representation in the attribute space
by adding Gaussian noise, G(0, 0.1) to the attribute signa-
ture St, then we brought them back onto the original feature
space by using V +. Following this process, we generated a
training set composed of z classes, and a test and validation
set composed of 100 classes each.

In the first experiment, we evaluated how the number of
training classes affected the performance of the methods
on new classes. To do so, we varied the number of training
classes from 50 to 500 in intervals of 50. According to the
results shown in Fig 2, we can see that ESZSL significantly
outperforms DAP in all cases. It is remarkable that the per-
formance of ESZSL with 100 training classes is superior to
the performance of DAP with 500 training classes. We also
observe that the performance of ESZSL plateaus when the
number of training classes is above 200, possibly because
there is no further margin of improvement.

In Sec. 3 we argue that the described approach should be
robust to attributes having different discriminative capabil-
ities for characterising the classes. In the second exper-
iment, we assess how the approaches perform in the ex-
treme case where some attributes provide no information
at all about the classes at hand. The way we have imple-
mented this is by first, synthesising a dataset just as de-
scribed above, and second, by randomly selecting a set of
ψ attributes (without replacement) so that their information
in all signatures is tweaked. The way each of the inputs
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Figure 3.
Multiclass accuracy obtained by DAP (Lampert et al.,
2009), and ESZSL (Sec. 3.1), when varying the number
of corrupted attributes, ψ. Vertical bars indicate ±1 stan-
dard deviation.

of the modified attributes is tweaked is again by sampling
from a Bernoulli distribution with 0.5 mean. In this exper-
iments we have tried different values of ψ in the range of
5 to 45 attributes (out of 100), in intervals of 5. The re-
sults, reported in Fig 3, support our hypothesis about the
robustness of our approach to filter meaningless attributes.

Additional experiments on synthetic data are reported in
Sec. B of the appendix.

5.2. Real data experiments

We have tried the same real datasets as the ones reported in
(Jayaraman & Grauman, 2014) which are the Animals with
Attributes dataset (AwA) (Lampert et al., 2009), the SUN
scene attributes database (SUN) (Patterson & Hays, 2012),
and the aPascal/aYahoo objects dataset (aPY) (Farhadi
et al., 2009). These consist of collections of images com-
prising a varied set of categories in different scopes: ani-
mals, scenes, and objects respectively. AwA dataset con-
tains attribute-labelled classes, which we will use as S
in the model. The datasets aPY and SUN are attribute-
labelled instances datasets, so the attribute signature of
each class is calculated as the average attribute signature
of the instances belonging to that class. The characteristics
of each of these datasets are summarised in table 1.

In the following we perform two sets of experiments. In
the first one, we compare our approach with alike methods
that also belong to the framework described in Fig. 1. In
the second set of experiments, we compare our approach
against the current state of the art. In all cases, in order to
tune the hyper-parameters of the methods, we use the fol-

AwA aPY SUN
Attributes 85 65 102

Training classes 40 20 707
Test classes 10 12 10
Instances 30475 15339 14340

Table 1. Summary of the real datasets employed in the experi-
mental section.

Training instances (Akata et al., 2013) ESZSL
500 32.30% 33.09%
1000 38.57% 42.44%
2000 40.21% 44.82%

Table 2. Comparison between the approach in (Akata et al., 2013)
and ESZSL, using the AwA dataset.

lowing validation procedure. We create the validation set
by grouping all instances belonging to 20% of the training
classes chosen at random (without replacement). Once the
hyper-parameters are tuned, we pool the validation set in-
stances together with the training set instances in order to
train the final model. We use the range of values, 10b for
b = −3,−2, . . . , 2, 3 to tune all hyper-parameters.

Preliminary experiments Here we present an experi-
ment comparing our approach to (Akata et al., 2013). We
used the recently provided DECAF features of the AwA
dataset. We utilised the best configuration reported on
(Akata et al., 2013), using different training set sizes of
500, 1000, and 2000 instances. The results, shown in Ta-
ble 2 show that our approach clearly outperforms (Akata
et al., 2013). It is also worth mentioning that the latter ap-
proach took more than 11 hours to run the scenario with
2000 training instances, whereas ours only took 4.12 sec-
onds.

One of the main differences between our approach and that
of (Akata et al., 2013), is that we use a more elaborated
regularizer. Because of that, in the second preliminary
experiment we aim to assess the importance of regularis-
ing the representation of both attributes and instances in
each other’s space, as done in eq. (4). In order to do so,
we compare this regularizer with a version where only the
Frobenius norm of the weights is penalised, that is, where
γ = λ = 0 in eq. (4). For this experiment we use the
DECAF features as before, and all training instances. ES-
ZSL achieved 50.37% classification performance, whereas
the described modified version obtained 45.02%. This sup-
ports the hypothesis that the use of these two regularizers
leads to a critical difference in the performance.

Comparison with the state of the art In order to make
our approach easily comparable with the state of the art, we
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Method/Dataset AwA aPY SUN
DAP 40.50 18.12 52.50

ZSRwUA
43.01
±0.07

26.02
±0.05

56.18
±0.27

ESZSL
49.30
±0.21

15.11
±2.24

65.75
±0.51

ESZSL-AS − 27.27
±1.62

61.53
±1.03

Table 3. Multiclass accuracy obtained by DAP (Lampert et al.,
2009), ZSRwUA (Jayaraman & Grauman, 2014), the method de-
scribed in Sec. 3.1 ESZSL, and its modification ESZSL-AS, on
the three real datasets described in Table 1.

used the set of standard features provided by the authors
of the data (Jayaraman & Grauman, 2014; Lampert et al.,
2009; Patterson & Hays, 2012), including SIFT (Lowe,
2004), and PHOG (Bosch et al., 2007). We used com-
bined χ2-kernels, one for each feature channel2, following
the procedure explained in (Lampert et al., 2009; Jayara-
man & Grauman, 2014). In all cases, we used the same
attributes signatures, and the same standard partitions be-
tween train and test classes, as the ones employed in (Ja-
yaraman & Grauman, 2014).

In these experiments we compare 4 methods: DAP (Lam-
pert et al., 2009), ZSRwUA (Jayaraman & Grauman,
2014), ESZSL (Sec. 3.1), and a small modification of the
latter that we call ESZSL All Signatures (ESZSL-AS).

ESZSL-AS can be applied in attribute-labelled instances
datasets (aPY and SUN), and consists in treating each train-
ing attribute signature as a class in its own right. That
is effectively done by removing Y in eq. (5), where now
S ∈ Ra×m contains as many signatures as the number of
training instances. The inference process remains the same,
and the class signatures are used to predict the category.

For each dataset we ran 20 trials, and we report the mean
and the standard deviation of the multiclass accuracy in Ta-
ble 3. Overall we notice that the approaches described in
Sec. 3 significantly outperform the state of the art.

In the AwA dataset, ESZSL achieves an improvement over
14.6% over the state of the art. Even more surprising,
this performance is better than state of the art approaches
applied to discovered (non-semantic) attributes, which ac-
cording to (Jayaraman & Grauman, 2014) is 48.7. Let us
recall that this dataset contains attribute-labelled classes,
and so, ESZSL-AS cannot be applied here.

Regarding the aPY dataset, the standard ESZSL approach
has struggled and it is not able to outperform the DAP base-
line. One hypothesis is that the small number of classes

2Available at www.ist.ac.at/˜chl/ABC.

in comparison to the number of attributes has probably af-
fected negatively the performance. In contrast we see that
ESZSL-AS obtains state of the art results, achieving a 4.8%
of improvement over the previous best approach. Its suc-
cess can be explained by reversing the previous reasoning
about why standard ESZSL failed. Indeed, ESZSL-AS ef-
fectively considers as many training classes as the number
of training instances.

Finally, in the SUN dataset both ESZSL approaches ob-
tain extremely good results, significantly outperforming the
current state of the art. ESZSL leads the table, achieving an
improvement ratio of 17%. We note that here the number
of training classes is much bigger than the number of at-
tributes, therefore the advantages obtained by ESZSL-AS
in the previous experiment vanish.

In Sec. C in the appendix, we report further experiments
carried out on real data.

6. Discussion
In this paper we have described an extremely simple ap-
proach for ZSL that is able to outperform by a significant
margin the current state of the art approaches on a standard
collection of ZSL datasets. It combines a linear model to-
gether with a principled choice of regularizers that allow
for a simple and efficient implementation.

We have also made explicit a connection between ZSL and
domain adaptation. In particular, we have expressed the
framework described in Sec. 3 as a domain adaptation
problem. As a consequence, we are able to translate the-
oretical developments from domain adaptation to ZSL.

Given the simplicity of the approach, there are many dif-
ferent research lines that can be pursued. In this work we
focus on semantically meaningful attributes, but the devel-
opment of similar ideas applied to word embeddings as in
(Frome et al., 2013), is both promising and straightforward
within this framework. Another interesting research line is
to study the addition of non-linearities and more layers into
the model, leading to a deep neural network where the top
layer is fixed and interchangeable, and all the remaining
layers are learned.

As a concluding comment, we acknowledge that many
problems require complex solutions, but that does not mean
that simple baselines should be ignored. On the contrary,
simple but strong baselines both bring light about which
paths to follow in order to build more sophisticated so-
lutions, and also provide a way to measure the quality of
these solutions.
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