
Trust Region Policy Optimization

A Proof of Policy Improvement Bound

We will adapt Kakade and Langford’s proof to the more general setting considered in this paper. First, we review
the Kakade and Langford proof, using our own notation. Recall the useful identity introduced in Section 3, which
expresses the policy improvement as an accumulation of expected advantages over time:

⌘(⇡
new

) = ⌘(⇡
old

)+E
s

0

,a

0

,s

1

,a

1

,...

" 1X

t=0

�tA
⇡

old

(s
t

, a
t

)

#

where s
0

⇠ ⇢
0

(s
0

), a
t

⇠ ⇡
new

(·|s
t

), s
t+1

⇠ P (s
t+1

|s
t

, a
t

). (20)
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Define Ā(s) as the expected advantage of ⇡̃ at state s, averaged over actions:
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Then Equation (20) can be rewritten as follows
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Recall that in conservative policy iteration, the new policy ⇡
new

is taken to be a mixture of the old policy ⇡
old

and an increment ⇡0, i.e., ⇡
new

(a|s) = ⇡
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(a|s) + ⇡0(a|s). In other words, to sample from ⇡
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, we first draw a
Bernoulli random variable, which tells us to choose ⇡
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with probability (1� ↵) and choose ⇡0 with probability
↵. Let c
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Hence, we can bound the second term in Equation (28):
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Returning to Equation (27), we get
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That concludes Kakade and Langford’s proof.

Now we will adapt their proof to the case that ⇡
new

is not necessarily a mixture involving ⇡
old

, but the total
variation divergence Dmax
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,⇡
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) is bounded. The basic idea is to couple the old and new policies so that
they choose the same action with probability 1� ↵. Then the same line of reasoning will be applied.

See (Levin et al., 2009) for an exposition on couplings. We will use the following fundamental result:
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See (Levin et al., 2009), Proposition 4.7. This joint distribution is constructed as follows:
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Now consider sampling a trajectory from the MDP as follows. At each timestep, draw the actions a
⇡

old

,t

, a
⇡

new

,t

from the coupled distribution described above. Perform the action a
⇡

new

,t

. Define c
t

as the number of times
t0 < t where case (ii) is chosen, i.e., a

⇡

old

,t

, a
⇡

new

,t

. Next we redefine ✏ := max
s

max
a

|A
⇡

(s, a)| in a slightly weaker
way. (See Appendix B for an stronger definition.) Then Equations (29), (30), (31) imply the result.

B Perturbation Theory Proof of Policy Improvement Bound

We also provide a di↵erent proof of Theorem 1 using perturbation theory. This method makes it possible to
provide slightly stronger bounds.

Theorem 1a. Let ↵ denote the maximum total variation divergence between stochastic policies ⇡ and ⇡̃, as
defined in Equation (9), and let L be defined as in Equation (3). Then
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Note that the ✏ defined in Equation (33) is less than or equal to the ✏ defined in Theorem 1, i.e., Equation (7).
So Theorem 1a is slightly stronger.
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Left multiply by G and right multiply by G̃.
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Next let us bound the O(�2) term �2cG�G�G̃⇢. First we consider the product �cG� = �v�. Consider the
component s of this dual vector.
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So we have that
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C E�ciently Solving the Trust-Region Constrained Optimization Problem

This section describes how to e�ciently approximately solve the following constrained optimization problem,
which we must solve at each iteration of TRPO:

minimizeL(✓) subject to D
KL

(✓
old

, ✓)  �. (43)

The method we will describe involves two steps: (1) compute a search direction, using a linear approximation to
objective and quadratic approximation to the constraint; and (2) perform a line search in that direction, ensuring
that we improve the nonlinear objective while satisfying the nonlinear constraint.

The search direction is computed by approximately solving the equation Ax = �g, where A is the Fisher
information matrix, i.e., the quadratic approximation to the KL divergence constraint: D

KL
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old
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2
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, ✓). In large-scale problems, it is prohibitively costly (with respect

to computation and memory) to form the full matrix A (or A�1). However, the conjugate gradient algorithm
allows us to approximately solve the equation Ax = b without forming this full matrix, when we merely have
access to a function that computes matrix-vector products y ! Ay. Appendix C.1 describes the most e�cient
way to compute matrix-vector products with the Fisher information matrix. For additional exposition on the
use of Hessian-vector products for optimizing neural network objectives, see (Martens & Sutskever, 2012) and
(Pascanu & Bengio, 2013).

Having computed the search direction s ⇡ A�1g, we next need to compute the maximal step length � such that
✓+�s will satisfy the KL divergence constraint. To do this, let � = D

KL

⇡ 1

2

(�s)TA(�s) = 1

2

�2sTAs. From this,

we obtain � =
p
2�/sTAs, where � is the desired KL divergence. The term sTAs can be computed through a

single Hessian vector product, and it is also an intermediate result produced by the conjugate gradient algorithm.

Last, we use a line search to ensure improvement of the surrogate objective and satisfaction of the KL di-
vergence constraint, both of which are nonlinear in the parameter vector ✓ (and thus depart from the lin-
ear and quadratic approximations used to compute the step). We perform the line search on the objective
L
✓

old

(✓) + X [Dmax

KL

(✓
old

, ✓)  �], where X [. . . ] equals zero when its argument is true and +1 when it is false.
Starting with the maximal value of the step length � computed in the previous paragraph, we shrink � expo-
nentially until the objective improves. Without this line search, the algorithm occasionally computes large steps
that cause a catastrophic degradation of performance.

C.1 Computing the Fisher-Vector Product

Here we will describe how to compute the matrix-vector product between the averaged Fisher information matrix
and arbitrary vectors. This matrix-vector product enables us to perform the conjugate gradient algorithm.
Suppose that the parameterized policy maps from the input x to “distribution parameter” vector µ

✓

(x), which
parameterizes the distribution ⇡(u|x). Now the KL divergence for a given input x can be written as follows:

D
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where kl is the KL divergence between the distributions corresponding to the two mean parameter vectors.
Di↵erentiating kl twice with respect to ✓, we obtain
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where the primes (0) indicate di↵erentiation with respect to the first argument, and there is an implied summation

over indices a, b. The second term vanishes, leaving just the first term. Let J := @µa(x)

@✓i
(the Jacobian), then the
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Fisher information matrix can be written in matrix form as JTMJ , where M = kl00
ab

(µ
✓

(x), µ
old

) is the Fisher
information matrix of the distribution in terms of the mean parameter µ (as opposed to the parameter ✓). This
has a simple form for most parameterized distributions of interest.

The Fisher-vector product can now be written as a function y ! JTMJy. Multiplication by JT and J can
be performed by most automatic di↵erentiation and neural network packages (multiplication by JT is the well-
known backprop operation), and the operation for multiplication by M can be derived for the distribution of
interest. Note that this Fisher-vector product is straightforward to average over a set of datapoints, i.e., inputs
x to µ.

One could alternatively use a generic method for calculating Hessian-vector products using reverse mode auto-
matic di↵erentiation ((Wright & Nocedal, 1999), chapter 8), computing the Hessian of D

KL

with respect to ✓.
This method would be slightly less e�cient as it does not exploit the fact that the second derivatives of µ(x)
(i.e., the second term in Equation (45)) can be ignored, but may be substantially easier to implement.

We have described a procedure for computing the Fisher-vector product y ! Ay, where the Fisher information
matrix is averaged over a set of inputs to the function µ. Computing the Fisher-vector product is typically
about as expensive as computing the gradient of an objective that depends on µ(x) (Wright & Nocedal, 1999).
Furthermore, we need to compute k of these Fisher-vector products per gradient, where k is the number of
iterations of the conjugate gradient algorithm we perform. We found k = 10 to be quite e↵ective, and using
higher k did not result in faster policy improvement. Hence, a näıve implementation would spend more than
90% of the computational e↵ort on these Fisher-vector products. However, we can greatly reduce this burden by
subsampling the data for the computation of Fisher-vector product. Since the Fisher information matrix merely
acts as a metric, it can be computed on a subset of the data without severely degrading the quality of the final
step. Hence, we can compute it on 10% of the data, and the total cost of Hessian-vector products will be about
the same as computing the gradient. With this optimization, the computation of a natural gradient step A�1g
does not incur a significant extra computational cost beyond computing the gradient g.

D Approximating Factored Policies with Neural Networks

The policy, which is a conditional probability distribution ⇡
✓

(a|s), can be parameterized with a neural network.
The most straightforward way to do so is to have the neural network map (deterministically) from the state
vector s to a vector µ that specifies a distribution over action space. Then we can compute the likelihood p(a|µ)
and sample a ⇠ p(a|µ).
For our experiments with continuous state and action spaces, we used a Gaussian distribution, where the co-
variance matrix was diagonal and independent of the state. A neural network with several fully-connected
(dense) layers maps from the input features to the mean of a Gaussian distribution. A separate set of
parameters specifies the log standard deviation of each element. More concretely, the parameters include
a set of weights and biases for the neural network computing the mean, {W

i

, b
i

}L
i=1

, and a vector r (log
standard deviation) with the same dimension as a. Then, the policy is defined by the normal distribution

N
⇣
mean = NeuralNet

⇣
s; {W

i

, b
i

}L
i=1

⌘
, stdev = exp(r)

⌘
. Here, µ = [mean, stdev].

For the experiments with discrete actions (Atari), we use a factored discrete action space, where each factor is
parameterized as a categorical distribution. That is, the action consists of a tuple (a

1

, a
2

, . . . , a
K

) of integers
a
k

2 {1, 2, . . . , N
k

}, and each of these components is assumed to have a categorical distribution, which is specified
by a vector µ

k

= [p
1

, p
2

, . . . , p
Nk ]. Hence, µ is defined to be the concatenation of the factors’ parameters:

µ = [µ
1

, µ
2

, . . . , µ
K

] and has dimension dimµ =
P

K

k=1

N
k

. The components of µ are computed by taking
applying a neural network to the input s and then applying the softmax operator to each slice, yielding normalized
probabilities for each factor.
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Swimmer Hopper Walker
State space dim. 10 12 20
Control space dim. 2 3 6
Total num. policy params 364 4806 8206
Sim. steps per iter. 50K 1M 1M
Policy iter. 200 200 200
Stepsize (D

KL

) 0.01 0.01 0.01
Hidden layer size 30 50 50
Discount (�) 0.99 0.99 0.99
Vine: rollout length 50 100 100
Vine: rollouts per state 4 4 4
Vine: Q-values per batch 500 2500 2500
Vine: num. rollouts for sampling 16 16 16
Vine: len. rollouts for sampling 1000 1000 1000
Vine: computation time (minutes) 2 14 40
SP: num. path 50 1000 10000
SP: path len. 1000 1000 1000
SP: computation time 5 35 100

Table 2. Parameters for continuous control tasks, vine and single path (SP) algorithms.

E Experiment Parameters

All games
Total num. policy params 33500
Vine: Sim. steps per iter. 400K
SP: Sim. steps per iter. 100K
Policy iter. 500
Stepsize (D

KL

) 0.01
Discount (�) 0.99
Vine: rollouts per state ⇡ 4
Vine: computation time ⇡ 30 hrs
SP: computation time ⇡ 30 hrs

Table 3. Parameters used for Atari domain.
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F Learning Curves for the Atari Domain

Figure 5. Learning curves for the Atari domain.


